Tatsuo IGUCHI (Professor)
Department of Mathematics
Faculty of Science and Technology
Keio University
address: 3141 Hiyoshi, Kohokuku, Yokohama 2238522, JAPAN
office: 14541 (Building 14, Room 541)
phone: +81(0)455661814
Fax: +81(0)455661642
Japanese Version
Research Interests
 Theory of partial differential equations
 Mathematical analysis for surface waves
 Hyperbolic systems of conservation laws
Publications

T. Iguchi and D. Lannes,
Hyperbolic free boundary problems and applications to wavestructure interactions,
arXiv:1806.07704.
PDF

M. Aiki and T. Iguchi,
Motion of a vortex filament in an external flow,
arXiv:1704.04003.
PDF

T. Iguchi,
A mathematical justification of the IsobeKakinuma model for water waves with and without bottom topography,
J. Math. Fluid Mech., 20 (2018), 19852018.
LINK
ArXiv

R. Nemoto and T. Iguchi,
Solvability of the initial value problem to the IsobeKakinuma model for water waves,
J. Math. Fluid Mech., 20 (2018), 631653.
LINK
ArXiv

T. Iguchi,
IsobeKakinuma model for water waves as a higher order shallow water approximation,
J. Differential Equations, 265 (2018), 935962.
LINK
ArXiv

H. Ueno and T. Iguchi,
A mathematical justification of a thin film approximation for the flow down an inclined plane,
J. Math. Anal. Appl., 444 (2016), 804824.
LINK
ArXiv

H. Ueno, A. Shiraishi, and T. Iguchi,
Uniform estimates for the flow of a viscous incompressible fluid down an inclined plane
in the thin film regime, J. Math. Anal. Appl., 436 (2016), 248287.
LINK
ArXiv

Y. Murakami and T. Iguchi,
Solvability of the initial value problem to a model system for water waves,
Kodai Math. J., 38 (2015), 470491.
LINK

H. Fujiwara and T. Iguchi,
A shallow water approximation for water waves over a moving bottom,
Adv. Stud. Pure Math., 64 (2015), 7788.

M. Aiki and T. Iguchi,
Motion of a vortex filament with axial flow in the half space,
Ann. Inst. H. Poincare Anal. Non Lineaire, 31 (2014), 13111335.
LINK
ArXiv

T. Iguchi,
Initial value problem for water waves and shallow water and long wave approximations,
Emerging Topics on Differential Equations and Their Applications, 2440,
Nankai Ser. Pure Appl. Math. Theoret. Phys., 10, World Sci. Publ., Hackensack, NJ, 2013.
LINK

M. Aiki and T. Iguchi,
Solvability of an initialboundary value problem for a second order parabolic system
with a third order dispersion term, SIAM J. Math. Anal., 44 (2012), 33883411.
LINK
ArXiv

M. Aiki and T. Iguchi,
Motion of a vortex filament in the halfspace,
Nonlinear Analysis, TMA, 75 (2012), 51805185.
LINK
ArXiv

T. Iguchi,
A mathematical analysis of tsunami generation in shallow water
due to seabed deformation, Proc. Roy. Soc. Edinburgh Sect. A., 141 (2011), 551608.
LINK
Research Report

T. Iguchi,
A shallow water approximation for water waves,
J. Math. Kyoto Univ., 49 (2009), 1355.
LINK
Research Report

K. Ohi and T. Iguchi,
A twophase problem for capillarygravity waves and
the BenjaminOno equation,
Discrete Contin. Dyn. Syst., 23 (2009), 12051240.
LINK

T. Iguchi,
A long wave approximation for capillarygravity waves
and the Kawahara equation,
Bull. Inst. Math. Acad. Sin. (N.S.), 2 (2007), 179220.
LINK

T. Iguchi,
A long wave approximation for capillarygravity waves
and an effect of the bottom,
Comm. Partial Differential Equations, 32 (2007), 3785.
LINK

T. Iguchi,
A mathematical justification of the forced Kortewegde Vries
equation for capillarygravity waves,
Kyushu J. Math., 60 (2006), 267303.
LINK

T. Iguchi and P. G. LeFloch,
Existence theory for hyperbolic systems of conservation laws
with general fluxfunctions,
Arch. Ration. Mech. Anal., 168 (2003), 165244.
LINK

T. Iguchi,
On steady surface waves over a periodic bottom:
relations between the pattern of imperfect bifurcation
and the shape of the bottom, Wave Motion, 37 (2003), 219239.
LINK

T. Iguchi and S. Kawashima,
On spacetime decay properties of solutions to hyperbolicelliptic
coupled systems, Hiroshima Math. J., 32 (2002), 229308.
LINK

T. Iguchi,
Wellposedness of the initial value problem for capillarygravity waves,
Funkcial. Ekvac., 44 (2001), 219241.
LINK

T. Iguchi,
On steady irrotational flow of incompressible ideal fluid in a circular
domain with free surface, Ann. Univ. Ferrara Sez. VII Sc. Mat., 46
(2000), 3560.
LINK

T. Iguchi, N. Tanaka and A. Tani,
On a free boundary problem for an incompressible ideal fluid
in two space dimensions,
Adv. Math. Sci. Appl., 9 (1999), 415472.

T. Iguchi,
On the irrotational flow of incompressible ideal fluid in a
circular domain with free surface,
Publ. Res. Inst. Math. Sci., 34 (1998), 525565.
LINK

T. Iguchi,
Twophase problem for twodimensional water waves of finite depth,
Math. Models Meth. Appl. Sci., 7 (1997), 791821.
LINK

T. Iguchi, N. Tanaka and A. Tani,
On the twophase free boundary problem for twodimensional water waves,
Math. Ann., 309 (1997), 199223.
LINK

T. Iguchi,
The incompressible limit and the initial layer of the
compressible Euler equation in R^{n}_{+},
Math. Meth. in the Appl. Sci., 20 (1997), 945958.
LINK
Last update: November 18, 2018