Tatsuo IGUCHI (Professor)
Department of Mathematics
Faculty of Science and Technology
Keio University
address: 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, JAPAN
office: 14-541 (Building 14, Room 541)
phone: +81-(0)45-566-1814
Fax: +81-(0)45-566-1642
Japanese Version
Research Interests
- Theory of partial differential equations
- Mathematical analysis for surface waves
- Hyperbolic systems of conservation laws
My Works
-
M. Aiki and T. Iguchi,
Motion of a vortex filament with axial flow in the half space, preprint.
PDF (257KB)
-
M. Aiki and T. Iguchi,
Solvability of an initial-boundary value problem for a second order parabolic system
with a third order dispersion term, SIAM J. Math. Anal., 44 (2012), 3388--3411.
PDF (234KB)
-
M. Aiki and T. Iguchi,
Motion of a vortex filament in the half-space,
Nonlinear Analysis, TMA, 75 (2012), 5180--5185.
PDF (106KB)
-
T. Iguchi,
A mathematical analysis of tsunami generation in shallow water
due to seabed deformation, Proc. Roy. Soc. Edinburgh Sect. A., 141 (2011), 551--608.
PDF (446KB)
-
T. Iguchi,
A shallow water approximation for water waves,
J. Math. Kyoto Univ., 49 (2009), 13--55.
PDF (272KB)
-
K. Ohi and T. Iguchi,
A two-phase problem for capillary-gravity waves and
the Benjamin-Ono equation,
Discrete Contin. Dyn. Syst., 23 (2009), 1201--1236.
PDF (319KB)
-
T. Iguchi,
A long wave approximation for capillary-gravity waves
and the Kawahara equation,
Bull. Inst. Math. Acad. Sin. (N.S.), 2 (2007), 179--220.
PDF (259KB)
-
T. Iguchi,
A long wave approximation for capillary-gravity waves
and an effect of the bottom,
Comm. Partial Differential Equations, 32 (2007), 37--85.
PDF (315KB)
-
T. Iguchi,
A mathematical justification of the forced Korteweg-de Vries
equation for capillary-gravity waves,
Kyushu J. Math., 60 (2006), 267--303.
PDF (236KB)
-
T. Iguchi and P. G. LeFloch,
Existence theory for hyperbolic systems of conservation laws
with general flux-functions,
Arch. Ration. Mech. Anal., 168 (2003), 165--244.
PDF (542KB)
-
T. Iguchi,
On steady surface waves over a periodic bottom:
relations between the pattern of imperfect bifurcation
and the shape of the bottom, Wave Motion, 37 (2003), 219--239.
-
T. Iguchi and S. Kawashima,
On space-time decay properties of solutions to hyperboic-elliptic
coupled systems, Hiroshima Math. J., 32 (2002), 229--308.
-
T. Iguchi,
Well-posedness of the initial value problem for capillary-gravity waves,
Funkcial. Ekvac., 44 (2001), 219--241.
-
T. Iguchi,
On steady irrotational flow of incompressible ideal fluid in a circular
domain with free surface, Ann. Univ. Ferrara Sez. VII Sc. Mat., 46
(2000), 35--60.
-
T. Iguchi, N. Tanaka and A. Tani,
On a free boundary problem for an incompressible ideal fluid
in two space dimensions,
Adv. Math. Sci. Appl., 9 (1999), 415--472.
-
T. Iguchi,
On the irrotational flow of incompressible ideal fluid in a
circular domain with free surface,
Publ. Res. Inst. Math. Sci., 34 (1998), 525--565.
-
T. Iguchi,
Two-phase problem for two-dimensional water waves of finite depth,
Math. Models Meth. Appl. Sci., 7 (1997), 791--821.
-
T. Iguchi, N. Tanaka and A. Tani,
On the two-phase free boundary problem for two-dimensional water waves,
Math. Ann., 309 (1997), 199--223.
-
T. Iguchi,
The incompressible limit and the initial layer of the
compressible Euler equation in Rn+,
Math. Meth. in the Appl. Sci., 20 (1997), 945--958.
Last update: December 9, 2012