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1 Introduction and results.

One of the techniques used to prove the algebraic independence of numbers is
Mabhler’s method, which deals with the values of so-called Mahler functions sat-
isfying a certain type of functional equation. In order to apply the method, one
must confirm the algebraic independence of the Mahler functions themselves.
This can be reduced, in many cases, to their linear independence modulo the
rational function field, that is, the problem of determining whether a nonzero
linear combination of them is a rational function or not. In the case of one
variable, this can be treated by arguments involving poles of rational functions.
However, in the case of several variables, this method is not available. In this
paper we shall resolve this problem by considering a generic point of an irre-
ducible algebraic variety. Theorems 1 and 2 in this paper assert that certain
types of functional equations in several variables have no nontrivial rational
function solutions. As applications, we shall prove the algebraic independence
of various kinds of reciprocal sums of linear recurrences in Theorems 3, 4, and
5, and that of the values at algebraic numbers of power series, Lambert series,
and infinite products generated by linear recurrences in Theorem 6.

Let 2 = (wj;;) be an n X n matrix with nonnegative integer entries. If
z = (z1,...,2,) is a point of C" with C' the set of complex numbers, we define

a transformation €2 : C" — C" by

n

T (HHH) (1)
J=1 J J=1
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Let {ax}r>0 be a linear recurrence of nonnegative integers satisfying
Afin = C1Qpin—1+ -+ cpar (E=0,1,2,...), (2)

where ag, ..., a,_1 are not all zero and cy, . .., ¢, are nonnegative integers with

¢, # 0. We define a polynomial associated with (2) by
PX)=X" - X" - —c,. (3)

In this paper, we always assume that ®(41) # 0 and the ratio of any pair of
distinct roots of ®(X) is not a root of unity and that {ay }r>o is not a geometric

progression unless otherwise mentioned. We define a monomial
Plz)= 2 o2, (4)

which is denoted similarly to (1) by

P(z) = (ap_1,...,a0)%. (5)
Let
cc 1 O 0
o 0 1 :
Q = : 0 (6)
- o1
¢, 0 ... ... 0

It follows from (1), (2), and (5) that
P(Q%2) = (an_1,...,a0)Q"2

= (a'k-i-n—la s ,Cl,k)z
= 2% (K >0).

Let F(z1,...,2,) and F[[z1, ..., z,]| denote the field of rational functions and
the ring of formal power series in variables zi,...,z, with coefficients in a
field F, respectively, and F'* the multiplicative group of nonzero elements of
F. Throughout this paper, we denote by C a field of characteristic 0. The
following are the main theorems of the present paper.

Theorem 1. Suppose that G(z) € C|[z1, ..., 2] satisfies the functional
equation of the form

G(z) =aG(z) + qu:— Qr(P(QF2)), (7)

k=q



where o« # 0 is an element of C, Q is defined by (6), p > 0, ¢ > 0 are
integers, and Qr(X) € C(X) (¢ < k <p+q—1) are defined at X = 0. If
G(z) € C(z1,...,2n), then G(z) € C and Qp(X) € C (¢ <k<p+q—1).

Theorem 2. Suppose that G(z) is a nonzero element of the quotient field

of C[[z1, ..., za]] satisfying the functional equation of the form

ptq-1
G(z) = ( 11 Qk(P(QkZ))> G(z), (8)
k=q
where Q, p, q, and Qr(X) are as in Theorem 1. Assume that Q(0) # 0. If
G(z) € C(z1,...,2n), then G(z2) € C and Qp(X) € C* (¢ <k <p+q—1).

First we shall state our results on algebraic independence of reciprocal
sums of linear recurrences, Theorems 3, 4, and 5, obtained as applications of
Theorem 1. We prepare some notations.

Let { Ry }r>0 be a linear recurrence expressed as

Re=aqgipf + -+ g.pf (k>0), (9)

where ¢1, ..., g, are nonzero algebraic numbers and py, ..., p, are nonzero dis-

tinct algebraic numbers satisfying

|p1] > max{L,[ps],. .., [prl}. (10)

Typical examples of such { Ry }x>o are the Fibonacci numbers { Fj }x>o defined
by
Fo=0 Fi=1 Fyo=Fu+F (E>0)

and the Lucas numbers { Ly }r>o defined by

LD = 27 Ll = 17 Lk+2 = Lk+l + Lk (k > 0)7

(5 - (5) oo

since

and




We shall prove the algebraic independence of reciprocal sums of linear re-

currences such as

1 by

k>0 (Raiﬁ-h)m ’

where {by }x>0 is a linear recurrence of algebraic numbers not identically zero,

(11)

{ar}k>0 is as above, and m > 1, h are integers. Here and in what follows, the
sum oj is taken over those & which satisfy ax +h > 0 and Ry, 45 # 0. For
example, the algebraic independence of the numbers

/ 1

— (he Z, me NV)
k>0 (FFk+h)m

can be deduced from Theorem 4 below. Here Z and N denote the sets of
rational and positive integers, respectively.
It is interesting to compare our results to those obtained by various authors

in the case where {ax}r>0 is a geometric progression. Lucas [7] showed that

1 7-5

FQk N 2

k>0

Let {sk}r>0 be a periodic sequence of algebraic numbers not identically zero.
Bundschuh and Petho [3] proved by Mahler’s method that
Sk

kZO FQk

is transcendental if {s;}x>0 is not a constant sequence and that

Sk

kZU L2k

is transcendental for any {sx}r>o. Let ¢ > 1 and d be integers. Recently,
Nishioka, Tanaka, and Toshimitsu [13] proved that if {s;}r>0 is not a constant
sequence, the numbers

/ Sk

—_— (dEQ,hGZ,m€N+) (12)
k>0 (FCdk+h)m

are algebraically independent, and if {sj}r>0 is a constant sequence, the num-

bers (12) excepting the algebraic number Y7}, sx/F.or are algebraically inde-

pendent; and also the numbers
! Sk

%k d>2 heZ meNY)
k>0 (Lcdk+h)m



are algebraically independent for any {si}r>0. These results depend on the
fact that the recurrences {Fj}r>0 and {Ly}r>o are binary, namely these can
be expressed as (9) with » = 2. In the case of m = 1, the transcendence of
each of these numbers has already been proved by Becker and Tépfer [1]. For
a general {Ry}r>0 not necessarily binary, only the transcendency result has
been obtained also by Becker and Tépfer [1] : If py, ..., p,. satisfying (10) are
multiplicatively independent, then the number
1 Sk

Rcdk

k>0
is transcendental (cf. Remark 2 below).

Our results are concerned with the algebraic independence of the numbers
(11) with {a }r>0 not a geometric progression. It is not necessary in our results
to assume that py, ..., p, are multiplicatively independent. In what follows, IN
denotes the set of nonnegative integers and Q the field of algebraic numbers.

Theorem 3. Let {Ry}r>0 be a linear recurrence represented as (9) with
(10). Then the numbers
/ klOék

NG

k>0

(aeQ",le N, me N") (13)
are algebraically independent.

Theorem 3 implies the algebraic independence of the numbers

by .
Z (Rak)m (m € N )7

k>0

since a linear recurrence {by}r>o of algebraic numbers not identically zero
can be expressed as the linear combination of the sequences {k'a*};>¢ (o €
Q" le N) with algebraic coefficients.

REMARK 1. It is proved by the author [14, Remark 4] that
ar = by" + o(7"),

where v > 1 and b > 0, so that by (10) each sum in (13) converges.

REMARK 2. It is still open to prove the algebraic independence of the
numbers (13) with {ax}r>0 a geometric progression and without the assump-

tion that pyq, ..., p, are multiplicatively independent.
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Corollary 1. In addition to the assumptions on ®(X), suppose that ®(X)
has only simple roots. Then the numbers

! k‘lOék
)

k>0 (aak )m

(0eQ", 1e N, me NT)

are algebraically independent.

Proof. Since ®(X) has only simple roots, ay in place of Ry can be expressed
as (9) with distinct roots py, ..., p, of ®(X). And (10) is also satisfied by the
condition on ®(X) (see Tanaka [14, Proof of Lemma 4]). Thus we can take ay

as Ry.
EXAMPLE. Let {T}}x>0 be so-called “Tribonacci” numbers defined by
Tk-+3 == Tk+2 + Tk+1 + Tk (k == 0, 1, 2, . )

with the initial values 7o = 0, 77 = 1, and Ty = 2 and let {by }x>0 be a linear
recurrence of algebraic numbers not identically zero. Then the numbers

>

k>1 (TTk)m

are algebraically independent. We remark that T} can be expressed as (9)

(me NT)

with 7 = 3 and py, p2, p3 satisfying p1peps = 1, so that py, ps, and ps are
multiplicatively dependent.

If { Rx } x>0 is binary, we can deduce from Theorem 1 the algebraic indepen-
dence of the numbers (11) for various h € Z, as in the case where {ay }r>o is
a geometric progression stated above.

Theorem 4. Let { Ry }r>o0 be a binary recurrence represented as
Ry, = g1pf + 9205 (k> 0),

where g1,92,p1, and ps are nonzero algebraic numbers satisfying |p1| >

max{1, |pa|}. Then the numbers

/ /{ZlOék

AL (aeQ”, 1e N, me Nt heZ) (14)
k>0 \tay



are algebraically independent.
Theorem 5. Let {Ry}r>o0 be as in Theorem 4. Then the numbers

/ k:lozk

0 (0eQ ,le N, me NT, he Z) (15)
k>0 mag+h

are algebraically independent.

Corollary 2. Let {Ry}r>0 be a binary recurrence defined by
Riyo = A1Rpi1 + AsRy, (k> 0),

where Ay and Ay are real algebraic numbers satisfying Ay # 0,|As] > 1, and
A = A? + 4A; > 0. Suppose that {Ry}r>o is not a geometric progression.
Then the numbers (14) or (15) are algebraically independent.

EXAMPLE. Let {Fi}r>0 be the Fibonacci numbers and let {bg}r>0 be a
linear recurrence of algebraic numbers not identically zero. Then the numbers

r by

— (he Z, me NY)
k>0 (FFk-l-h)m

are algebraically independent and so are the numbers

b
i (he Z, me NY).
k>0 Fka-i-h
REMARK 3. In the case where {ay}r>0 is a geometric progression, a

similar result to Corollary 2 is obtained by Nishioka [12] under the assumption

that Rg, Ry, A1, and Ay are rational integers and m = 1.

Next we state an application of Theorem 1 as well as Theorem 2.

Theorem 6. Let {ay}r>0 be a linear recurrence satisfying (2) with positive
initial values ag, ... ,a, 1. Let aq, ..., . be algebraic numbers with 0 < |a;| <
1 (1 <i <) such that none of a;/a; (1 <i < j <r)is aroot of unity. Then
the numbers




are algebraically independent.

REMARK 4.  The assumption that none of o;/a; (1 <i < j <r)isa
root of unity cannot be removed. For example, suppose that the initial values
ag, - .., a,—1 are divided by an integer d (> 1). Then by the linear recurrence
relation (2), a; is divided by d for any k& > 0. If o;/c; is a d-th root of
unity for some distinct 7 and j, then of* = aj* (k > 0) and so the numbers
considered in Theorem 6 are algebraically dependent. Even in the case where
ao, . . ., a,_1 have no common factor, the assumption is also inevitable as the
following example shows:

Let {ax}x>0 be a linear recurrence defined by
ag =2, a1 =3, agy2 =6ap1+ar (E=0,1,2,...).

We put

a,

fG) =32 92 = X 7o () = [Ia -

20k
k>0 k>0 k>0

Let a be any algebraic number with 0 < || < 1 and ¢ = ¢™~1/3 = (1 +

v/—=3)/2. Then

+ f(Ca) — f(CPa) — 2f(Par) — f(¢*a) + f(¢Par) =0,
+ 9(Ca) — g(CPa) — 29(Car) — g(¢*a) 4 g(¢Pa) = 0,

and

h(a)*h(Ca)h(C*a) T h(CPa) h(¢ ) T h(CPa) = 1,

since ag, =2 (mod 6) and ag 1 =3  (mod 6) for any k& > 0.

REMARK 5. The author [14] obtained the necessary and sufficient condi-
tion for the numbers Y75 af*, ..., Ys 2% in Theorem 6 to be algebraically
dependent: Let {a}r>0 be a linear recurrence satisfying (2). Define f(z) =
> k>0 2% and let ay, - - -, @, be algebraic numbers with 0 < o] <1 (1 <@ <r).
Then the following three properties are equivalent:

(i) f(aq),..., f(a,) are algebraically dependent.

(i) 1, f(cv),. .., f(c,) are linearly dependent over Q.



(iii) There exist a non-empty subset {a,,...,a; } of {a1,...,a.}, roots of
unity ¢y, ..., (s, an algebraic number v with o, = ¢,y (1 < ¢ < 5), and

algebraic numbers &1, ..., &, not all zero, such that

Z quqak =
q=1

for all sufficiently large k.

REMARK 6. If {a;}r>0 is a geometric progression, namely a;, = cd® (k >
0) for some integers ¢ > 1 and d > 2, each of the numbers in Theorem 6 is
transcendental by the theorem of Mahler [8] ; however Theorem 6 is not valid

in this case. Indeed, let

cd¥

fE) =2 9@ =Y 1 h2) = [T - =),

k>0 k>0 k>0

Let a be any algebraic number with 0 < |af < 1. We put a1 = a, ay =

al, r =2, so that ay/as is not a root of unity. Then we have

flon) = flaz) = o, glan) = glaw) = 7= . 5 08

REMARK 7. The power series expansions of some of infinite products in
Theorem 6 have interesting property. Beresin, Levine, and Lubell [2] proved
that if

TL(1— =) = 3 e(k)2"

k>0 k>0
where {F}>o is the Fibonacci numbers, then e(k) = 0 or 1 for any & > 0.

2 Proofs of Theorems 3-6.

In this section we derive Theorems 3, 4, 5, and 6 from Theorems 1 and 2 by
using Lemmas 1-5 below. Let Q = (w;;) be an n x n matrix with nonnegative
integer entries. Then the maximum p of the absolute values of the eigenvalues
of 0 is itself an eigenvalue (cf. Gantmacher [4, p. 66, Theorem 3]). We suppose
that Q and a point & = («y, ..., ), where «; are nonzero algebraic numbers,

have the following four properties:



(I) © is non-singular and none of its eigenvalues is a root of unity, so that
in particular p > 1.

(IT) Every entry of the matrix QF is O(p*) as k tends to infinity.
() If we put Q% = (o, ..., a®), then
loglaf| < —cp* (1<i<n)
for all sufficiently large k, where ¢ is a positive constant.

(IV) For any nonzero f(z) € C[[z1,...,2,]] which converges in some neigh-
borhood of the origin, there are infinitely many & € N7 such that

f(a) #0.

We note that the property (II) is satisfied if every eigenvalue of Q of absolute
value p is a simple root of the minimal polynomial of 2.

Lemma 1 (Tanaka [14, Lemma 4, Proof of Theorem 2]). Suppose that
®(£1) # 0 and the ratio of any pair of distinct roots of ®(X) is not a root
of unity, where ®(X) is the polynomial defined by (3). Let Q be the matrix
defined by (6) and [B,...,[s multiplicatively independent algebraic numbers
with 0 < |6;] <1 (1 <j<s). Let p be a positive integer and put

O = diag(9”,...,QP).

—_——
s

Then the matriz ' and the point

have the properties (I)—(IV).

Lemma 2 (Nishioka [9]). Let K be an algebraic number field. Suppose
that f1(z),..., fm(2) € K[[z1,. .., 2z4)] converge in an n-polydisc U around the
origin and satisfy the functional equation of the form

fi(z) f1(Qz) bi(z)
: = Al o (16)
fm(2) fm(©22) b (2)
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where A is an m X m matriz with entries in K and bj(z) € K(z1,...,2,).
Assume that the n x n matriz 0 and a point a« € U whose components are
nonzero algebraic numbers have the properties (I)—(IV). If fi(z),..., fm(2)
are algebraically independent over K(zi,...,z,), then fi(a),..., fm(a) are

algebraically independent.

Lemma 3 (Kubota [5], see also Nishioka [11]). Let K be an algebraic
number field. Suppose that fi(z),..., fm(2) € K[[z1,...,2.]] converge in an
n-polydisc U around the origin and satisfy the functional equations

[iQz) = ai(2) fi(z) + bi(2) (1 <i<m),

where a;(z),b;(z) € K(z1,...,2,) and a;(z) are defined and nonzero at the
origin. Assume that the n x n matrix € and a point o« € U whose components
are nonzero algebraic numbers have the properties (1)—(IV) and that a;(z) are
defined and nonzero at Qfax for allk > 0. If f1(2),..., fm(2) are algebraically
independent over K(z1,...,2,), then fi(a),..., fm(a) are algebraically inde-

pendent.

Lemma 3 is essentially due to Kubota [5] and improved by Nishioka [11].

Let L = C(z,...,2,) and let M be the quotient field of C[[z1, ..., 2,]]. Let
2 be an n X n matrix with nonnegative integer entries having the property (I).

We define an endomorphism 7 : M — M by
[T(z) = [(Qz) (f(z) e M) (17)
and a subgroup H of L* by
H={gg "' |gel*}

Lemma 4 (Nishioka [9]). Suppose that f;; € M (i = 1,...,k, j =
1,...,n(i)) satisfy the functional equation of the form

: i) , - : : :
= | M + ,
| 0 ! ’ '
finti) i1 Gnyny-1 @/ NGy bini)

11



where a;, aﬁ? €eC, a; #0, as(?_l #0,and b € L. If fi; (i =1,....k, j=

1,...,n(i)) are algebraically dependent over L, then there exist a non-empty
subset {i1,...,1.} of {1,...,k} and nonzero elements cy, ..., c. of C such that
Wy =+ =0,, Cfgr1+-+¢fia €L

Lemma 5 (Kubota [5], see also Nishioka [11]). Let f; € M (i =1,...,h)

satisfy
fi =afi + b,
where a € L* and b; € L (1 <i < h), and let f; € M* (i =h+1,...,m)
satisfy
i =aifs,

where a; € L™ (h+1 < i < m). Suppose that a, a;, and b; have the following
properties:

(i) If ¢; € C (1 < i < h) are not all zero, there is no element g of L such

that
h
ag—gq" = Zcibl-.
i=1
(i) apt1,-..,am are multiplicatively independent modulo H.

Then the functions f; (1 <i < m) are algebraically independent over L.

Proof of Theorem 3. Let py, ..., p, be the algebraic numbers in (9). There
exist multiplicatively independent algebraic numbers (i, ..., s with 0 < |5;| <
1 (1 <j < s) such that

prt=GIl8, pilei=GIIB 2<i<r), (18)
j=1 j=1
where (1,...,( are roots of unity and e; (1 < i <r, 1 < j < s) are non-

negative integers (cf. Loxton and van der Poorten [6], Nishioka [11]). Take
a positive integer N such that ¢,V = 1 for any i (1 <i < r). We can
choose a positive integer p and a nonnegative integer ko such that a;i, = as
(mod N) for any k > ko. By Remark 1, there exists a nonnegative integer k;
such that agi; > ai for all k& > ky. Therefore by (9) and (10), there exists
a nonnegative integer ¢ > max{ko, k1 } such that R, # 0 for all k£ > ¢. Let

12



yix (1 <j <5, 1 <A <n)bevariables and let y;, = (y;1,...,yjn) (1 <j <),
Yy = (yy,...,Y,). Define

_ k Gt I (Qy ;)Y >m
fm(:c,y)—é:c (gﬁzwgzg‘“’“ Py (m>1),

where P(z), z = (z1,..., 2y), is the monomial given by (4) and €2 is the matrix

given by (6). Letting

0 _
D=z—, acQ ,andB=1,...,1,5,...... 1001, 6,
ox %_,—/1 %:—’1
we see that
pl—&k m ok
D' B) = 3 Ko ( _ ) _ |
;;1 g1+ X0 gilpy pi) kz;q (Ra,)™
Hence
/ klak 1 oY X +
> — —D'fn(a,8)€Q (a€Q , I€N, meNT"),
=0 (Ray)

and so it suffices to prove the algebraic independence of the values
D'fu(a,8) (a€Q”,1le N, me N").

Let
Q' = diag(P,...,QP).

—— —
s

Then f,,(x,y) satisfies the functional equation
fm(xa y) - l‘pfm(l‘, Q/y)

= o+ ngc% P )

where Q'y = (WPy,,...,QPy,), and so D' f,,,(z,y) (I > 1) satisfy

D' fon(,y)
L[l
- Z( )pl_’“‘xpD“fm(:mQ’y)
pu=0 K
p+q—1 ok T15_, P(QFy e m
YRS S
,;1 91‘1“21‘:2925@ ]:1P(Qkyj)e” (20)
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We assume that the values D'f,,(ay,3) (0<I<L, 1<m< M, 1<0<t)
are algebraically dependent, where «y,...,a; are nonzero distinct algebraic
numbers. It follows from (19) and (20) that D'f,,(ay,y) (0<I< L, 1 <m <
M, 1 < o < t) satisfy the functional equation of the form (16), so that they
are algebraically dependent over Q(y) by Lemmas 1 and 2. Hence we see by
Lemma 4 that

aq:...:ag (21)

and f,,(as,y) (1 <m < M, 1 <o <v) are linearly dependent over @ modulo
Q(y), changing the indices o (1 < o < t) if necessary. Thus there are algebraic
numbers ¢, (1 <m < M, 1 <o <v), not all zero, such that

F(y) = Z zy: Cmafm<acray) € G(y)

m=1oc=1

Since F(y) € Q[[y]] N Q(y), there are A(y), B(y) € Qly] such that
F(y) = A(y)/B(y), B(0)#0

(see Nishioka [9, Lemma 4]). Letting y; = -+ =y, = 2z = (z1,...,2,), We
have

G(z) = F(z,...,2)

———
= Z i/[: < V Cmgak> ( fk‘P(ka)El )m
k>gm=1 \o=1 7 g1+ i giCz%P<ka)Ei
€ Qz1,...,2n),
where F; = 3%, e € N* (1 <i <), since e,...,e; are not all zero for

each i. Letting >>Y_, coa® = d,n(k)ak (1 < m < M), we find
(K +p) = dm(F) (k= 0)

by (21). Then G(z) satisfies the functional equation

pta—1 M ak k2)E "
_p k Cl P(Q Z) !
G(z) = adG(¥2) + 2. 2 du(K)n <91 + Y GG P (k) E )

k=q m=1
so that by Theorem 1,

Gex®
g1+ X ¢

M m
Qr(X) = Z_:ldm(k‘)a’f< kXEi> €Q (g<k<p+qg-1).

14



Hence
dn(k)=0 (1<m <M, ¢<k<p+q-—1),

since ordx_g (Cf’“XEl/(gl + 3o gin’“XEi))m =mE; (1 <m < M). Letting

Ne = a/ay (1 <o <), we see that 1y, - -+, n, are distinct p-th roots of unity
by (21) and that d,,(k) = X%_; cment =0 (¢ < k < p+ ¢ — 1), which holds
only if ¢;,; = -+ = ¢ = 0. This is a contradiction, since ¢, (1 < m <

M, 1 <o <v) are not all zero, and the proof of the theorem is completed.

Proof of Theorem 4. We assume that

/ klOé(I;
,;(Ram)m(__’__’__’__)
are algebraically dependent, where «q,...,a; are nonzero distinct algebraic
numbers. Since |p;| > max{1,|ps|}, there exists a nonnegative integer ¢ >
max{ko, k1} such that R, , # 0 for any h (—H < h < H) and for all k > g,

where kg and k; are as in the proof of Theorem 3. Define
G Ty Py "
fh,m(xay) = Zxk ( 1 : —1] 1h a(k sj) k By
k>q L+ g1 g2(pr p2)"G* TTj—y P(QFy; )2
(—H<h<H, 1<m< M),

where P(z), ) are given by (4), (6), respectively, and the roots of unity (i,
and the nonnegative integers e;; (i = 1,2, 1 < j < s) are determined by (18).
Letting D and 3 be as in the proof of Theorem 3, we see that
-1 _—h —ag m
1 —h\m g1 P1 P1
o D fnlen B) = TRl ()
s kz>:q L+ g1 g2(p1 ' p2)" (p1 ' p2)
Klak

k>q (Rak"!‘h)m .

Hence

r Kag ~1 —hym )l o)
Ron) (9 p1")" D fam(as, B) € Q
>0 Utay

(0<I<L, —H<h<H 1<m<M, 1<0o<t),

and so D' fy (e, B) (0<I<L, —H<h<H, 1<m<M, 1<0c<t)are
algebraically dependent. By the same way as in the proof of Theorem 3, we
see that

all):-..:a{j (22)

15



and frm(as,y) (—H <h<H, 1 <m < M, 1<oc <v) are linearly depen-
dent over @ modulo Q(y), changing the indices o (1 < o < t) if necessary.
Thus there are algebraic numbers ¢y (—H <A< H, 1<m <M, 1<0c<
v), not all zero, such that

Z > 3 i bunany) € Qo)

—H m=1o0c=1

Letting y, =+ =y, =z = (21,...,2,), we have

G(z) = F(z,...,2)

_ cran )’
- ghzmzl <Z et U) (1+gflgz(pflpz)hCSkP(Q’“Z)EQ
€ a(zl,...,zn),

where E; = 377 ej; € NT (i=1,2), since e;, . .., e;s are not all zero for each
i. Letting 37_; Chmo 0k = dp(k)ak (-H < h < H, 1 <m < M), we find

dpm(k +p) = dpm(k) (k> 0)
by (22). Then G(z) satisfies the functional equation
G(z) = G(OPz)

T3, it i)

k—q h——H m=1 1+ g7 g2 (1 p2)G5F P

so that by Theorem 1,

CakXEl )m
L+ g1 ' ga2(p1 ' po) (o X B2
€ Q (q<k<p+q-1).

Qr(X) = Z Zdhm (

—H m=1

Hence
dpm(k) =0 (-H<h<H, 1<m<M, ¢<k<p+q-1),

since Qx(X) has some poles if dp,, (k) (—H < h < H, 1 <m < M) are not all
zero. The rest of the proof is similar to that of Theorem 3.
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Proof of Theorem 5. We assume that

/ kla(’j

k>0 RmakJrh

are algebraically dependent, where «y,...,a; are nonzero distinct algebraic
numbers. Since |p1| > max{1,|p2|}, there exists a nonnegative integer ¢ >
max{ko, k1 } such that R,,q,4+n # 0forany h (—H <h < H), m (1 <m < M),
and for all k£ > ¢, where kg and k; are as in the proof of Theorem 3. Define

k mak 17S k me;

(1 P(Q y,) 1j
fh,m(xay) = Z 11 h Py p— J Qk v
iz L+ 91 92001 p2) Cz [T5_; P(Qky;)mea
(-H<h<H, 1<m<M),

where P(z), (2 are given by (4), (6), respectively, and the roots of unity (i,
and the nonnegative integers e;; (i = 1,2, 1 < j < s) are determined by (18).
Letting D and 3 be as in the proof of Theorem 3, we see that

h —may, k,l k
o
o

kafgr pi"p
—1 _—hpl c91 P1 P1
91 p1"D frm(as, B) = . — =y -
b ,; 14+ g; 192(01 1ﬂ2)h(:01 1P2)m“’“ i>q Rinay+h

Hence

/ kla§ _h —
R — 91 Py D! Jom(as, B) € Q
k>0 mag+h

(0<I<L, —H<h<H 1<m<M, 1<0<t),

and so D' fy (0, B) (0<I<L, —H<h<H, 1<m<M, 1<c<t)are
algebraically dependent. By the same way as in the proof of Theorem 3, we
see that

of = =a (23)

and fom(as,y) (—H <h<H, 1<m< M, 1<o <v) are linearly depen-
dent over @ modulo Q(y), changing the indices o (1 < o < t) if necessary.
Thus there are algebraic numbers cpe (—H <h< H, 1<m <M, 1 <0<
v), not all zero, such that

Z Z Zchmafhm aaay) € Q( )

—Hm=1o0=1
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Letting y, =--- =y, =z = (21,...,2,), we have
G(z) = F(z,...,2)

Z Z Z 2o=1 Chimo Yy ) InakP(Qk )mEl

k>q h— H m=1 1+91 Yo (py tpo)h (Y™ P(Qk z)mE2
S Q(Zl, cey Zn),

where E; = 327 ;5 € N7 (i=1,2), since e;, . .., e;s are not all zero for each
i. Letting 37_; chmo 0k = dp(k)ak (-H < h < H, 1 <m < M), we find

dpn (k +p) = dum (k) (k= 0)

by (23). Then G(z) satisfies the functional equation

R RN S o o 11U L

img he—mm= LT 91 Lo (py tpo)h (S ™ P(Qk z)mEz’

so that by Theorem 1,

Qk(X) = i < dhm(lf)a’fCInakaEl

Wi L+ g1 g (pr o) (Y X

M oo

T ( Z A ()O3 (=1 921 p2)" 5™ ) )Xm<E1+E2r>

m=1r=0

€ Q (<k<p+q-1).

We assert that dp,, (k) =0 (—H <h<H, 1<m<M, g<k<p+q-1).
To the contrary we assume that dp,, (k') (—H <h < H, 1 <m < M) are not
all zero for some k' (¢ <k <p+q—1). Let

m' =min{ m | dp,, (k') (—H < h < H) are not all zero }

and let A = (E1, Es), E| = Ey/A, and E) = Ey/A. Then (E}, E}) =1, and if
E} + Eir’ (r' € N) is a prime number greater than M,

m/(Ey + Eyr') # m(E] + Eyr)

for any m with m’ < m < M and for all » > 0. Hence the linear recurrence
U (7 Z s (K)o G (=07 g1 p2)" G5 ) = 0

18



for any r € IN such that E] + Elr is a prime number greater than M. By
Dirichlet’s theorem on arithmetical progressions, there exist infinitely many

such r. Therefore

Ay (K) =0 (—H < h < H) (24)

by Skolem-Mahler-Lech’s theorem (cf. Nishioka [11]), since |g; ' g2(p1 ' p2)"| #
lg1 g2 (pr o) | if b # K. However, (24) contradicts the choice of m’, and so
we can conclude that

The rest of the proof is similar to that of Theorem 3.

Proof of Theorem 6. There exist multiplicatively independent algebraic
numbers 3, ..., s with 0 < |5;] <1 (1 < j < s) such that

Q; = Cz f[ ﬁjEij (1 <:< T)a (25>
j=1

where (i, ..., ¢, are roots of unity and e;; (1 <7 <r, 1 <j < s) are nonnega-
tive integers. Take a positive integer N such that ;" = 1 for any i (1 <i < 7).
We can choose a positive integer p and a nonnegative integer ¢ such that
apyp = a  (mod N) for any k > ¢q. Let yjn (1 < j <s, 1< X< n)be
variables and let y; = (yj1,...,¥jn) (1<7<8),y=(yy,...,y,). Define

fity) = E:@kﬂﬁj “y ),

k>q 7j=1
Cak (Qky])e”
gl(y) = a e
gil—gk _y P(QFy;)es

and

ny) = TI(1 cakHP b)) (<i<),

k>q

where P(z) and (2 are defined by (4) and (6), respectively. Letting

/6:<1a'-'717617 ---- ala'-wlaﬁs)?
—— ———

19



we see that

=Xl g(8) =X T hi(®) = I10 - a)

k>q k>q k>q

and so it suffices to prove the algebraic independence of the values

fi(B), gi(B), hi(B) (1 <i<r). Let
Q' = diag(QP,...,QP).

—_——
s

Then f;(y), ¢i(y), hi(y) (1 <i <r) satisfy the functional equations

p+q 1
fity) = [(Qy)+ > ¢* H P(QFy;),

k=q

pt+q—1 Cak s P(Qky )e”
i\Y = Q/ _'_ - a J )
g() kz;]l_gk (Qk )e”

and

p+g—1

hi(y) = II (1 - ¢ H P(Q 6”) hi(Qy),
k=q

where Q'y = (QPy,, ..., QPy,). We assume that the values f;(3), ¢:(3), hi(3)

(1 < i <r) are algebraically dependent. Then the functions f;(y), ¢:(y), hi(y)

(1 <i < r) are algebraically dependent over Q(y) by Lemmas 1 and 3. Hence

by Lemma 5 at least one of the following two cases arises:

(i) There are algebraic numbers b;,¢; (1 <1 <), not all zero, and F(y) €
Q(y) such that

Fly) = F(Qy)
pt+q—1 r ak e ank H] P Qk €ij

k=q i=1 j=1

(26)

(ii) There are rational integers d; (1 < ¢ < r), not all zero, and G(y) €
Q(y) \ {0} such that

Gly) = (pf[_ - (1 e ] p(gkyjyij)di) GQy).  (27)



Let M be a positive integer and let
yj:(yjla"'ayjn):(Z{WJV")Z?{L\/[J) (1§]§S)7
where M is so large that the following two properties are both satisfied:

(A) If (eﬂ, R ,61'5) 7é (62'/1, ceey ei/s), then Zj’:l 61'ij 7é Zj’:l Gi/ij.

(B) F*(z) = F(zM,....2M .. 2 2 e :
G (z)=GEM, ... M M MY e Q(zy, .., 20) \ {0].

Then by (26) and (27), at least one of the following two functional equations
holds:

ptg-1 r

. A : iakp Qk E;
rEsrs L (bic"kp @2+ 1C—<<szg<92>&>’ .

(Hﬁlfm o P(QF2)E )d) G(Pz2), (29)

k=q i=1
where E; = 377, e;; M 7 (1 <4 < r) are distinct positive integers by the prop-
erty (A), since none of o;/crj (1 <4 < j <r)is aroot of unity. By Theorems 1,
2, and the property (B), at least one of the following two properties is satisfied:

(i) Forany k (¢ <k <p+q—1),

" b akin ClgzakXEZ _ J b akin ) o akXEi ! a)
Z 1@ + 1 — C”“XEZ' - lCi + G E :(Cz ) €qQ.
i=1 i i=1 =1

(30)

(ii) For any k (¢ <k <p+q—1),

r

[[Q-¢xP)t =y eq (31)
i=1
Suppose first that (28) is satisfied. Then we show that ¢; =0 (1 <i <7r). As-
sume contrary that ¢y, ..., ¢, arenot all zero. Let S ={i€ {l,...,r}|¢; #0}
and let ¢ € S be the index such that Ey < E; for any i € S\ {i'}. Since
(Ey---E, + 1)Ey is not divided by any E; with i € S\ {¢'}, the term

ey (¢ X B yEr=Ertl does not cancel in (30), which is a contradiction. Hence
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¢;=0(1<i<r)andsoby,...,b, are not all zero, which is also a contradic-
tion, since Ej, ..., E, are distinct. Next suppose that (29) is satisfied. Taking
the logarithmic derivative of (31), we get

> —d B X P
1= Grxs

=1

=0 (¢<k<p+q-1).

This is a contradiction, since ordx_oE;¢* XEZ71/(1 — (*XE) = B, —1 (1 <
i <), and the proof of the theorem is completed.

3 Proofs of Theorems 1 and 2.

We need several lemmas to prove Theorems 1 and 2. Use the same notations
as in the preceding section, define an endomorphism 7 : M — M by (17),

and adopt the usual vector notation, that is, if I = (iy,...,4,) € Z", we write
2! = 2" ... zi . We denote by C[zy, ..., 2,] the ring of polynomials in variables
z1, ..., 2, with coefficients in C'.

Lemma 6 (Nishioka [11]). If A,B € C|z,..., 2, are coprime, then
(A7, B7) = 2! where I € N™.

Lemma 7 (Nishioka [10], cf. [11]). Let Q be an n x n matriz with nonnega-
tive integer entries which has the property (1). Let C be an algebraically closed
field of characteristic 0. Let R(z) be a nonzero polynomial in C[z1, ..., 2,] and
x = (21,...,2,) an element of C"" with x; # 0 for any i (1 <i <n). We put

R(z) = | > crz’ (cr #0).

If R(QFx) = 0 for infinitely many positive integers k, then there exist distinct

elements I,J € A and positive integers a,b such that

w([—J)Q“(Qb’“—E) -1

for all k > 0, where E is the identity matrix.

Lemma 8 (Nishioka [9]). If g € M satisfies

g =cg+d (c,deC),
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then g € C.

Lemma 9. Let {a;}x>o0 be a linear recurrence satisfying (2). Suppose that
{ar}k>0 is not a geometric progression. Assume that the ratio of any pair
of distinct roots of ®(X) is not a root of unity, where ®(X) is the polynomial
defined by (3). Then the sequence {ay}x>o does not satisfy the linear recurrence
relation of the form

apyr = cag (k>0),

where | is a positive integer and ¢ is a nonzero rational number.

Proof. 1f | = 1, then aj, = agc® (k > 0), which contradicts the assumption
in the lemma. If [ > 2, then at least two of the roots of U(X) = X! — ¢ are
those of ®(X). This also contradicts the assumption, since the ratio of any
pair of distinct roots of W(X) is a root of unity.

Lemma 10. Let u = (uy,...,u,) satisfy trans.deg C(u) = n — 1. If
ul,u? € C%, where I,J € Z"\ {0}, then I and J are proportional, i.e., there
exists a nonzero rational number r such that I =rJ.

Proof.  Suppose contrary there are I = (iy,...,4,),J = (Jj1,---,Jn) €
Z™ \ {0} such that w!’,u’ € C* and I, J are not proportional. Assume that
Jx # 0. Then w, is algebraic over the field C'(uq, ..., ux_1, Urt1, .., Up). Since
(u!)x(u?)= = w7 € O and j\I —i)J is a nonzero vector whose A-th
component is zero, uy, ..., Ux_1,Uxt1, - - -, U, are algebraically dependent over

C'. Hence trans. deg. C(u) < n — 2, which is a contradiction.

Lemma 11. Let {a;}r>0 be as in Lemma 9. If ki, ko € N are distinct,
then P(QF2) —~; and P(2*22) —~, are coprime, where P(z) is the monomial
defined by (4), Q0 is the matriz defined by (6), and v1,v, € C*.

Proof.  Suppose contrary there is an irreducible T'(z) € C[z,...,2,] \ C
which divides both P(Q*z) — ~4; and P(Q*z) — 45. We may assume that
ki > ko. Let w = (uq,...,u,) be a generic point of the algebraic variety
defined by T'(z) over C. Then T(u) = 0 and trans. deg. C(u) = n — 1. Since
T(u) =0,

PR ) = u™ gt =y
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and
Ao +n—1 ay,
P(QPu) = uy™" ! un™ = .

By Lemma 10, there exists a nonzero rational number ¢ such that
(Qkytn—1y- -y Qky) = C(Qkygn—1,---, 0k, ). Hence by (2), {ar}r>o satisfies the

linear recurrence relation agi, -k, = cay (k> 0), which contradicts Lemma 9.

Lemma 12. Let Q be an n X n matriz with nonnegative integer entries
which has the property (1). Let R(z) be a nonzero polynomial in C[z1,. .., 2.
If R(Qz) divides R(2)z!, where I € N, then R(z) is a monomial in 21, . .. , Z,.

Proof. We can put
R(z) =z T g:(2)“,
i=1

where J € N", e; (1 < i < v) are positive integers, and ¢1(2),...,g,(z) are
distinct irreducible polynomials and not monomials. For each i (1 < i < v),

9:(22) can be written as

9:(Qz) = hy(z)2",

where h;(z) € Clz1,...,2,] \ C is not divided by z,...,2,, and H; € N".
Since 272 [T, (hi(z)zM)¢ divides 2/ TTY, g:(2)%,

[Thi(z)" | T1gi(2)" (32)
i=1 i=1

Hence hi(2z),...,h,(z) are irreducible, otherwise we can deduce a contradic-
tion, comparing the numbers of prime factors in (32); thereby

v

Hm@w:sﬁ%@w,

i=1
where ¢ is a nonzero element of C. Therefore
R(Qz)=¢R(2)z", H=JQ—E)+> e¢H; € Z"
i=1

Let D = |det(Q2— E)|. Then D is a positive integer, since the matrix €2 has no
roots of unity as its eigenvalues. We extend the endomorphism 7 : M — M to
the quotient field M’ of formal power series ring C [[zi/ P .., zYP]] by the usual
way. Since the monomial S(z) = 2#(@~F)"" ¢ M’ satisfies S7(2) = S(z)z",
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we see that F'(z) = R(z)/S(z) € M’ satisfies F7(z) = £F(z) and so F(z) € C
by Lemma 8, which means that R(z) is a monomial in z1,. .., z,.

Proof of Theorem 1. Letting G(z) = A(z)/B(z), where A(z) and B(z) are
coprime polynomials in C[zy, ..., 2,], and letting for each k (¢ < k < p+q—1),
Qr(X) = Up(X)/Vi(X), where U(X) and Vi (X) are coprime polynomials in
C[X], we have

p+q—1

A(z)B(z) H Vi(P

= aA(Pz)B PJﬁ 1 Vi(P )+ R(z)B(z)B(Q"z),

p+q—1 p+g—1
— ( H Vk( ) Z Qk 60[217-'-7271,]7
k=q

by (7). We can put (A(®z), B(QPz)) = 2!, where I € N", by Lemma 6.
Then

B(z) | B<z)zfpkf[ Vi(P(92)) (33)
and ptg—1
z) | B(2z) kr_[ Vi(P(92)). (34)

Let C be the algebraic closure of C. First we prove that G(z) € Clzy, ..., 2,].
For this purpose, we show that B(Pz) divides B(z)z!. Otherwise, by (33),
there exists a prime factor T'(2) € Clz1,. .., 2,] of B(QPz) such that

T(z) | (P(@Fz) =) (35)

for some ko (¢ < ko < p+qg—1) and a root v of Vi, (X), so that 7 is a nonzero
element of C, since V;(0) # 0 (¢ < k < p+q—1) and so V,(0) # 0. Let
u = (uy,...,u,) be a generic point of the algebraic variety defined by T'(z)
over C. Then T'(u) =0 and

trans. degs C(u) = n — 1.
Letting z = w in (35), we see that
P(QFow) = u™t o = A, (36)
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Since T'(z) divides B(2Pz) and B(Q?z) divides B(Q*z) Hzig_l Vie(P(Q2FP2))
by (34),

ptq—1

T(z) | BQ¥z) [ Vi(P(Q"7z2)).
k=q

Therefore T'(z) divides B(2?Pz) by Lemma 11 with (35). Continuing this
process, we see that T'(z) divides B(QP*z) and so B(QP*u) = 0 for all positive
integers k. Since uy # 0 (1 < A < n), by Lemmas 1 and 7, there exist a
nonzero n-dimensional vector v with rational integer components and positive
integers d, e such that W@ =E) — 1 for all k > 0, where E is the identity
matrix. Then

d_ dk+e
WV -BQ —1

for all k > 0. Letting v(Q¢ — E)Q¢ = (b,_1,...,by) and letting {by, x>0 be a
linear recurrence defined by (2) with the initial values by, ..., b,_1, we have

uhnt b = (37)

for all k& > 0. Therefore by Lemma 10, together with (2), {bx}x>0 satisfies the

linear recurrence relation
bk+d = Cbk (k’ Z 0), (38)

where ¢ is a nonzero rational number. On the other hand, there exists a
nonzero rational number ¢ such that (axyin_1,.-.,0k) = (bp_1,...,b0) by
(36), (37), and Lemma 10. Hence by (2), we have

A+ ko = C,bk (k} Z 0) (39)

By (38) and (39), ag+q = cay, for all k > ko. Then by (2), agq = cay (k> 0),
which contradicts Lemma 9, and so we can conclude that B(QPz) divides
B(z)z!. Therefore B(z) is a monomial in zy,...,2, by Lemmas 1 and 12.
Hence we can conclude that G(z) € C[z1,..., 2], since G(z) = A(z)/B(z) €
Cllz1, - -5 2n)]-

Secondly we show that Qx(X) = Up(X)/Vi(X) € C[X] (¢ <k <p+qg-—1).
Since Uy(X) and Vi(X) are coprime in C[X] with V;(0) # 0, U,(P(QFz2))
and Vi (P(Q*z)) are coprime polynomials in C[z1,.. ., z,] with V4(P(0)) # 0.
By Lemma 11, Vi(P(922)) and Vi (P(Q2)) are coprime if k # k. Since
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G(z) € Clz, ..., 2] and so G(®z) € Clzy, ..., 2z,

Pl U (P(QF2)
2 V(P(2)

k=q
by (7). Hence Vj(P(Q2)) divides Uy(P(2%2)) and so V(P(Q2)) € C* for
any k (¢ <k <p+q—1). Therefore Vi (X) € C* and so Qr(X) € C[X] (¢ <
k<p+q-—1).
Finally we prove that Qx(X) € C (¢ < k < p+ ¢ — 1), which implies
G(z) € C by Lemma 8. To the contrary we assume that Qx(X) ¢ C for some
k(g <k <p+qg—1). Let g be the number of terms appearing in G(z).

60[21 ,Zn]

[terating (7), we get

29 pt+q—1

G(Z) 2g+1G< 29+1 Za Z Q Qk+lpz)),

Then the number of terms appearing in the rlght—hand side is at least 29 + 1,
since (Ggqn_1: ... : ax) # (Qgan_1: ... ap) in P"1(Q) for any distinct non-
negative integers k£ and k&’ by Lemma 9 and so the nonconstant terms appearing
in the right-hand side never cancel one another. This is a contradiction, since
the number of terms appearing in the left-hand side is at most 2g, and the

proof of the theorem is completed.

Proof of Theorem 2. Letting G(z) = A(z)/B(z), where A(z) and B(z) are
coprime polynomials in C[z1, ..., z,], and letting for each k (¢ < k < p+q—1),
Qr(X) = Up(X)/Vi(X), where Ug(X) and Vj(X) are coprime polynomials in
C[X], we have

p+q—1 p+q—1

A(z)B(z) U Vi(P(QF2)) = A(¥2)B(z) [[ Un(P(22)) (40)

by (8). We can put (A(%z), B(Qz)) = 2!, where I € N", by Lemma 6.
Then

A(QPz) A(z)zlpkf[_ Vi(P(QF2)),
A(z) A(QPz pJﬁlUk ),

p+q 1

B(¥z) B(z)z' ] Uu(P(Q*2
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and

p+g—1

B(z) | B(z) kU Vi(P(QF2)).

Since Ug(0) # 0, V(0) # 0 (¢ < k < p+q—1), by the same way as in the proof
of Theorem 1, we see that A(Pz) divides A(z)z! and that B(Pz) divides
B(z)z!. Therefore A(z) and B(z) are monomials in zy, ..., 2z, by Lemmas 1
and 12. Then by (40),

p+q—1 p+g—1

[1 G(P@2) /) [] VilP(@'=) € C~.

Here, U,(P(QF2)) and Vi (P(Q¥2)) (k # k') are coprime polynomials in
Clz1, ..., 2] by Lemma 11, and Uy (P(Q%2)), Vi (P(Q*2)) are coprime polyno-
mials in C[z1, ..., z,) for each k (¢ < k < p+q—1). Therefore Uy(X), Vi(X) €
C*(g<k<p+qg—1)and so Qx(X) € C* (¢ <k <p+q—1). Hence
G(z) € C by Lemma 8, and the proof of the theorem is completed.
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