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Motion of a Vortex Filament in the Half Space
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Abstract

A model equation for the motion of a vortex filament immersed in three dimensional,
incompressible and inviscid fluid is investigated as a humble attempt to model the motion
of a tornado. We solve an initial-boundary value problem in the half space where we impose
a boundary condition in which the vortex filament is allowed to move on the boundary.

1 Introduction

Many researchers have studied tornadoes from several perspectives. A systematic research and
observation of tornadoes is difficult mainly because of two reasons: a precise prediction of
tornado formation is not yet possible, and the life-span of a tornado is very short, giving only
short openings for any kind of measurements. Many aspects of tornadoes are still unknown.

In 1971, Fujita [3] gave a systematic categorization of tornadoes. He proposed the so-called
Fujita scale in which tornadoes are classified according to the damage that it dealt to buildings
and other surroundings. The scale provides a correlation between ranges of wind speed and
the damage that it causes. The enhanced version, called the Enhanced Fujita Scale, is used to
classify tornadoes to date. McDonald [10] gives a review of Fujita’s contributions to tornado
research.

Since then, due to the advancement of technology, more accurate and thorough observations
and simulations have become possible, and theories for the formation and motion of tornadoes
have developed. Klemp [5] and the references within give an extensive review on the known
dynamics of tornadoes.

Motivated by this, we investigate the motion of a vortex filament. The vortex filament
equation, also called the Localized Induction Equation (LIE) models the movement of a vortex
filament, which is a space curve where the vorticity of the fluid is concentrated, and is described
by

xt = xs × xss,(1.1)

where x(s, t) =
(
x1(s, t), x2(s, t), x3(s, t)

)
is the position of the vortex filament parameterized

by the arc length s at time t, × denotes the exterior product, and the subscripts denote differ-
entiation with respect to that variable. We also use ∂s and ∂t for partial differentiation with the
corresponding variables.

The LIE was first derived by Da Rios [2] and re-examined by Arms and Hama [1]. Since
then, many authors have worked with the equation. Nishiyama and Tani [7, 8] gave the unique
solvability of the initial value problem for the LIE in Sobolev spaces. A different approach was
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taken by Hasimoto [4]. He used the so-called Hasimoto transformation to transform (1.1) into
a nonlinear Schrödinger equation:

1

i

∂ψ

∂t
=
∂2ψ

∂s2
+

1

2
|ψ|2 ψ,

where ψ is given by

ψ = κ exp

(
i

∫ s

0
τ ds

)
,

κ is the curvature, and τ is the torsion of the filament. Even though this expression is undefined
at points of the filament where the curvature vanishes, Koiso [6] proved that the Hasimoto
transformation is well-defined in the class of C∞ functions. He used a geometrical approach
to define the Hasimoto transformation and showed the unique solvability of the initial value
problem in the class of C∞ functions.

Regarding initial-boundary value problems, the only known result that the authors know is
by Nishiyama and Tani [8]. The boundary condition imposed there necessarily fixes the end point
of the vortex filament and does not allow it to move on the boundary. From the physical point of
view, the vortex filament must be closed, extend to the spatial infinity, or end on boundaries of
the fluid region. In the last case, we have to impose an appropriate boundary condition to show
the well-posedness of the problem. Since it is hard to find what kind of boundary condition is
physically reasonable if we begin our analysis from the Schrödinger equation, we chose to work
with the original vortex filament equation (1.1).

In light of modeling the motion of a tornado, we consider (1.1) in a framework in which the
end of the vortex filament is allowed to move on the boundary. We do this by setting a different
boundary condition than that of [8].

The contents of this paper are as follows. In section 2, we formulate our problem and give
basic notations. In section 3, we derive compatibility conditions for our initial-boundary value
problem. Sections 4 and 5 are concerned with constructing the solution.

2 Setting of the Problem

We consider the initial-boundary value problem for the motion of a vortex filament in the half-
space in which the filament is allowed to move on the boundary:

(2.1)





xt = xs × xss, s > 0, t > 0,
x(s, 0) = x0(s), s > 0,
xs(0, t) = e3, t > 0,

where e3 = (0, 0, 1). We assume that

(2.2) |x0s(s)| = 1 for s ≥ 0, x30(0) = 0,

for the initial datum. The first condition states that the initial vortex filament is parametrized
by the arc length and the second condition just states that the curve is parameterized starting
from the boundary. Here we observe that by taking the inner product of e3 with the equation,
taking the trace at s = 0, and noting the boundary condition we have

d

dt
(e3 · x) |s=0 = e3 · (xs × xss)|s=0

= xs · (xs × xss)|s=0

= 0,
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where “ ·” denotes the inner product and |s=0 denotes the trace at s = 0. This means that if the
end of the vortex filament is on the boundary initially, then it will stay on the boundary, but is
not necessarily fixed. This is our reason for the notion “allowed to move on the boundary”.

By introducing new variables v(s, t) := xs(s, t) and v0(s) := x0s(s), (2.1) and (2.2) become

(2.3)





vt = v × vss, s > 0, t > 0,
v(s, 0) = v0(s), s > 0,
v(0, t) = e3, t > 0,

(2.4) |v0(s)| = 1, s ≥ 0.

Once we solve (2.3), the solution x of (2.1) and (2.2) can be constructed by

x(s, t) = x0(s) +

∫ t

0
v(s, τ)× vs(s, τ) dτ.

So from now on, we concentrate on the initial-boundary value problem (2.3) under the condition
(2.4). Note that if the initial datum satisfies (2.4), then any smooth solution v of (2.3) satisfies

(2.5) |v(s, t)| = 1, s ≥ 0, t ≥ 0.

This can be confirmed by taking the inner product of the equation with v.

We define basic notations that we will use throughout this paper.
For a domain Ω, a non-negative integer m, and 1 ≤ p ≤ ∞, Wm,p(Ω) is the Sobolev space

containing all real-valued functions that have derivatives in the sense of distribution up to order
m belonging to Lp(Ω). We set Hm(Ω) =Wm,2(Ω) as the Sobolev space equipped with the usual
inner product, and H0(Ω) = L2(Ω). We will particularly use the cases Ω = R and Ω = R+,
where R+ = {s ∈ R; s > 0}. The norm in Hm(Ω) is denoted by || · ||m and we simply write || · ||
for || · ||0. We do not indicate the domain in the symbol for the norms since we use it in a way
where there is no risk of confusion.

For a Banach space X, Cm([0, T ];X) denotes the spaces of functions that are m times
continuously differentiable in t with respect to the topology of X.

For any function space described above, we say that a vector valued function belongs to the
function space if each of its components does.

3 Compatibility Conditions

We derive necessary conditions for a smooth solution to exist for (2.3) with (2.4).
Suppose that v(s, t) is a smooth solution of (2.3) with (2.4) defined in R+ × [0, T ] for some

positive T . We have already seen that for all (s, t) ∈ R+ × [0, T ]

(3.1) |v(s, t)|2 = 1.

By differentiating the boundary condition with respect to t we see that

(B)n ∂nt v|s=0 = 0 for n ∈ N, t > 0.

We next show

3



Lemma 3.1 For a smooth solution v(s, t) under consideration, it holds that

(C)n v × ∂2ns v

∣∣
s=0

= 0,

(D)n ∂jsv · ∂lsv
∣∣∣
s=0

= 0 for j + l = 2n+ 1.

Proof. We prove them by induction. From (B)1 and by taking the trace of the equation we see
that

0 = vt |s=0 = v × vss |s=0 ,

thus, (C)1 holds. By taking the exterior product of vs and (C)1 we have

{(vs · vss)v − (vs · v)vss} |s=0 = 0.

On the other hand, by differentiating (3.1) with respect to s we have v · vs ≡ 0. Combining
these two and the fact that v is a non-zero vector, we arrive at

vs · vss |s=0 = 0.

Finally, by differentiating (3.1) with respect to s three times and setting s = 0, we have

0 = 2 (v · vsss + 3vs · vss) |s=0 = 2v · vsss |s=0 ,

so, (D)1 holds.
Suppose that the statements hold up to n − 1 for some n ≥ 2. By differentiating (C)n−1

with respect to t we have
v ×

(
∂2(n−1)
s vt

)∣∣
s=0

= 0,

where we have used (B)1. We see that

∂2(n−1)
s vt = ∂2(n−1)

s (v × vss) =

2(n−1)∑

k=0

(
2(n − 1)

k

)(
∂ksv × ∂2(n−1)−k+2

s v

)
,

where

(
2(n − 1)

k

)
is the binomial coefficient. So we have

2(n−1)∑

k=0

(
2(n − 1)

k

){
v ×

(
∂ksv × ∂2(n−1)−k+2

s v

)}∣∣∣∣
s=0

= 0.(3.2)

We examine each term in the summation. When 2 ≤ k ≤ 2(n − 1) is even, we see from the

assumptions of induction (C)k/2 and (C)(2(n−1)−k+2)/2 that both ∂ksv and ∂
2(n−1)−k+2
s v are

parallel to v, so that

∂ksv × ∂2(n−1)−k+2
s v

∣∣∣
s=0

= 0.

When 1 ≤ k ≤ 2(n − 1) is odd, we rewrite the exterior product in (3.2) as

v ×
(
∂ksv × ∂2(n−1)−k+2

s v

)
=

(
v · ∂2(n−1)−k+2

s v

)
∂ksv −

(
v · ∂ksv

)
∂2(n−1)−k+2
s v.

Since 2(n − 1)− k + 2 is also odd, by (D)(k−1)/2 and (D)(2(n−1)−k+1)/2 we have

v · ∂ksv
∣∣∣
s=0

= v · ∂2(n−1)−k+2
s v

∣∣∣
s=0

= 0.
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Thus, only the term with k = 0 remains and we get

v ×
(
v × ∂2ns v

)∣∣
s=0

= 0.

Here, we note that
v × (v × ∂2ns v) = (v · ∂2ns v)v − ∂2ns v,

where we used (3.1). Taking the exterior product of this with v we see that (C)n holds. Taking
the exterior product of ∂2n+1−2k

s v with (C)k and using (D)n−k for 1 ≤ k ≤ n yields

(
∂2ks v · ∂2n+1−2k

s v

)
v

∣∣∣
s=0

= 0.

Since v is non zero, we have for 1 ≤ k ≤ n

∂2ks v · ∂2n+1−2k
s v

∣∣∣
s=0

= 0.(3.3)

Finally, by differentiating (3.1) with respect to s (2n + 1) times, we have

2n+1∑

j=0

(
2n+ 1
j

)(
∂jsv · ∂2n+1−j

s v

)∣∣∣
s=0

= 0.

Since every term except j = 0, 2n + 1 is of the form (3.3), we see that

v · ∂2n+1
s v

∣∣
s=0

= 0,

which, together with (3.3), finishes the proof of (D)n. �

Worth noting are the following two properties which will be used in later parts of this paper.
For integers n,

e3 × ∂2ns v

∣∣
s=0

= 0, e3 · ∂
2n+1
s v

∣∣
s=0

= 0.

These are special cases of (C)n and (D)n with the boundary condition substituted in.
By taking the limit t→ 0 in (C)n, we derive a necessary condition for the initial datum.

Definition 3.2 For n ∈ N ∪ {0}, we say that the initial datum v0 satisfies the compatibility

condition (A)n if the following condition is satisfied for 0 ≤ k ≤ n

{
v0|s=0 = e3, k = 0,
(
v0 × ∂2ks v0

)∣∣
s=0

= 0, k ∈ N.

From the proof of Lemma 3.1, we see that if v0 satisfies (2.4) and the compatibility condition
(A)n, then v0 also satisfies (D)k for 0 ≤ k ≤ n with v replaced by v0 as long as the trace exists.

4 Extension of the Initial Datum

For the initial datum v0 defined on the half-line, we extend it to the whole line by

(4.1) ṽ0(s) =

{
v0(s), s ≥ 0,

−v0(−s), s < 0,

where v = (v1, v2,−v3) for v = (v1, v2, v3) ∈ R3.
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Proposition 4.1 For any integer m ≥ 2, if v0s ∈ Hm(R+) satisfies (2.4) and the compatibility

condition (A)[m
2
], then ṽ0s ∈ Hm(R). Here, [m2 ] indicates the largest integer not exceeding m

2 .

Proof. Fix an arbitrary integer m ≥ 2. We will prove by induction on k that ∂k+1
s ṽ0 ∈ L2(R)

for any 0 ≤ k ≤ m. Specifically we show that the derivatives of ṽ0 in the distribution sense on
the whole line R up to order m+ 1 have the form

(4.2)
(
∂k+1
s ṽ0

)
(s) =

{ (
∂k+1
s v0

)
(s), s > 0,

−(−1)k+1
(
∂k+1
s v0

)
(−s), s < 0,

for 0 ≤ k ≤ m.
Since v0 ∈ L

∞(R+) and v0s ∈ H
2(R+), Sobolev’s embedding theorem states v0s ∈ L∞(R+)

and thus v0 ∈W 1,∞(R+), so that the trace v0(0) exists. By definition (4.1) we have

ṽ0(−0) =
(
−v10(0), −v20(0), v

3(0)
)
,

but from (A)0, v
1
0(0) = v20(0) = 0. These imply that ṽ0(+0) = ṽ0(−0), so that we obtain

∂sṽ0(s) =

{
(∂sv0) (s), s > 0,

−(−1)
(
∂sv0

)
(−s), s < 0,

and the case k = 0 is proved.
Suppose that (4.2) with k+1 replaced by k holds for some k ∈ {1, 2, . . . ,m}. We check that

the derivative ∂ks ṽ0 does not have a jump discontinuity at s = 0. When k is even, from the

definition of ∂ksv0, (
∂ks ṽ0

)
(−0) =

(
−∂ks v

1
0(0),−∂

k
s v

2
0(0), ∂

k
s v

3
0(0)

)
,

but from (A)k

2

we have

0 = v0 × ∂ksv0

∣∣∣
s=0

= e3 × ∂ksv0(0),

which means that ∂ksv0(0) is parallel to e3 and that the first and second components are zero.
When k is odd, (

∂ks ṽ0

)
(−0) =

(
∂ks v

1
0(0), ∂

k
s v

2
0(0), −∂ks v

3
0(0)

)
,

but (A)[ k
2
] implies (D)[ k

2
] and particularly

0 = v0 · ∂
k
sv0

∣∣∣
s=0

= e3 · ∂
k
sv0(0) = (∂ks v

3
0)(0),

so the third component is zero. In both cases, we have
(
∂ks ṽ0

)
(+0) =

(
∂ks ṽ0

)
(−0), so that we

can verify (4.2). This finishes the proof of the proposition. �

5 Existence and Uniqueness of Solution

Using ṽ0, we consider the following initial value problem:

ut = u× uss, s ∈ R, t > 0,(5.1)

u(s, 0) = ṽ0(s), s ∈ R.(5.2)

By Proposition 4.1, the existence and uniqueness theorem (cf. Nishiyama [9]) of a strong solution
u is applicable. Specifically we use the following theorem.

6



Theorem 5.1 (Nishiyama [9]) For a non-negative integer m, if ṽ0s ∈ H2+m(R) and |ṽ0| ≡ 1,
then the initial value problem (5.1) and (5.2) has a unique solution u such that

u− ṽ0 ∈ C
(
[0,∞);H3+m(R)

)
∩ C1

(
[0,∞);H1+m(R)

)

and |u| ≡ 1.

From Proposition 4.1, the assumptions of the theorem are satisfied if v0s ∈ H2+m(R+)
satisfies the compatibility condition (A)[ 2+m

2
] and (2.4).

Now we define the operator T by

(Tw)(s) = −w(−s),

for R3-valued functions w defined on s ∈ R. By direct calculation, we can verify that Tṽ0 = ṽ0

and that T (u× uss) = (Tu)× (Tu)ss . Taking these into account and applying the operator T
to (5.1) and (5.2), we have

{
(Tu)t = (Tu)× (Tu)ss, s ∈ R, t > 0,

(Tu)(s, 0) = (Tṽ0)(s) = ṽ0(s), s ∈ R,

which means that Tu is also a solution of (5.1) and (5.2). Thus we have Tu = u by the
uniqueness of the solution. Therefore, for any t ∈ [0, T ]

u(0, t) = (Tu) (0, t) = −u(0, t),

which is equivalent to u1(0, t) = u2(0, t) = 0. Therefore, it holds that u3(0, t) = −1 or 1 because
we have |u| ≡ 1. But in view of ṽ0(0) = v0(0) = e3, we obtain u(0, t) = e3 by the continuity in
t.

This shows that the restriction of u to R+ is a solution of our initial-boundary value problem.
Using this function v := u|R+

, we can construct the solution x to the original equation as we
stated in section 2. Thus we have

Theorem 5.2 For a non-negative integer m, if x0ss ∈ H2+m(R+) and x0s satisfies the com-

patibility condition (A)[ 2+m

2
] and (2.2), then there exists a unique solution x of (2.1) such that

x− x0 ∈ C
(
[0,∞);H4+m(R+)

)
∩ C1

(
[0,∞);H2+m(R+)

)
,

and |xs| ≡ 1.

Proof. The uniqueness is left to be proved. Suppose that x1 and x2 are solutions as in the
theorem. Then, by extending xi (i = 1, 2) by

x̃i(s, t) =

{
xi(s, t) s ≥ 0, t > 0,
xi(−s, t) s < 0, t > 0,

we see that x̃i are solutions of the vortex filament equation in the whole space. Thus x1 = x2

follows from the uniqueness of the solution in the whole space. �
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