ALGEBRAIC INDEPENDENCE OF A CERTAIN
SERIES AND ITS SUBSERIES WITH SUBSCRIPTS
IN A GEOMETRIC PROGRESSION

TAKA-AKI TANAKA

ABSTRACT. The main results of this paper, Theorems 4 and 5, assert the algebraic indepen-
dence of a certain subseries Z 1 @, and its subseries S0 1 an with d an integer greater
than 1, where {an}n>1 is given, in Example 1 of Theorem 4 by [logy n]/(FpFpi2x) with
{F,.}n>0 the sequence of Fibonacci numbers. These results are proved by using Mabhler’s
method for algebraic independence with Theorems 1, 2 and Corollaries 1, 2 stating key
formulas of this paper, which are deduced by using the crucial Lemma 1. For instance in
the case of Example 1 of Theorem 4, Corollary 2 gives linear relations over Q between the

numbers Y oo ; [logg n]/(FaFniok)s Yomeq 1/ (FanFanys) (k € N).

. 1. INTRODUCTION
Let {F,}n>0 be the sequence of Fibonacci numbers defined by
Fo=0, Fi=1 Fpo=Fu1+F, (n>0). (1)
Brousseau [2] proved that for every k € N
% n k
Lo w ()
Rabinowitz [7] proved that for every k € N~

1
Z F, F 2k sz Z Fon_1Fon

The author [8, 9] considered the arithmetic nature of the sums of similarly constructed series

such as

s EVMoganl ey 1), ke )

1 Fn n+k

n=

- [log, 7]
—=2 . (de N\ {1}, ke N),
> piy N\ keN)

where [z] denotes the largest integer not exceeding the real number z. These sums are not

only transcendental but also algebraically independent in contrast with the sums o4 and oy

which are algebraic numbers.
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In what follows, let {R,},>0 be the linear recurrence defined by

Rppo = A1Rnp1 + AR, (n>0),

where Rg, Ri, A;, and A, are real algebraic numbers with A;4; # 0, A? + 44, > 0, and
Ry, R; are not both zero. Then

Rn=aa"+bp" (n>0),

where a, § (|a| > |0]) are the roots of ®(X) = X? — A; X — A, and a,b are real algebraic
numbers. It is easily seen that || > [3] > 0. Assume in addition that |a] > |b| > 0. Then
{Rn}n>o is not a geometric progression and R, # 0 for any n > 1. The sequence {Fy, }n>0 of
the Fibonacci numbers is an example of {R,},>0, since we have |

a® — fpn
a—p

F, = (n>0).

Let f(z) be a real-valued function on z > 0 such that f(z) > 0 for any z > 0 and
f(N) C N. Let f~*(z) be the inverse function of f(z). For.any k € N we put

& (A ) A1 )]
5= 2 TR ’S‘""n_zf%l) P

— (=A)"[f ()]
T, = =42) U \)
k Z Rptk—1Royi
and
© (L AN®)
vo=S A"
— Rym)Rem)+k

Let {F;},>0 be the Fibonacci type sequence defined by
F3=0, Fi=1 Fj,=AF, +AF; (n>0).

Theorem 1. Forany k € N
k

‘1
Sk = = Z(—Az)llel
k=1
and

Uy = Ty — (—A2)*Ts1) -

=
Corollary 1. For any k € N

k—1
Se= 7= (ksl Y m)

l....
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Theorem 2. If f(n) = f(1) (mod 2) for any n > 1, then
. ~nfo
S5 = S >4

=1

for any k € N.
By Theorems 1 and 2 we have

Corollary 2. If f(n) = f(1)(mod 2) for any n > 1, then
fQ) 2k—1

* 1 %
Si= S MR
2k

for any k € N.

In what follows, let d be an integer greater than 1. Letting f(z) = d*, we have the
following algebraic independence result.

Theorem 3. The numbers

=5} ln(_A )d" log n]
Z”____2_ (€€Q",1>0, keN) and Zmi_

are algebraically independent.
As a special case of Theorem 3 we have the following:
Corollary 3. The numbers
Z Rd"Rd"+k ; T}L{(dngjmrk (keX), end Z = gRifdn
are algebmzcally independent.
Using Corollaries 2 and 3, we have vthe following;:

Theorem 4. The numbers

o [loggn]As < nAf
logamlAi = §~_n45  (ren
Z R.Ry 2 Z Ry ( )

n=1

are algebraically independent.

Proof. Letting f(z) = d*, we see that

o~ [logyn]A7 (=42)"
Sor = d U =
5= R M U Z RoRansc
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By Corollary 2 the numbers {S5, | 1 <[ < k} are expressed as linearly independent linear
combinations over Q of the numbers {U; | 1 <[ < 2k — 1}. Noting that (—1)%" = (—1)¢ for
any n > 1, we have

B e B
Rd" 42k RynRnior’
Hence by Corollary 3, the proof of the theorem is completed. [

Example 1. Let {F,},>0 be the sequence of the Fibonacci numbers defined by (1). Then
the numbers

[logyn)

, —— (keN
“~ FnFniok ; Fan Fygnyo ( )

are algebraically independent.

Example 2. Let {L,}n>0 be the sequence of Lucas numbers defined by
Ly=2, Li=1, Lpo=Lp1+L, (n>0). (2)

Then the numbers

dn

ne1 Ln n+2k Ld”+2k

are algebraically independent.

It is interesting that the second series of Theorem 4 is regarded as a subseries of the first
one obtained by replacing n by d*. It seems difficult to find in literature the results which
assert the algebraic independence of Y oo, a, and its subseries Y >, agn, where {an}n>1 is
a sequence of rational numbers such that Y2 a, absolutely converges. For example, the
algebraic independency of the numbers Y oo 1/F, and Y > 1/F4 (d > 3) is open. On
the other hand, Lucas [3] showed that $.°° , 1/Fpn = (5 — +/5)/2. André-Jeannin [1] proved
the irrationality of > 1/F,, while its transcendency is open. Nishioka, Tanaka, and
Toshimitsu [6] proved that the numbers Y > ; 1/Fy» (d > 3) are algebraically independent.

Combining Corollary 1 with f(z) = d® and Corollary 3, we immediately have the following:

Theorem 5. The numbers

(Alogan] S a(=Ay” |
Z R,Rpyx ZRand"+k (keR)

are algebraically independent.
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Example 3. Let {F,}n>0 be the sequence of the Fibonacci numbers defined by (1). Since
an, = Fy, satisfies ap 2 = 3an41 — an (n > 0), the numbers

_[logyn]
— (k€N
Z F2nF2n+2k Z FZd"F2d“+2k ( )

are algebraically independent.

Example 4. Let {L,}n>0 be the sequence of the Lucas numbers defined by (2). Since
b, = Lo, satisfies b,12 = 3bp41 — b, (n > 0), the numbers

o] 1 o
EL ogdn ZLM“ n (k€ N)

2nLontor’ 4= LognLognion
are algebraically independent.
Example 5. Let {R,},>0 be the linear recurrence defined by
Ry=2 Ri=v5, Ru2=Vb6Ry1—Ra (n2>0).

Then R,Rpiok—1 = VB5(Fanpok-1 + Fax—1) and RoRuyax = Loniok + Lag, where {F}nz0
and {L,}n>0 are the sequences of the Fibonacci numbers and the Lucas numbers defined
respectively by (1) and (2), and so the numbers

[log, n] 2. [logyn] > n n
Z * Fonyor-1 + Fae— 1 ; L, ’ ; Fognyor—1+ Fop—1’ ; Logn o + Lo

are algebraically independent.

2. LEMMAS

The following lemma plays an essential role in the proof of Theorems 1 and 2.

Lemma 1. Let f(z) be a real-valued function on z > 0 such that f'(x) > 0 for any z > 0 and
f(N) c N. Let f~(z) be the inverse function of f(x). Let K be any field of characteristic
0 endowed with an absolute value | |,. Let {an}n>1 be a sequence in K with |a,|, =
o(1/fX(n)). Suppose the sum Y >, |an|, converges in R. Then in the completion K, of K
we have

Z [ )](an — ani1) =D asen.- (3)
h=1

n=f(1)
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" Proof. Let h € Nand n € N. Since f/(z) > 0 for any z > 0, (f~*(z))’ > 0 for any = > f(1).
Hence, if f(h) < n < f(h+1), then h < f~(n) < h+ 1 and so [f~!(n)] = h. Therefore,
letting

x(n) = {1 (n = f(h)) and s, = i x(k),
k=1

0 (otherwise)

we see that s, = [f~(n)] for n > f(1). Then, letting H € N and N = f(H), we have

H
Z af(h)
h=1

N

> x(n)an
n=f(1)
N-1

Z $n(An — @nt1) + snan
n=f(1)
N-1

> )@ = ann) + [T (Way. @
n=£(1)
Since |anly = o(1/f71(n)), [f~'(N)]an tends to 0 as N — oco. Since 32, |an|, converges
in R, the sum of the subseries )} ; as) also converges in K,. Letting H — oo in (4), we
have (3). ' O

Remark 1. The condition |a,|, = o(1/f~(n)) of Lemma 1 is satisfied if
anl, = o(n_l), , ' (5)

since we have [f7}(n)] = s, < n. We shall use the condition (5) instead in the proof of
Theorems 1 and 2.

Lemma 2 (A special case of Theorem 3.3.2 in Nishioka [4]). Let K be an algebraic number
field and d an integer greater than 1. Suppose‘ that fij(z) € K[[2]] ¢ = 1,...,m, j =
1,...,n(i)) converge in |z| < r. Assume that, for every i, fiu(2),..., finw(2) satisfy the
system of functional equations

fia(z) a0 0 fu(29) bia(2)
. (i) . . . .
: Qo1 a; = : : :
= : + ) 6
: L ; ; ©)
fine(2) /. Slyr o Ay @ finto (29) bini)(2)

where a;,a) € K and bij(2) € K(z). Let o be an algebraic number with 0 < |a| < min{1,r}.
If fij(z) (i =1,....m, j=1,...,n(:)) are algebraically independent over K(z), then the
values fij(a) (i=1,...,m, j=1,...,n(i)) are algebraically independent.
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Remark 2. It is not necessary in Lemma 2 to assume that bj;(a®) (i = 1,...,m, j =
1,...,n(i)) are defined for all k¥ > 0, which is satisfied by (6) and the fact that f;;(a?")
(t=1,...,m, 3=1,...,n(:)) are defined for all £ > 0 since la?| < r.

Lemma 3 (Theorem 3.2.1 in Nishioka [4]). Let C be a field of characteristic 0. Suppose
that fi;(2) € Cllz]) i = 1,...,m, j = 1....,n(3)) satisfy the functional equations of the
form (6) with a;,al) € C,a; # 0,a_, #0 (2 < s < n(4)), and by;(2) € C(2). If fi;(2) (i =

1,...,m, j = 1....,n(%) are algebraically dependent over C(z), then there exists a non-
empty subset {iy,...,i,} of {1,...,m} with a;, = --- = a,;. such that fi1,..., fir are
linearly dependent over C modulo C(z), that is, there exist cq,...,c, € C, not all zero, such
that

cfir1+ -+ fi1 € Cl2).

Lemma 4 (Lemmas 2, 3, and 6 in Nishioka [5]). Let £ be a nonzero complex number and
ai,...,a, nonzero complex numbers satisfying la;| # 1, |a;| # |a;| (i # j). Let fi(z) €
C[[2]] (0 < i< n) satisfy the functional equations

h(z) = Ef(eh+ —2
z’r

B = 6+

where r € Nande = 1. Ifd =& =2 and e = 1, then fi(z) (1 < i < n) are linearly
independent over C modulo C(z), otherwise so are fi(z) (0 <i < n).

14z’

(1<i<n),

Remark 3. If d=¢ =2 and € = 1, then

0 oh,r2* o
fle) =2 1 = T €€

3. PROOF OF THEOREMS 1 AND 2

Before stating the proof of Theorems 1 and 2, we recall that {R,},>0 is expressed as
R, =aa" +bp" (n>0),

where «, [ are the roots of ®(X) = X? — A1 X — A such that |a| > |8| > 0 and a,b are
real algebraic numbers satisfying |a| > |b| > 0. Using the same o and 3, we can express the

sequence {F) },>o defined before Theorem 1 by
n_ an
=0 o).

n o — -—
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Proof of Theorem 1. Since R, = aa™ + b3" (n > 0) and —Az = a3, we have

(=A™ 1 ( i _ gk ‘ )
RyRnik ( B%) \ao™ +bB™  aantk 4 bontk

1 ,Bn ﬂn+k
o (7 )
Hence, noting that n|G"/R,| — 0 as n — oo, we have by Lemma 1 with Remark 1
kL ogrtt E2L et
Sk = H(n)] -
a(ak B) n_zf;l) ;, Rnti ; Rnii1
o k1 ﬂf(h)+l

= I@k) ZZ

i B (Wt

Letting k = 1 and replacing n by n+ [ — 1'in (7), we have

(___A2)n+l—1 1 lgn+l—-1 I@n—!—l )
Royi-1Rny B a(a ~ B) (Rn+l—1 - iy
Hence by Lemma 1 with Remark 1
(-—Ag)l_l st 1 (ﬁn—i»l 1 ,3"“)
T =
: a(a-—ﬂ) nzf(:l)[f Ql Ropir Rayu
(—Az)l -1 % ﬁf(h)+l—-1
ala — B) & Rpmyri-1
Therefore by (8) and (9) we have

k
1
T Z( —A) T

k =1

Sk =

Replacing n by f(h) in (7), we have

(—Ag)f® 1 <,3f(h) gf(h)ﬂc)
RimRigy+e  alo® — 5%) \Rsw)y  Ryger/)
Hence
U, = i Z (ﬁf(h) B ﬁf(h)+k)
ﬂ ) = \Rspy Ry
and so
Uy, = (T1 — (— A Tips)

F*

which completes the proof of the theorem.

(7)

@)
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Proof of Theorem 2. Replacing k by 2k in (7) and multiplying its both sides by (—1)" =
(—=1)"*2* we have

AS _ 1 ((_ﬁ)n 3 (—,3)"+2k)
R, R, ok a(a?k — %) \ R, R, ok
: 1 2’02*1 (_ﬂ)n+l ~ 2k—1 (_ﬁ)n+l+1
a(a?* — (%) =0 Rt =0 Ruyin '

Hence, noting that n|(—3)"/R,| — 0 as n — oo, we have by Lemma 1 with Remark 1

* ) © ILpgrtt ELL gyt
Sy = (= > [ m)] (ZLE;):,,—— 2 (Rn)+z+1 )

n=f(1) 1=0 1=0
oo 2k—1
_ ﬂ)f(h
a(a% ) ; IZO: Ry
2k—1 f(h)
_ iy B
: a(a2’° %) Z( ) Z Rf(h)+l
since f(h) = f(1) (mod 2) for any h > 1. Therefore we have by (9)
l)f(l 2k
= AT,
% = E3 IZ
which completes the proof of the theorem. |

4. PROOF OF THEOREM 3

Remark 4. For Q(z) € C(z) with Q(0) = 0, we define

f(fL‘, z) = Zan(zd">,

n=1

where z is a variable and d is an integer greater than 1. Letting D = 20/, we see that

f(o,2) = Df(z,z) = Sonle Q) (120)
n=1
satisfy

fo(z,2) = zfo(z,2%) +2Q(27),
fl(xa z) = Ifl(xu zd) + II?fo(:I), zd) + xQ(zd)a

m

Fnl@,2) = Z(T?)xfl(z,zd)-i-xQ(zd).

=0
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Hence for a complex number z, the functions fo(z,2),. .., fm(z, 2) satisfy a system of func-

tional equations of the form (6).

Proof of Theorem 3. Let c=a"'b, y=a'(, and

s o .
few(2) = Zn§"< - - ) (€€Q’,1>0, keN).

1+czd" 1+ cykz®

n=1

Then
far(y) = a*(a* — %) Z Rdn Rd”k : (10)

Using (8) in the proof of Theorem 1 and letting k¥ = 1, f(z) = d*, and g(z) =3 2 /(1+
cz?"), we have

(—Az)"[loggn] gt
Z it = ﬂ)ZRdn o By b

Therefore it is enough by (10) and (11) to prove the algebraic independence of the values
far() (€ € Q°, 1 >0, ke N) and g(y). We see that each feor(2) (£ € Q”, k € N) satisfies
the functional equation

4 k2
feor(2) = Efeon(2%) + € (1+czd 1+C'7kzd)

and fer(2) (I > 0) satisfy a system of functional equations of the form (6) for every fixed §
and k by Remark 4. We see also that g(z) satisfies the functional equation

9(2) = 94 + 1.

Hence by Lemma 2 the values fur(vy) (€ € Q%, 1 >0,.k € N) and g(7) are algebraically
independent if the functions fgi(2) (€ € Q7,1 >0, k € N) and g(z) are algebraically
independent over C(z).

We assert that for every fixed £ # 1 the functions feox(2) (k € N) are linearly independent
over C modulo C(z) and so are the functions fiox(z) (k € N) with g(2), which implies by
Lemma 3 that the functions fex(z) (€ € @7, 1 > 0, k € N) and g(z) are algebraically
independent over C(z). Let

N kgn dn

hei(2) = ZW (£€Q’, k20).

Then
fgotc(z) = heo(2) — her(z)
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for every fixed £ € Q" and k € N and each hek(2) (€ € Q”, k > 0) satisfies the functional
equation

k. d
- d "z
her(2) = Eher (") + 77 g

Suppose there exists a £ # 1 such that feo1(2),..., feor(2) are linearly dependent over C
modulo C(z) for some k. If d = ¢ = 2 and ¢ = 1, we see by Remark 3 that hg(2) = 22%/(1 —
2?) € C(z) and s0 ha1(2), - . ., hax(2) are linearly dependent over C modulo C(z); otherwise,
so are hgo(2), he1(2), - - ., hex(2), which contradicts Lemma 4, since Hex(2) := &1y *hei(2)
satisfies the functional equation

He(2) = EHg(2%) +

zd

1+ cykzd

Therefore, if fex(z) (6 € Q°, 1 >0, k € N) and g(2) = hio(2) are algebraically dependent
over C(z), then hio(2), fr01(2),- .., fiox(2) are linearly dependent over C modulo C(z) for
some k, and hence so are hig(2), h11(2),. .., hix(z), which contradicts Lemma 4. Therefore
the functions fex(2) (€ € Q% 1>0 ke N) and g(z) are algebraically independent over C(z)
and so the values fg(7y) (€ € @, 1 >0, k € N) and g(y) are algebraically independent,
which completes the proof of the theorem. |
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