You are here
Hideki Tanemura
->
Publications and Preprints
Publications and Preprints
2011-
¡
Stochastic differential equations for infinite particle systems of jump type with long range interactions
preprint
¡
Uniqueness of Dirichlet forms related to infinite systems of interacting Brownian motions
preprint
¡
Infinite-dimensional stochastic differential equations and tail ƒÐ-fields
preprint
¡
Infinite-dimensional stochastic differential equations arising from Airy random point fields
preprint
¡
Percolation clusters as generators for orientation ordering
J. Stat. Phys.
¡
Stochastic differential equations related to random matrix theory
RIMS Kokyuroku Bessatsu
¡
Strong Markov property of determinantal processes with extended kernels
Stochastic Processes and their Applications
¡
Cores of Dirichlet forms related to random matrix theory
Proc. Japan Acad. Ser. A Math. Sci.
¡
Complex Brownian motion representatiion of the Dyson model
Elect. Comm. in Probab.
¡
Markov property of determinantal processes with extended sine, Airy, and Bessel kernels
Markov Processes and Related Fields
¡
Noncolliding processes, Matrix-valued process and determinatal processes
SUGAKU EXPOSITIONS
¡
Noncolliding squared Bessel processes
J. Stat. Phys.
2001-2010
¡
Non-equilibrium dynamics of Dyson's model with an infinite number of particles
Commun. Math. Phys.
¡
Zeros of Airy function and relaxation process
J. Statist. Phys.
¡
Noncolliding Brownian motion and determinantal processes
J. Statist. Phys.
¡
Infinite Systems of Non-Colliding Generalized Meanders and Riemann-Liouville Differintegrals
Probab. Th. Rel. Fields.
¡
Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems
J. Math. Phys.
¡
Coexistence results for a spatial stochastic epidemic model
Markov Processes and Related Fields
¡
Dualities for the Domany-Kinzel model
J. Theoret. Probab.
¡
Infinite systems of non-colliding Brownian particles
Adv. Stud. Pure Math.
¡
Noncolliding Brownian motions and Harish-Chandra formula
Elect. Comm. in Probab.
¡
Functional central limit theorems for vicious walkers
Stoch. Stoch. Rep.
¡
Vicious walk with a wall, non-colliding meanders, chiral and Bogoliubov-deGennes random matrices
Phys. Rev. E
¡
Localization transition of d-friendly walkers
Probab. Th. Rel. Fields.
¡
Dynamical correlations among vicious random walkers
Phys. Lett. A
¡
Scaling limit of vicious walks and two-matrix model
Phys. Rev. E
¡
Critical intensities of Boolean models with different underlying convex shapes
Adv. in Appl. Prob.
¡
Limit theorems for non-attractive Domany-Kinzel model
Ann. Probab.
1991-2000
¡
An infinite system of Brownian balls with infinite range interaction
Stoch. Proc. Appl.
¡
Survival Probabilities for Discrete Time Models in One Dimension
J. Statist. Phys.
¡
Uniqueness of Dirichlet forms associated with systems of infinitely many Brownian balls in R^d
Probab. Th. Rel. Fields
¡
Critical behavior for a continuum percolation model
Proc. Seventh Japan-Russia Symp.
¡
A system of infinitely many mutually reflecting Brownian balls in R^d
Probab. Th. Rel. Fields
¡
Tagged particle problem for an infinite hard core particle system in R^d
CRM Proceedings and Lecture note series
¡
Homogenization of a reflecting barrier Brownian motion in a continuum percolation cluster in R^d
Kodai Math. J.
¡
A Brownian ball interacing with infinitely many Brownian particles in R^d
Tokyo J. Math.
¡
Central limit theorem for a random walk with random obstacles in R^d
Ann. Probab.
¡
Behavior of the supercritical phase of a coutinuum percolation model on R^d
J. Appl. Prob.
¡
Limit theorem and large deviation principle for the Voronoui tessellation generated by a Gibbs point process
Adv. in Appl. Prob.
-1990
¡
Pitman type theorem for one-dimensional diffusion processes
Tokyo J. Math.
¡
Certain random motion of a ball colliding with infinite particles of jump type
Tokyo J. Math.
¡
Ergodicity for an infinite particle system in R^d of jump type with hard core interaction
J. Math. Soc. Japan
¡
Interacting particle system and Brownian sheet
Keio Sci. Tech. Rep.
¡
Stochastic process for an infinite hard core particle system in R^d
Lecture Notes in Math.
Hideki Tanemura Top page
/