KEIO University 21st Century COE Program "Integrative Mathematical Sciences:Progress in Mathematice Motivated by Natural Phenomena"
Japanese Inquiry
COE Program Projects
Transversal Research
Project 1
Transversal Research
Project 2
Advisory Board
Program Members
Access and Maps
Visiting Research Fellow

Transversal Research Project 1 : Noncommutative manifolds and discrete geometric objects in the framework of non-commutative geometry

Leader: Yoshiaki Maeda
Sub Leader: Hitoshi Moriyoshi

Aim of the project
In this project we focus on making advances in the following areas in Mathematics from the viewpoint of Non-commutative Geometry (NCG). In particular, a wide range of topics including the Atiyah-Singer Index Theory, K-Theory, Combinatorics, Graph Theory, Erogodic Theory, Number Theory, Particle Physics and Integrable Systems have deep connections with NCG.

In recent work, a close relationship between NCG and Particle Physics, String Theory and Geometry of Riemann Surfaces has been established. These investigations have also led to the study of Integrable Systems, Quantum Cohomology and Microlocal Analysis from a NCG point of view. The general process of non-commutation or quantization leads to the notion of Non-commutative manifolds. The objective of our project is the followings:
1) Number Theory
L-functions, Non-commutative algebraic geometry
2) Non-commutative Geometry and Topology
Geometric Quantization, Deformation Quantization of Poisson Geometry,
Index Theory, Gauge Theory, String Theory, Quantum Field Theory
3) Discrete Mathematics
Discrete Geometry, Graph Theory, Combinatorics
Geometric quantization of lattices
4) Dynamical Systems
Ergodic Theory, Integrable Systems, Dynamics and Number Theory,
5) Micro-local Analysis and Integrable Systems
Hyperfunctions, Psuedo-differential calculus, Poisson geometry,
Quantum integrable systems
6) Theoretical Physics
String theory, Moduli spaces, Mirror symmetry, Seiberg-Witten theory

Copyright (c) 2003 KEIO University All Rights Reserved