You are here @ Hideki Tanemura -> Publications and Preprints


Publications and Preprints


2011-
¡ Stochastic differential equations for infinite particle systems of jump type with long range interactions preprint
¡ Uniqueness of Dirichlet forms related to infinite systems of interacting Brownian motions preprint
¡ Infinite-dimensional stochastic differential equations and tail ƒÐ-fields preprint
¡ Infinite-dimensional stochastic differential equations arising from Airy random point fields preprint
¡ Percolation clusters as generators for orientation ordering J. Stat. Phys.
¡ Stochastic differential equations related to random matrix theory RIMS Kokyuroku Bessatsu
¡ Strong Markov property of determinantal processes with extended kernels Stochastic Processes and their Applications
¡ Cores of Dirichlet forms related to random matrix theory Proc. Japan Acad. Ser. A Math. Sci.
¡ Complex Brownian motion representatiion of the Dyson model Elect. Comm. in Probab.
¡ Markov property of determinantal processes with extended sine, Airy, and Bessel kernels Markov Processes and Related Fields
¡ Noncolliding processes, Matrix-valued process and determinatal processes SUGAKU EXPOSITIONS
¡ Noncolliding squared Bessel processes J. Stat. Phys.
2001-2010
¡ Non-equilibrium dynamics of Dyson's model with an infinite number of particles Commun. Math. Phys.
¡ Zeros of Airy function and relaxation process J. Statist. Phys.
¡ Noncolliding Brownian motion and determinantal processes J. Statist. Phys.
¡ Infinite Systems of Non-Colliding Generalized Meanders and Riemann-Liouville Differintegrals Probab. Th. Rel. Fields.
¡Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systemsJ. Math. Phys.
¡Coexistence results for a spatial stochastic epidemic modelMarkov Processes and Related Fields
¡Dualities for the Domany-Kinzel modelJ. Theoret. Probab.
¡Infinite systems of non-colliding Brownian particlesAdv. Stud. Pure Math.
¡Noncolliding Brownian motions and Harish-Chandra formulaElect. Comm. in Probab.
¡Functional central limit theorems for vicious walkersStoch. Stoch. Rep.
¡Vicious walk with a wall, non-colliding meanders, chiral and Bogoliubov-deGennes random matrices Phys. Rev. E
¡Localization transition of d-friendly walkersProbab. Th. Rel. Fields.
¡Dynamical correlations among vicious random walkersPhys. Lett. A
¡Scaling limit of vicious walks and two-matrix modelPhys. Rev. E
¡Critical intensities of Boolean models with different underlying convex shapesAdv. in Appl. Prob.
¡Limit theorems for non-attractive Domany-Kinzel modelAnn. Probab.
1991-2000
¡An infinite system of Brownian balls with infinite range interactionStoch. Proc. Appl.
¡Survival Probabilities for Discrete Time Models in One DimensionJ. Statist. Phys.
¡Uniqueness of Dirichlet forms associated with systems of infinitely many Brownian balls in R^dProbab. Th. Rel. Fields
¡Critical behavior for a continuum percolation modelProc. Seventh Japan-Russia Symp.
¡A system of infinitely many mutually reflecting Brownian balls in R^dProbab. Th. Rel. Fields
¡Tagged particle problem for an infinite hard core particle system in R^dCRM Proceedings and Lecture note series
¡Homogenization of a reflecting barrier Brownian motion in a continuum percolation cluster in R^dKodai Math. J.
¡A Brownian ball interacing with infinitely many Brownian particles in R^dTokyo J. Math.
¡Central limit theorem for a random walk with random obstacles in R^dAnn. Probab.
¡Behavior of the supercritical phase of a coutinuum percolation model on R^dJ. Appl. Prob.
¡Limit theorem and large deviation principle for the Voronoui tessellation generated by a Gibbs point processAdv. in Appl. Prob.
-1990
¡Pitman type theorem for one-dimensional diffusion processesTokyo J. Math.
¡Certain random motion of a ball colliding with infinite particles of jump typeTokyo J. Math.
¡Ergodicity for an infinite particle system in R^d of jump type with hard core interactionJ. Math. Soc. Japan
¡Interacting particle system and Brownian sheetKeio Sci. Tech. Rep.
¡Stochastic process for an infinite hard core particle system in R^dLecture Notes in Math.




Hideki Tanemura Top page/