セミナー

代数セミナー

タイトル Quasi-Frobenius-split and Serre-Tate theory
開催日時 2019年11月27日 16:30-17:30
主催者
講演者 呼子 笛太郎 氏 (名古屋大学)
場所 矢上キャンパス 14棟631A/B室
内容 This is a work in progress.
According to the Serre-Tate theory, the local moduli space of ordinary abelian varieties or $K3$ surfaces has canonical coordinates, in particular, an ordinary variety admits a canonical lift to characteristic $0$.
It is known that, for a Calabi-Yau variety in positive characteristic, ordinarity is equivalent to Frobenius-splitting.
Recently, Achinger and Zdanowicz constructed the canonical lift modulo $p^2$ using Frobenius-splitting and mentioned that the method works for quasi-Frobenius-split schemes.
In this talk, I will explain a deformation theoretic aspect of their construction and investigate the local moduli of a finite height $K3$ surface.
資料
URL

PAGETOP