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1 Introduction and results.

One of the techniques used to prove the algebraic independence of numbers is

Mahler’s method, which deals with the values of so-called Mahler functions sat-

isfying a certain type of functional equation. In order to apply the method, one

must confirm the algebraic independence of the Mahler functions themselves.

This can be reduced, in many cases, to their linear independence modulo the

rational function field, that is, the problem of determining whether a nonzero

linear combination of them is a rational function or not. In the case of one

variable, this can be treated by arguments involving poles of rational functions.

However, in the case of several variables, this method is not available. In this

paper we shall resolve this problem by considering a generic point of an irre-

ducible algebraic variety. Theorems 1 and 2 in this paper assert that certain

types of functional equations in several variables have no nontrivial rational

function solutions. As applications, we shall prove the algebraic independence

of various kinds of reciprocal sums of linear recurrences in Theorems 3, 4, and

5, and that of the values at algebraic numbers of power series, Lambert series,

and infinite products generated by linear recurrences in Theorem 6.

Let Ω = (ωij) be an n × n matrix with nonnegative integer entries. If

z = (z1, . . . , zn) is a point of Cn with C the set of complex numbers, we define

a transformation Ω : Cn → Cn by

Ωz =


 n∏
j=1

zj
ω1j ,

n∏
j=1

zj
ω2j , . . . ,

n∏
j=1

zj
ωnj


 . (1)
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Let {ak}k≥0 be a linear recurrence of nonnegative integers satisfying

ak+n = c1ak+n−1 + · · ·+ cnak (k = 0, 1, 2, . . .), (2)

where a0, . . . , an−1 are not all zero and c1, . . . , cn are nonnegative integers with

cn �= 0. We define a polynomial associated with (2) by

Φ(X) = Xn − c1X
n−1 − · · · − cn. (3)

In this paper, we always assume that Φ(±1) �= 0 and the ratio of any pair of

distinct roots of Φ(X) is not a root of unity and that {ak}k≥0 is not a geometric

progression unless otherwise mentioned. We define a monomial

P (z) = z
an−1

1 · · · za0n , (4)

which is denoted similarly to (1) by

P (z) = (an−1, . . . , a0)z. (5)

Let

Ω =




c1 1 0 . . . 0

c2 0 1
. . .

...
...

...
. . . . . . 0

...
...

. . . 1
cn 0 . . . . . . 0



. (6)

It follows from (1), (2), and (5) that

P (Ωkz) = (an−1, . . . , a0)Ω
kz

= (ak+n−1, . . . , ak)z

= z
ak+n−1

1 · · · zak
n (k ≥ 0).

Let F (z1, . . . , zn) and F [[z1, . . . , zn]] denote the field of rational functions and

the ring of formal power series in variables z1, . . . , zn with coefficients in a

field F , respectively, and F× the multiplicative group of nonzero elements of

F . Throughout this paper, we denote by C a field of characteristic 0. The

following are the main theorems of the present paper.

Theorem 1. Suppose that G(z) ∈ C[[z1, . . . , zn]] satisfies the functional

equation of the form

G(z) = αG(Ωpz) +
p+q−1∑
k=q

Qk(P (Ωkz)), (7)

2



where α �= 0 is an element of C, Ω is defined by (6), p > 0, q ≥ 0 are

integers, and Qk(X) ∈ C(X) (q ≤ k ≤ p + q − 1) are defined at X = 0. If

G(z) ∈ C(z1, . . . , zn), then G(z) ∈ C and Qk(X) ∈ C (q ≤ k ≤ p + q − 1).

Theorem 2. Suppose that G(z) is a nonzero element of the quotient field

of C[[z1, . . . , zn]] satisfying the functional equation of the form

G(z) =


p+q−1∏

k=q

Qk(P (Ωkz))


G(Ωpz), (8)

where Ω, p, q, and Qk(X) are as in Theorem 1. Assume that Qk(0) �= 0. If

G(z) ∈ C(z1, . . . , zn), then G(z) ∈ C and Qk(X) ∈ C× (q ≤ k ≤ p + q − 1).

First we shall state our results on algebraic independence of reciprocal

sums of linear recurrences, Theorems 3, 4, and 5, obtained as applications of

Theorem 1. We prepare some notations.

Let {Rk}k≥0 be a linear recurrence expressed as

Rk = g1ρ
k
1 + · · ·+ grρ

k
r (k ≥ 0), (9)

where g1, . . . , gr are nonzero algebraic numbers and ρ1, . . . , ρr are nonzero dis-

tinct algebraic numbers satisfying

|ρ1| > max{1, |ρ2|, . . . , |ρr|}. (10)

Typical examples of such {Rk}k≥0 are the Fibonacci numbers {Fk}k≥0 defined

by

F0 = 0, F1 = 1, Fk+2 = Fk+1 + Fk (k ≥ 0)

and the Lucas numbers {Lk}k≥0 defined by

L0 = 2, L1 = 1, Lk+2 = Lk+1 + Lk (k ≥ 0),

since

Fk =
1√
5


(1 +

√
5

2

)k
−
(
1−√

5

2

)k (k ≥ 0)

and

Lk =

(
1 +

√
5

2

)k
+

(
1−√

5

2

)k
(k ≥ 0).
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We shall prove the algebraic independence of reciprocal sums of linear re-

currences such as ∑
k≥0

′ bk
(Rak+h)m

, (11)

where {bk}k≥0 is a linear recurrence of algebraic numbers not identically zero,

{ak}k≥0 is as above, and m ≥ 1, h are integers. Here and in what follows, the

sum
∑′
k≥0 is taken over those k which satisfy ak + h ≥ 0 and Rak+h �= 0. For

example, the algebraic independence of the numbers

∑
k≥0

′ 1

(FFk+h)m
(h ∈ Z, m ∈ N+)

can be deduced from Theorem 4 below. Here Z and N+ denote the sets of

rational and positive integers, respectively.

It is interesting to compare our results to those obtained by various authors

in the case where {ak}k≥0 is a geometric progression. Lucas [7] showed that

∑
k≥0

1

F2k

=
7−√

5

2
.

Let {sk}k≥0 be a periodic sequence of algebraic numbers not identically zero.

Bundschuh and Pethö [3] proved by Mahler’s method that∑
k≥0

sk
F2k

is transcendental if {sk}k≥0 is not a constant sequence and that∑
k≥0

sk
L2k

is transcendental for any {sk}k≥0. Let c ≥ 1 and d be integers. Recently,

Nishioka, Tanaka, and Toshimitsu [13] proved that if {sk}k≥0 is not a constant

sequence, the numbers∑
k≥0

′ sk
(Fcdk+h)m

(d ≥ 2, h ∈ Z, m ∈ N+) (12)

are algebraically independent, and if {sk}k≥0 is a constant sequence, the num-

bers (12) excepting the algebraic number
∑′
k≥0 sk/Fc2k are algebraically inde-

pendent; and also the numbers∑
k≥0

′ sk
(Lcdk+h)m

(d ≥ 2, h ∈ Z, m ∈ N+)
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are algebraically independent for any {sk}k≥0. These results depend on the

fact that the recurrences {Fk}k≥0 and {Lk}k≥0 are binary, namely these can

be expressed as (9) with r = 2. In the case of m = 1, the transcendence of

each of these numbers has already been proved by Becker and Töpfer [1]. For

a general {Rk}k≥0 not necessarily binary, only the transcendency result has

been obtained also by Becker and Töpfer [1] : If ρ1, . . . , ρr satisfying (10) are

multiplicatively independent, then the number∑
k≥0

′ sk
Rcdk

is transcendental (cf. Remark 2 below).

Our results are concerned with the algebraic independence of the numbers

(11) with {ak}k≥0 not a geometric progression. It is not necessary in our results

to assume that ρ1, . . . , ρr are multiplicatively independent. In what follows, N

denotes the set of nonnegative integers and Q the field of algebraic numbers.

Theorem 3. Let {Rk}k≥0 be a linear recurrence represented as (9) with

(10). Then the numbers

∑
k≥0

′ klαk

(Rak
)m

(α ∈ Q
×
, l ∈ N , m ∈ N+) (13)

are algebraically independent.

Theorem 3 implies the algebraic independence of the numbers

∑
k≥0

′ bk
(Rak

)m
(m ∈ N+),

since a linear recurrence {bk}k≥0 of algebraic numbers not identically zero

can be expressed as the linear combination of the sequences {klαk}k≥0 (α ∈
Q

×
, l ∈ N) with algebraic coefficients.

Remark 1. It is proved by the author [14, Remark 4] that

ak = bγk + o(γk),

where γ > 1 and b > 0, so that by (10) each sum in (13) converges.

Remark 2. It is still open to prove the algebraic independence of the

numbers (13) with {ak}k≥0 a geometric progression and without the assump-

tion that ρ1, . . . , ρr are multiplicatively independent.
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Corollary 1. In addition to the assumptions on Φ(X), suppose that Φ(X)

has only simple roots. Then the numbers

∑
k≥0

′ klαk

(aak
)m

(α ∈ Q
×
, l ∈ N , m ∈ N+)

are algebraically independent.

Proof. Since Φ(X) has only simple roots, ak in place of Rk can be expressed

as (9) with distinct roots ρ1, . . . , ρr of Φ(X). And (10) is also satisfied by the

condition on Φ(X) (see Tanaka [14, Proof of Lemma 4]). Thus we can take ak

as Rk.

Example. Let {Tk}k≥0 be so-called “Tribonacci” numbers defined by

Tk+3 = Tk+2 + Tk+1 + Tk (k = 0, 1, 2, . . .)

with the initial values T0 = 0, T1 = 1, and T2 = 2 and let {bk}k≥0 be a linear

recurrence of algebraic numbers not identically zero. Then the numbers

∑
k≥1

bk
(TTk

)m
(m ∈ N+)

are algebraically independent. We remark that Tk can be expressed as (9)

with r = 3 and ρ1, ρ2, ρ3 satisfying ρ1ρ2ρ3 = 1, so that ρ1, ρ2, and ρ3 are

multiplicatively dependent.

If {Rk}k≥0 is binary, we can deduce from Theorem 1 the algebraic indepen-

dence of the numbers (11) for various h ∈ Z, as in the case where {ak}k≥0 is

a geometric progression stated above.

Theorem 4. Let {Rk}k≥0 be a binary recurrence represented as

Rk = g1ρ
k
1 + g2ρ

k
2 (k ≥ 0),

where g1, g2, ρ1, and ρ2 are nonzero algebraic numbers satisfying |ρ1| >

max{1, |ρ2|}. Then the numbers

∑
k≥0

′ klαk

(Rak+h)m
(α ∈ Q

×
, l ∈ N , m ∈ N+, h ∈ Z) (14)
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are algebraically independent.

Theorem 5. Let {Rk}k≥0 be as in Theorem 4. Then the numbers

∑
k≥0

′ klαk

Rmak+h

(α ∈ Q
×
, l ∈ N , m ∈ N+, h ∈ Z) (15)

are algebraically independent.

Corollary 2. Let {Rk}k≥0 be a binary recurrence defined by

Rk+2 = A1Rk+1 + A2Rk (k ≥ 0),

where A1 and A2 are real algebraic numbers satisfying A1 �= 0, |A2| ≥ 1, and

∆ := A2
1 + 4A2 > 0. Suppose that {Rk}k≥0 is not a geometric progression.

Then the numbers (14) or (15) are algebraically independent.

Example. Let {Fk}k≥0 be the Fibonacci numbers and let {bk}k≥0 be a

linear recurrence of algebraic numbers not identically zero. Then the numbers

∑
k≥0

′ bk
(FFk+h)m

(h ∈ Z, m ∈ N+)

are algebraically independent and so are the numbers

∑
k≥0

′ bk
FmFk+h

(h ∈ Z, m ∈ N+).

Remark 3. In the case where {ak}k≥0 is a geometric progression, a

similar result to Corollary 2 is obtained by Nishioka [12] under the assumption

that R0, R1, A1, and A2 are rational integers and m = 1.

Next we state an application of Theorem 1 as well as Theorem 2.

Theorem 6. Let {ak}k≥0 be a linear recurrence satisfying (2) with positive

initial values a0, . . . , an−1. Let α1, . . . , αr be algebraic numbers with 0 < |αi| <
1 (1 ≤ i ≤ r) such that none of αi/αj (1 ≤ i < j ≤ r) is a root of unity. Then

the numbers

∑
k≥0

αak
i ,

∑
k≥0

αak
i

1− αak
i

,
∏
k≥0

(1− αak
i ) (1 ≤ i ≤ r)

7



are algebraically independent.

Remark 4. The assumption that none of αi/αj (1 ≤ i < j ≤ r) is a

root of unity cannot be removed. For example, suppose that the initial values

a0, . . . , an−1 are divided by an integer d (> 1). Then by the linear recurrence

relation (2), ak is divided by d for any k ≥ 0. If αi/αj is a d-th root of

unity for some distinct i and j, then αak
i = αak

j (k ≥ 0) and so the numbers

considered in Theorem 6 are algebraically dependent. Even in the case where

a0, . . . , an−1 have no common factor, the assumption is also inevitable as the

following example shows:

Let {ak}k≥0 be a linear recurrence defined by

a0 = 2, a1 = 3, ak+2 = 6ak+1 + ak (k = 0, 1, 2, . . .).

We put

f(z) =
∑
k≥0

zak , g(z) =
∑
k≥0

zak

1− zak
, h(z) =

∏
k≥0

(1− zak).

Let α be any algebraic number with 0 < |α| < 1 and ζ = eπ
√−1/3 = (1 +√−3)/2. Then

2f(α) + f(ζα)− f(ζ2α)− 2f(ζ3α)− f(ζ4α) + f(ζ5α) = 0,

2g(α) + g(ζα)− g(ζ2α)− 2g(ζ3α)− g(ζ4α) + g(ζ5α) = 0,

and

h(α)2h(ζα)h(ζ2α)−1h(ζ3α)−2h(ζ4α)−1h(ζ5α) = 1,

since a2k ≡ 2 (mod 6) and a2k+1 ≡ 3 (mod 6) for any k ≥ 0.

Remark 5. The author [14] obtained the necessary and sufficient condi-

tion for the numbers
∑
k≥0 α

ak
1 , . . . ,

∑
k≥0 α

ak
r in Theorem 6 to be algebraically

dependent: Let {ak}k≥0 be a linear recurrence satisfying (2). Define f(z) =∑
k≥0 z

ak and let α1, · · · , αr be algebraic numbers with 0 < |αi| < 1 (1 ≤ i ≤ r).

Then the following three properties are equivalent:

(i) f(α1), . . . , f(αr) are algebraically dependent.

(ii) 1, f(α1), . . . , f(αr) are linearly dependent over Q.
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(iii) There exist a non-empty subset {αi1, . . . , αis} of {α1, . . . , αr}, roots of

unity ζ1, . . . , ζs, an algebraic number γ with αiq = ζqγ (1 ≤ q ≤ s), and

algebraic numbers ξ1, . . . , ξs, not all zero, such that

s∑
q=1

ξqζq
ak = 0

for all sufficiently large k.

Remark 6. If {ak}k≥0 is a geometric progression, namely ak = cdk (k ≥
0) for some integers c ≥ 1 and d ≥ 2, each of the numbers in Theorem 6 is

transcendental by the theorem of Mahler [8] ; however Theorem 6 is not valid

in this case. Indeed, let

f(z) =
∑
k≥0

zcd
k

, g(z) =
∑
k≥0

zcd
k

1− zcdk , h(z) =
∏
k≥0

(1− zcd
k

).

Let α be any algebraic number with 0 < |α| < 1. We put α1 = α, α2 =

αd, r = 2, so that α1/α2 is not a root of unity. Then we have

f(α1)− f(α2) = αc, g(α1)− g(α2) =
αc

1− αc
,
h(α1)

h(α2)
= 1− αc ∈ Q.

Remark 7. The power series expansions of some of infinite products in

Theorem 6 have interesting property. Beresin, Levine, and Lubell [2] proved

that if ∏
k≥0

(1− zFk+2) =
∑
k≥0

ε(k)zk,

where {Fk}k≥0 is the Fibonacci numbers, then ε(k) = 0 or ±1 for any k ≥ 0.

2 Proofs of Theorems 3–6.

In this section we derive Theorems 3, 4, 5, and 6 from Theorems 1 and 2 by

using Lemmas 1–5 below. Let Ω = (ωij) be an n× n matrix with nonnegative

integer entries. Then the maximum ρ of the absolute values of the eigenvalues

of Ω is itself an eigenvalue (cf. Gantmacher [4, p. 66, Theorem 3]). We suppose

that Ω and a point α = (α1, . . . , αn), where αi are nonzero algebraic numbers,

have the following four properties:
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(I) Ω is non-singular and none of its eigenvalues is a root of unity, so that

in particular ρ > 1.

(II) Every entry of the matrix Ωk is O(ρk) as k tends to infinity.

(III) If we put Ωkα = (α
(k)
1 , . . . , α(k)

n ), then

log |α(k)
i | ≤ −cρk (1 ≤ i ≤ n)

for all sufficiently large k, where c is a positive constant.

(IV) For any nonzero f(z) ∈ C[[z1, . . . , zn]] which converges in some neigh-

borhood of the origin, there are infinitely many k ∈ N+ such that

f(Ωkα) �= 0.

We note that the property (II) is satisfied if every eigenvalue of Ω of absolute

value ρ is a simple root of the minimal polynomial of Ω.

Lemma 1 (Tanaka [14, Lemma 4, Proof of Theorem 2]). Suppose that

Φ(±1) �= 0 and the ratio of any pair of distinct roots of Φ(X) is not a root

of unity, where Φ(X) is the polynomial defined by (3). Let Ω be the matrix

defined by (6) and β1, . . . , βs multiplicatively independent algebraic numbers

with 0 < |βj| < 1 (1 ≤ j ≤ s). Let p be a positive integer and put

Ω′ = diag(Ωp, . . . ,Ωp︸ ︷︷ ︸
s

).

Then the matrix Ω′ and the point

β = (1, . . . , 1︸ ︷︷ ︸
n−1

, β1, . . . . . . , 1, . . . , 1︸ ︷︷ ︸
n−1

, βs)

have the properties (I)−(IV).

Lemma 2 (Nishioka [9]). Let K be an algebraic number field. Suppose

that f1(z), . . . , fm(z) ∈ K[[z1, . . . , zn]] converge in an n-polydisc U around the

origin and satisfy the functional equation of the form




f1(z)
...

fm(z)


 = A




f1(Ωz)
...

fm(Ωz)


+




b1(z)
...

bm(z)


 , (16)
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where A is an m × m matrix with entries in K and bi(z) ∈ K(z1, . . . , zn).

Assume that the n × n matrix Ω and a point α ∈ U whose components are

nonzero algebraic numbers have the properties (I)−(IV). If f1(z), . . . , fm(z)

are algebraically independent over K(z1, . . . , zn), then f1(α), . . . , fm(α) are

algebraically independent.

Lemma 3 (Kubota [5], see also Nishioka [11]). Let K be an algebraic

number field. Suppose that f1(z), . . . , fm(z) ∈ K[[z1, . . . , zn]] converge in an

n-polydisc U around the origin and satisfy the functional equations

fi(Ωz) = ai(z)fi(z) + bi(z) (1 ≤ i ≤ m),

where ai(z), bi(z) ∈ K(z1, . . . , zn) and ai(z) are defined and nonzero at the

origin. Assume that the n×n matrix Ω and a point α ∈ U whose components

are nonzero algebraic numbers have the properties (I)−(IV) and that ai(z) are

defined and nonzero at Ωkα for all k ≥ 0. If f1(z), . . . , fm(z) are algebraically

independent over K(z1, . . . , zn), then f1(α), . . . , fm(α) are algebraically inde-

pendent.

Lemma 3 is essentially due to Kubota [5] and improved by Nishioka [11].

Let L = C(z1, . . . , zn) and let M be the quotient field of C[[z1, . . . , zn]]. Let

Ω be an n×n matrix with nonnegative integer entries having the property (I).

We define an endomorphism τ : M → M by

f τ (z) = f(Ωz) (f(z) ∈ M) (17)

and a subgroup H of L× by

H = { gτg−1 | g ∈ L× }.

Lemma 4 (Nishioka [9]). Suppose that fij ∈ M (i = 1, . . . , k, j =

1, . . . , n(i)) satisfy the functional equation of the form




fi 1
...
...

fi n(i)


 =




ai 0 . . . 0

a
(i)
2 1 ai

. . .
...

...
. . . . . . 0

a
(i)
n(i) 1 . . . a

(i)
n(i)n(i)−1 ai







f τi 1
...
...

f τi n(i)


+




bi 1
...
...

bi n(i)


 ,
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where ai, a
(i)
st ∈ C, ai �= 0, a

(i)
s s−1 �= 0, and bij ∈ L. If fij (i = 1, . . . , k, j =

1, . . . , n(i)) are algebraically dependent over L, then there exist a non-empty

subset {i1, . . . , ir} of {1, . . . , k} and nonzero elements c1, . . . , cr of C such that

ai1 = · · · = air , c1fi1 1 + · · ·+ crfir 1 ∈ L.

Lemma 5 (Kubota [5], see also Nishioka [11]). Let fi ∈ M (i = 1, . . . , h)

satisfy

f τi = afi + bi,

where a ∈ L× and bi ∈ L (1 ≤ i ≤ h), and let fi ∈ M× (i = h + 1, . . . ,m)

satisfy

f τi = aifi,

where ai ∈ L× (h + 1 ≤ i ≤ m). Suppose that a, ai, and bi have the following

properties:

(i) If ci ∈ C (1 ≤ i ≤ h) are not all zero, there is no element g of L such

that

ag − gτ =
h∑
i=1

cibi.

(ii) ah+1, . . . , am are multiplicatively independent modulo H.

Then the functions fi (1 ≤ i ≤ m) are algebraically independent over L.

Proof of Theorem 3. Let ρ1, . . . , ρr be the algebraic numbers in (9). There

exist multiplicatively independent algebraic numbers β1, . . . , βs with 0 < |βj| <
1 (1 ≤ j ≤ s) such that

ρ−1
1 = ζ1

s∏
j=1

βj
e1j , ρ−1

1 ρi = ζi
s∏
j=1

βj
eij (2 ≤ i ≤ r), (18)

where ζ1, . . . , ζr are roots of unity and eij (1 ≤ i ≤ r, 1 ≤ j ≤ s) are non-

negative integers (cf. Loxton and van der Poorten [6], Nishioka [11]). Take

a positive integer N such that ζi
N = 1 for any i (1 ≤ i ≤ r). We can

choose a positive integer p and a nonnegative integer k0 such that ak+p ≡ ak

(mod N) for any k ≥ k0. By Remark 1, there exists a nonnegative integer k1

such that ak+1 > ak for all k ≥ k1. Therefore by (9) and (10), there exists

a nonnegative integer q ≥ max{k0, k1} such that Rak
�= 0 for all k ≥ q. Let
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yjλ (1 ≤ j ≤ s, 1 ≤ λ ≤ n) be variables and let yj = (yj1, . . . , yjn) (1 ≤ j ≤ s),

y = (y1, . . . ,ys). Define

fm(x,y) =
∑
k≥q

xk
(

ζak
1

∏s
j=1 P (Ωkyj)

e1j

g1 +
∑r
i=2 giζ

ak
i

∏s
j=1 P (Ωkyj)

eij

)m
(m ≥ 1),

where P (z), z = (z1, . . . , zn), is the monomial given by (4) and Ω is the matrix

given by (6). Letting

D = x
∂

∂x
, α ∈ Q

×
, and β = (1, . . . , 1︸ ︷︷ ︸

n−1

, β1, . . . . . . , 1, . . . , 1︸ ︷︷ ︸
n−1

, βs),

we see that

Dlfm(α,β) =
∑
k≥q

klαk
(

ρ−ak
1

g1 +
∑r
i=2 gi(ρ

−1
1 ρi)ak

)m
=
∑
k≥q

klαk

(Rak
)m

.

Hence

∑
k≥0

′ klαk

(Rak
)m

−Dlfm(α,β) ∈ Q (α ∈ Q
×
, l ∈ N , m ∈ N+),

and so it suffices to prove the algebraic independence of the values

Dlfm(α,β) (α ∈ Q
×
, l ∈ N , m ∈ N+).

Let

Ω′ = diag(Ωp, . . . ,Ωp︸ ︷︷ ︸
s

).

Then fm(x,y) satisfies the functional equation

fm(x,y) = xpfm(x,Ω
′y)

+
p+q−1∑
k=q

xk
(

ζak
1

∏s
j=1 P (Ωkyj)

e1j

g1 +
∑r
i=2 giζ

ak
i

∏s
j=1 P (Ωkyj)

eij

)m
, (19)

where Ω′y = (Ωpy1, . . . ,Ω
pys), and so Dlfm(x,y) (l ≥ 1) satisfy

Dlfm(x,y)

=
l∑
µ=0

(
l

µ

)
pl−µxpDµfm(x,Ω′y)

+
p+q−1∑
k=q

klxk
(

ζak
1

∏s
j=1 P (Ωkyj)

e1j

g1 +
∑r
i=2 giζ

ak
i

∏s
j=1 P (Ωkyj)

eij

)m
. (20)
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We assume that the values Dlfm(ασ,β) (0 ≤ l ≤ L, 1 ≤ m ≤ M, 1 ≤ σ ≤ t)

are algebraically dependent, where α1, . . . , αt are nonzero distinct algebraic

numbers. It follows from (19) and (20) that Dlfm(ασ,y) (0 ≤ l ≤ L, 1 ≤ m ≤
M, 1 ≤ σ ≤ t) satisfy the functional equation of the form (16), so that they

are algebraically dependent over Q(y) by Lemmas 1 and 2. Hence we see by

Lemma 4 that

αp1 = · · · = αpν (21)

and fm(ασ,y) (1 ≤ m ≤ M, 1 ≤ σ ≤ ν) are linearly dependent over Q modulo

Q(y), changing the indices σ (1 ≤ σ ≤ t) if necessary. Thus there are algebraic

numbers cmσ (1 ≤ m ≤ M, 1 ≤ σ ≤ ν), not all zero, such that

F (y) :=
M∑
m=1

ν∑
σ=1

cmσfm(ασ,y) ∈ Q(y).

Since F (y) ∈ Q[[y]] ∩ Q(y), there are A(y), B(y) ∈ Q[y] such that

F (y) = A(y)/B(y), B(0) �= 0

(see Nishioka [9, Lemma 4]). Letting y1 = · · · = ys = z = (z1, . . . , zn), we

have

G(z) = F (z, . . . ,z︸ ︷︷ ︸
s

)

=
∑
k≥q

M∑
m=1

(
ν∑
σ=1

cmσα
k
σ

)(
ζak
1 P (Ωkz)E1

g1 +
∑r
i=2 giζ

ak
i P (Ωkz)Ei

)m

∈ Q(z1, . . . , zn),

where Ei =
∑s
j=1 eij ∈ N+ (1 ≤ i ≤ r), since ei1, . . . , eis are not all zero for

each i. Letting
∑ν
σ=1 cmσα

k
σ = dm(k)α

k
1 (1 ≤ m ≤ M), we find

dm(k + p) = dm(k) (k ≥ 0)

by (21). Then G(z) satisfies the functional equation

G(z) = αp1G(Ωpz) +
p+q−1∑
k=q

M∑
m=1

dm(k)α
k
1

(
ζak
1 P (Ωkz)E1

g1 +
∑r
i=2 giζ

ak
i P (Ωkz)Ei

)m
,

so that by Theorem 1,

Qk(X) =
M∑
m=1

dm(k)α
k
1

(
ζak
1 XE1

g1 +
∑r
i=2 giζ

ak
i XEi

)m
∈ Q (q ≤ k ≤ p+ q − 1).

14



Hence

dm(k) = 0 (1 ≤ m ≤ M, q ≤ k ≤ p+ q − 1),

since ordX=0

(
ζak
1 XE1/(g1 +

∑r
i=2 giζ

ak
i XEi)

)m
= mE1 (1 ≤ m ≤ M). Letting

ησ = ασ/α1 (1 ≤ σ ≤ ν), we see that η1, · · · , ην are distinct p-th roots of unity

by (21) and that dm(k) =
∑ν
σ=1 cmση

k
σ = 0 (q ≤ k ≤ p + q − 1), which holds

only if cm1 = · · · = cmν = 0. This is a contradiction, since cmσ (1 ≤ m ≤
M, 1 ≤ σ ≤ ν) are not all zero, and the proof of the theorem is completed.

Proof of Theorem 4. We assume that

∑
k≥0

′ klαkσ
(Rak+h)m

(1 ≤ σ ≤ t, 0 ≤ l ≤ L, −H ≤ h ≤ H, 1 ≤ m ≤ M)

are algebraically dependent, where α1, . . . , αt are nonzero distinct algebraic

numbers. Since |ρ1| > max{1, |ρ2|}, there exists a nonnegative integer q ≥
max{k0, k1} such that Rak+h �= 0 for any h (−H ≤ h ≤ H) and for all k ≥ q,

where k0 and k1 are as in the proof of Theorem 3. Define

fh,m(x,y) =
∑
k≥q

xk
(

ζak
1

∏s
j=1 P (Ωkyj)

e1j

1 + g−1
1 g2(ρ

−1
1 ρ2)hζ

ak
2

∏s
j=1 P (Ωkyj)

e2j

)m

(−H ≤ h ≤ H, 1 ≤ m ≤ M),

where P (z),Ω are given by (4), (6), respectively, and the roots of unity ζ1, ζ2

and the nonnegative integers eij (i = 1, 2, 1 ≤ j ≤ s) are determined by (18).

Letting D and β be as in the proof of Theorem 3, we see that

(g−1
1 ρ−h1 )mDlfh,m(ασ,β) =

∑
k≥q

klαkσ

(
g−1
1 ρ−h1 ρ−ak

1

1 + g−1
1 g2(ρ

−1
1 ρ2)h(ρ

−1
1 ρ2)ak

)m

=
∑
k≥q

klαkσ
(Rak+h)m

.

Hence ∑
k≥0

′ klαkσ
(Rak+h)m

− (g−1
1 ρ−h1 )mDlfh,m(ασ,β) ∈ Q

(0 ≤ l ≤ L, −H ≤ h ≤ H, 1 ≤ m ≤ M, 1 ≤ σ ≤ t),

and so Dlfh,m(ασ,β) (0 ≤ l ≤ L, −H ≤ h ≤ H, 1 ≤ m ≤ M, 1 ≤ σ ≤ t) are

algebraically dependent. By the same way as in the proof of Theorem 3, we

see that

αp1 = · · · = αpν (22)

15



and fh,m(ασ,y) (−H ≤ h ≤ H, 1 ≤ m ≤ M, 1 ≤ σ ≤ ν) are linearly depen-

dent over Q modulo Q(y), changing the indices σ (1 ≤ σ ≤ t) if necessary.

Thus there are algebraic numbers chmσ (−H ≤ h ≤ H, 1 ≤ m ≤ M, 1 ≤ σ ≤
ν), not all zero, such that

F (y) :=
H∑

h=−H

M∑
m=1

ν∑
σ=1

chmσfh,m(ασ,y) ∈ Q(y).

Letting y1 = · · · = ys = z = (z1, . . . , zn), we have

G(z) = F (z, . . . ,z︸ ︷︷ ︸
s

)

=
∑
k≥q

H∑
h=−H

M∑
m=1

(
ν∑
σ=1

chmσα
k
σ

)(
ζak
1 P (Ωkz)E1

1 + g−1
1 g2(ρ

−1
1 ρ2)hζ

ak
2 P (Ωkz)E2

)m

∈ Q(z1, . . . , zn),

where Ei =
∑s
j=1 eij ∈ N+ (i = 1, 2), since ei1, . . . , eis are not all zero for each

i. Letting
∑ν
σ=1 chmσα

k
σ = dhm(k)α

k
1 (−H ≤ h ≤ H, 1 ≤ m ≤ M), we find

dhm(k + p) = dhm(k) (k ≥ 0)

by (22). Then G(z) satisfies the functional equation

G(z) = αp1G(Ωpz)

+
p+q−1∑
k=q

H∑
h=−H

M∑
m=1

dhm(k)α
k
1

(
ζak
1 P (Ωkz)E1

1 + g−1
1 g2(ρ

−1
1 ρ2)hζ

ak
2 P (Ωkz)E2

)m
,

so that by Theorem 1,

Qk(X) =
H∑

h=−H

M∑
m=1

dhm(k)α
k
1

(
ζak
1 XE1

1 + g−1
1 g2(ρ

−1
1 ρ2)hζ

ak
2 XE2

)m

∈ Q (q ≤ k ≤ p+ q − 1).

Hence

dhm(k) = 0 (−H ≤ h ≤ H, 1 ≤ m ≤ M, q ≤ k ≤ p+ q − 1),

since Qk(X) has some poles if dhm(k) (−H ≤ h ≤ H, 1 ≤ m ≤ M) are not all

zero. The rest of the proof is similar to that of Theorem 3.
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Proof of Theorem 5. We assume that

∑
k≥0

′ klαkσ
Rmak+h

(1 ≤ σ ≤ t, 0 ≤ l ≤ L, −H ≤ h ≤ H, 1 ≤ m ≤ M)

are algebraically dependent, where α1, . . . , αt are nonzero distinct algebraic

numbers. Since |ρ1| > max{1, |ρ2|}, there exists a nonnegative integer q ≥
max{k0, k1} such that Rmak+h �= 0 for any h (−H ≤ h ≤ H), m (1 ≤ m ≤ M),

and for all k ≥ q, where k0 and k1 are as in the proof of Theorem 3. Define

fh,m(x,y) =
∑
k≥q

xkζmak
1

∏s
j=1 P (Ωkyj)

me1j

1 + g−1
1 g2(ρ

−1
1 ρ2)hζ

mak
2

∏s
j=1 P (Ωkyj)

me2j

(−H ≤ h ≤ H, 1 ≤ m ≤ M),

where P (z),Ω are given by (4), (6), respectively, and the roots of unity ζ1, ζ2

and the nonnegative integers eij (i = 1, 2, 1 ≤ j ≤ s) are determined by (18).

Letting D and β be as in the proof of Theorem 3, we see that

g−1
1 ρ−h1 Dlfh,m(ασ,β) =

∑
k≥q

klαkσg
−1
1 ρ−h1 ρ−mak

1

1 + g−1
1 g2(ρ

−1
1 ρ2)h(ρ

−1
1 ρ2)mak

=
∑
k≥q

klαkσ
Rmak+h

.

Hence

∑
k≥0

′ klαkσ
Rmak+h

− g−1
1 ρ−h1 Dlfh,m(ασ,β) ∈ Q

(0 ≤ l ≤ L, −H ≤ h ≤ H, 1 ≤ m ≤ M, 1 ≤ σ ≤ t),

and so Dlfh,m(ασ,β) (0 ≤ l ≤ L, −H ≤ h ≤ H, 1 ≤ m ≤ M, 1 ≤ σ ≤ t) are

algebraically dependent. By the same way as in the proof of Theorem 3, we

see that

αp1 = · · · = αpν (23)

and fh,m(ασ,y) (−H ≤ h ≤ H, 1 ≤ m ≤ M, 1 ≤ σ ≤ ν) are linearly depen-

dent over Q modulo Q(y), changing the indices σ (1 ≤ σ ≤ t) if necessary.

Thus there are algebraic numbers chmσ (−H ≤ h ≤ H, 1 ≤ m ≤ M, 1 ≤ σ ≤
ν), not all zero, such that

F (y) :=
H∑

h=−H

M∑
m=1

ν∑
σ=1

chmσfh,m(ασ,y) ∈ Q(y).
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Letting y1 = · · · = ys = z = (z1, . . . , zn), we have

G(z) = F (z, . . . ,z︸ ︷︷ ︸
s

)

=
∑
k≥q

H∑
h=−H

M∑
m=1

(
∑ν
σ=1 chmσα

k
σ)ζ

mak
1 P (Ωkz)mE1

1 + g−1
1 g2(ρ

−1
1 ρ2)hζ

mak
2 P (Ωkz)mE2

∈ Q(z1, . . . , zn),

where Ei =
∑s
j=1 eij ∈ N+ (i = 1, 2), since ei1, . . . , eis are not all zero for each

i. Letting
∑ν
σ=1 chmσα

k
σ = dhm(k)α

k
1 (−H ≤ h ≤ H, 1 ≤ m ≤ M), we find

dhm(k + p) = dhm(k) (k ≥ 0)

by (23). Then G(z) satisfies the functional equation

G(z) = αp1G(Ωpz) +
p+q−1∑
k=q

H∑
h=−H

M∑
m=1

dhm(k)α
k
1ζ
mak
1 P (Ωkz)mE1

1 + g−1
1 g2(ρ

−1
1 ρ2)hζ

mak
2 P (Ωkz)mE2

,

so that by Theorem 1,

Qk(X) =
H∑

h=−H

M∑
m=1

dhm(k)α
k
1ζ
mak
1 XmE1

1 + g−1
1 g2(ρ

−1
1 ρ2)hζ

mak
2 XmE2

=
M∑
m=1

∞∑
r=0


 H∑
h=−H

dhm(k)α
k
1ζ
mak
1

(
−g−1

1 g2(ρ
−1
1 ρ2)

hζmak
2

)rXm(E1+E2r)

∈ Q (q ≤ k ≤ p+ q − 1).

We assert that dhm(k) = 0 (−H ≤ h ≤ H, 1 ≤ m ≤ M, q ≤ k ≤ p + q − 1).

To the contrary we assume that dhm(k
′) (−H ≤ h ≤ H, 1 ≤ m ≤ M) are not

all zero for some k′ (q ≤ k′ ≤ p+ q − 1). Let

m′ = min{ m | dhm(k′) (−H ≤ h ≤ H) are not all zero }

and let A = (E1, E2), E ′
1 = E1/A, and E ′

2 = E2/A. Then (E ′
1, E

′
2) = 1, and if

E ′
1 + E ′

2r
′ (r′ ∈ N) is a prime number greater than M ,

m′(E ′
1 + E ′

2r
′) �= m(E ′

1 + E ′
2r)

for any m with m′ < m ≤ M and for all r ≥ 0. Hence the linear recurrence

um′k′(r) =
H∑

h=−H
dhm′(k′)αk

′
1 ζ
m′ak′
1

(
−g−1

1 g2(ρ
−1
1 ρ2)

hζ
m′ak′
2

)r
= 0

18



for any r ∈ N such that E ′
1 + E ′

2r is a prime number greater than M . By

Dirichlet’s theorem on arithmetical progressions, there exist infinitely many

such r. Therefore

dhm′(k′) = 0 (−H ≤ h ≤ H) (24)

by Skolem–Mahler–Lech’s theorem (cf. Nishioka [11]), since |g−1
1 g2(ρ

−1
1 ρ2)

h| �=
|g−1

1 g2(ρ
−1
1 ρ2)

h′| if h �= h′. However, (24) contradicts the choice of m′, and so

we can conclude that

dhm(k) = 0 (−H ≤ h ≤ H, 1 ≤ m ≤ M, q ≤ k ≤ p + q − 1).

The rest of the proof is similar to that of Theorem 3.

Proof of Theorem 6. There exist multiplicatively independent algebraic

numbers β1, . . . , βs with 0 < |βj | < 1 (1 ≤ j ≤ s) such that

αi = ζi
s∏
j=1

βj
eij (1 ≤ i ≤ r), (25)

where ζ1, . . . , ζr are roots of unity and eij (1 ≤ i ≤ r, 1 ≤ j ≤ s) are nonnega-

tive integers. Take a positive integer N such that ζi
N = 1 for any i (1 ≤ i ≤ r).

We can choose a positive integer p and a nonnegative integer q such that

ak+p ≡ ak (mod N) for any k ≥ q. Let yjλ (1 ≤ j ≤ s, 1 ≤ λ ≤ n) be

variables and let yj = (yj1, . . . , yjn) (1 ≤ j ≤ s), y = (y1, . . . ,ys). Define

fi(y) =
∑
k≥q

ζak
i

s∏
j=1

P (Ωkyj)
eij ,

gi(y) =
∑
k≥q

ζak
i

∏s
j=1 P (Ωkyj)

eij

1− ζak
i

∏s
j=1 P (Ωkyj)

eij
,

and

hi(y) =
∏
k≥q

(
1− ζak

i

s∏
j=1

P (Ωkyj)
eij

)
(1 ≤ i ≤ r),

where P (z) and Ω are defined by (4) and (6), respectively. Letting

β = (1, . . . , 1︸ ︷︷ ︸
n−1

, β1, . . . . . . , 1, . . . , 1︸ ︷︷ ︸
n−1

, βs),
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we see that

fi(β) =
∑
k≥q

αak
i , gi(β) =

∑
k≥q

αak
i

1− αak
i

, hi(β) =
∏
k≥q

(1− αak
i ),

and so it suffices to prove the algebraic independence of the values

fi(β), gi(β), hi(β) (1 ≤ i ≤ r). Let

Ω′ = diag(Ωp, . . . ,Ωp︸ ︷︷ ︸
s

).

Then fi(y), gi(y), hi(y) (1 ≤ i ≤ r) satisfy the functional equations

fi(y) = fi(Ω
′y) +

p+q−1∑
k=q

ζak
i

s∏
j=1

P (Ωkyj)
eij ,

gi(y) = gi(Ω
′y) +

p+q−1∑
k=q

ζak
i

∏s
j=1 P (Ωkyj)

eij

1− ζak
i

∏s
j=1 P (Ωkyj)

eij
,

and

hi(y) =


p+q−1∏

k=q

(
1− ζak

i

s∏
j=1

P (Ωkyj)
eij

)hi(Ω
′y),

where Ω′y = (Ωpy1, . . . ,Ω
pys). We assume that the values fi(β), gi(β), hi(β)

(1 ≤ i ≤ r) are algebraically dependent. Then the functions fi(y), gi(y), hi(y)

(1 ≤ i ≤ r) are algebraically dependent over Q(y) by Lemmas 1 and 3. Hence

by Lemma 5 at least one of the following two cases arises:

(i) There are algebraic numbers bi, ci (1 ≤ i ≤ r), not all zero, and F (y) ∈
Q(y) such that

F (y) = F (Ω′y)

+
p+q−1∑
k=q

r∑
i=1


biζak

i

s∏
j=1

P (Ωkyj)
eij +

ciζ
ak
i

∏s
j=1 P (Ωkyj)

eij

1− ζak
i

∏s
j=1 P (Ωkyj)

eij


 .

(26)

(ii) There are rational integers di (1 ≤ i ≤ r), not all zero, and G(y) ∈
Q(y) \ {0} such that

G(y) =


p+q−1∏

k=q

r∏
i=1

(
1− ζak

i

s∏
j=1

P (Ωkyj)
eij

)di


G(Ω′y). (27)
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Let M be a positive integer and let

yj = (yj1, . . . , yjn) = (zM
j

1 , . . . , zM
j

n ) (1 ≤ j ≤ s),

where M is so large that the following two properties are both satisfied:

(A) If (ei1, . . . , eis) �= (ei′1, . . . , ei′s), then
∑s
j=1 eijM

j �= ∑s
j=1 ei′jM

j.

(B) F ∗(z) = F (zM1 , . . . , zMn , . . . , zM
s

1 , . . . , zM
s

n ) ∈ Q(z1, . . . , zn),

G∗(z) = G(zM1 , . . . , zMn , . . . , zM
s

1 , . . . , zM
s

n ) ∈ Q(z1, . . . , zn) \ {0}.

Then by (26) and (27), at least one of the following two functional equations

holds:

F ∗(z) = F ∗(Ωpz) +
p+q−1∑
k=q

r∑
i=1

(
biζ

ak
i P (Ωkz)Ei +

ciζ
ak
i P (Ωkz)Ei

1− ζak
i P (Ωkz)Ei

)
, (28)

G∗(z) =


p+q−1∏

k=q

r∏
i=1

(
1− ζak

i P (Ωkz)Ei

)di


G(Ωpz), (29)

where Ei =
∑s
j=1 eijM

j (1 ≤ i ≤ r) are distinct positive integers by the prop-

erty (A), since none of αi/αj (1 ≤ i < j ≤ r) is a root of unity. By Theorems 1,

2, and the property (B), at least one of the following two properties is satisfied:

(i) For any k (q ≤ k ≤ p + q − 1),

r∑
i=1

(
biζ

ak
i XEi +

ciζ
ak
i XEi

1− ζak
i XEi

)
=

r∑
i=1

(
biζ

ak
i XEi + ci

∞∑
l=1

(ζak
i XEi)l

)
∈ Q.

(30)

(ii) For any k (q ≤ k ≤ p + q − 1),

r∏
i=1

(1− ζak
i XEi)di = γk ∈ Q

×
. (31)

Suppose first that (28) is satisfied. Then we show that ci = 0 (1 ≤ i ≤ r). As-

sume contrary that c1, . . . , cr are not all zero. Let S = { i ∈ {1, . . . , r} | ci �= 0 }
and let i′ ∈ S be the index such that Ei′ < Ei for any i ∈ S \ {i′}. Since

(E1 · · ·Er + 1)Ei′ is not divided by any Ei with i ∈ S \ {i′}, the term

ci′(ζ
ak
i′ X

Ei′ )E1···Er+1 does not cancel in (30), which is a contradiction. Hence
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ci = 0 (1 ≤ i ≤ r) and so b1, . . . , br are not all zero, which is also a contradic-

tion, since E1, . . . , Er are distinct. Next suppose that (29) is satisfied. Taking

the logarithmic derivative of (31), we get

r∑
i=1

−diEiζ
ak
i XEi−1

1− ζak
i XEi

= 0 (q ≤ k ≤ p+ q − 1).

This is a contradiction, since ordX=0Eiζ
ak
i XEi−1/(1 − ζak

i XEi) = Ei − 1 (1 ≤
i ≤ r), and the proof of the theorem is completed.

3 Proofs of Theorems 1 and 2.

We need several lemmas to prove Theorems 1 and 2. Use the same notations

as in the preceding section, define an endomorphism τ : M → M by (17),

and adopt the usual vector notation, that is, if I = (i1, . . . , in) ∈ Zn, we write

zI = zi11 · · · zinn . We denote by C[z1, . . . , zn] the ring of polynomials in variables

z1, . . . , zn with coefficients in C.

Lemma 6 (Nishioka [11]). If A,B ∈ C[z1, . . . , zn] are coprime, then

(Aτ , Bτ ) = zI , where I ∈ Nn.

Lemma 7 (Nishioka [10], cf. [11]). Let Ω be an n×n matrix with nonnega-

tive integer entries which has the property (I). Let C be an algebraically closed

field of characteristic 0. Let R(z) be a nonzero polynomial in C[z1, . . . , zn] and

x = (x1, . . . , xn) an element of C
n
with xi �= 0 for any i (1 ≤ i ≤ n). We put

R(z) =
∑

I=(i1,...,in)∈Λ

cIz
I (cI �= 0).

If R(Ωkx) = 0 for infinitely many positive integers k, then there exist distinct

elements I, J ∈ Λ and positive integers a, b such that

x(I−J)Ωa(Ωbk−E) = 1

for all k ≥ 0, where E is the identity matrix.

Lemma 8 (Nishioka [9]). If g ∈ M satisfies

gτ = cg + d (c, d ∈ C),
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then g ∈ C.

Lemma 9. Let {ak}k≥0 be a linear recurrence satisfying (2). Suppose that

{ak}k≥0 is not a geometric progression. Assume that the ratio of any pair

of distinct roots of Φ(X) is not a root of unity, where Φ(X) is the polynomial

defined by (3). Then the sequence {ak}k≥0 does not satisfy the linear recurrence

relation of the form

ak+l = cak (k ≥ 0),

where l is a positive integer and c is a nonzero rational number.

Proof. If l = 1, then ak = a0c
k (k ≥ 0), which contradicts the assumption

in the lemma. If l ≥ 2, then at least two of the roots of Ψ(X) = X l − c are

those of Φ(X). This also contradicts the assumption, since the ratio of any

pair of distinct roots of Ψ(X) is a root of unity.

Lemma 10. Let u = (u1, . . . , un) satisfy trans. degC C(u) = n − 1. If

uI ,uJ ∈ C×, where I, J ∈ Zn \ {0}, then I and J are proportional, i.e., there

exists a nonzero rational number r such that I = rJ .

Proof. Suppose contrary there are I = (i1, . . . , in), J = (j1, . . . , jn) ∈
Zn \ {0} such that uI ,uJ ∈ C× and I, J are not proportional. Assume that

jλ �= 0. Then uλ is algebraic over the field C(u1, . . . , uλ−1, uλ+1, . . . , un). Since

(uI)jλ(uJ)−iλ = ujλI−iλJ ∈ C× and jλI − iλJ is a nonzero vector whose λ-th

component is zero, u1, . . . , uλ−1, uλ+1, . . . , un are algebraically dependent over

C. Hence trans. degC C(u) ≤ n− 2, which is a contradiction.

Lemma 11. Let {ak}k≥0 be as in Lemma 9. If k1, k2 ∈ N are distinct,

then P (Ωk1z)−γ1 and P (Ωk2z)−γ2 are coprime, where P (z) is the monomial

defined by (4), Ω is the matrix defined by (6), and γ1, γ2 ∈ C×.

Proof. Suppose contrary there is an irreducible T (z) ∈ C[z1, . . . , zn] \ C

which divides both P (Ωk1z) − γ1 and P (Ωk2z) − γ2. We may assume that

k1 > k2. Let u = (u1, . . . , un) be a generic point of the algebraic variety

defined by T (z) over C. Then T (u) = 0 and trans. degC C(u) = n− 1. Since

T (u) = 0,

P (Ωk1u) = u
ak1+n−1

1 · · · uak1
n = γ1
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and

P (Ωk2u) = u
ak2+n−1

1 · · · uak2
n = γ2.

By Lemma 10, there exists a nonzero rational number c such that

(ak1+n−1, . . . , ak1) = c(ak2+n−1, . . . , ak2). Hence by (2), {ak}k≥0 satisfies the

linear recurrence relation ak+k1−k2 = cak (k ≥ 0), which contradicts Lemma 9.

Lemma 12. Let Ω be an n × n matrix with nonnegative integer entries

which has the property (I). Let R(z) be a nonzero polynomial in C[z1, . . . , zn].

If R(Ωz) divides R(z)zI , where I ∈ Nn, then R(z) is a monomial in z1, . . . , zn.

Proof. We can put

R(z) = zJ
ν∏
i=1

gi(z)
ei ,

where J ∈ Nn, ei (1 ≤ i ≤ ν) are positive integers, and g1(z), . . . , gν(z) are

distinct irreducible polynomials and not monomials. For each i (1 ≤ i ≤ ν),

gi(Ωz) can be written as

gi(Ωz) = hi(z)z
Hi ,

where hi(z) ∈ C[z1, . . . , zn] \ C is not divided by z1, . . . , zn, and Hi ∈ Nn.

Since zJΩ∏ν
i=1(hi(z)z

Hi)ei divides zI+J
∏ν
i=1 gi(z)

ei ,

ν∏
i=1

hi(z)
ei
∣∣∣ ν∏
i=1

gi(z)
ei . (32)

Hence h1(z), . . . , hν(z) are irreducible, otherwise we can deduce a contradic-

tion, comparing the numbers of prime factors in (32); thereby

ν∏
i=1

hi(z)
ei = ξ

ν∏
i=1

gi(z)
ei ,

where ξ is a nonzero element of C. Therefore

R(Ωz) = ξR(z)zH , H = J(Ω− E) +
ν∑
i=1

eiHi ∈ Zn.

Let D = | det(Ω−E)|. Then D is a positive integer, since the matrix Ω has no

roots of unity as its eigenvalues. We extend the endomorphism τ : M → M to

the quotient field M ′ of formal power series ring C[[z
1/D
1 , . . . , z1/D

n ]] by the usual

way. Since the monomial S(z) = zH(Ω−E)−1 ∈ M ′ satisfies Sτ (z) = S(z)zH ,
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we see that F (z) = R(z)/S(z) ∈ M ′ satisfies F τ (z) = ξF (z) and so F (z) ∈ C

by Lemma 8, which means that R(z) is a monomial in z1, . . . , zn.

Proof of Theorem 1. Letting G(z) = A(z)/B(z), where A(z) and B(z) are

coprime polynomials in C[z1, . . . , zn], and letting for each k (q ≤ k ≤ p+q−1),

Qk(X) = Uk(X)/Vk(X), where Uk(X) and Vk(X) are coprime polynomials in

C[X], we have

A(z)B(Ωpz)
p+q−1∏
k=q

Vk(P (Ωkz))

= αA(Ωpz)B(z)
p+q−1∏
k=q

Vk(P (Ωkz)) +R(z)B(z)B(Ωpz),

R(z) =


p+q−1∏

k=q

Vk(P (Ωkz))


 p+q−1∑

k=q

Qk(P (Ωkz)) ∈ C[z1, . . . , zn],

by (7). We can put (A(Ωpz), B(Ωpz)) = zI , where I ∈ Nn, by Lemma 6.

Then

B(Ωpz)
∣∣∣ B(z)zI

p+q−1∏
k=q

Vk(P (Ωkz)) (33)

and

B(z)
∣∣∣ B(Ωpz)

p+q−1∏
k=q

Vk(P (Ωkz)). (34)

Let C be the algebraic closure of C. First we prove that G(z) ∈ C[z1, . . . , zn].

For this purpose, we show that B(Ωpz) divides B(z)zI . Otherwise, by (33),

there exists a prime factor T (z) ∈ C[z1, . . . , zn] of B(Ωpz) such that

T (z)
∣∣∣ (P (Ωk0z)− γ) (35)

for some k0 (q ≤ k0 ≤ p+ q− 1) and a root γ of Vk0(X), so that γ is a nonzero

element of C, since Vk(0) �= 0 (q ≤ k ≤ p + q − 1) and so Vk0(0) �= 0. Let

u = (u1, . . . , un) be a generic point of the algebraic variety defined by T (z)

over C. Then T (u) = 0 and

trans. degC C(u) = n− 1.

Letting z = u in (35), we see that

P (Ωk0u) = u
ak0+n−1

1 · · · uak0
n = γ. (36)
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Since T (z) divides B(Ωpz) and B(Ωpz) divides B(Ω2pz)
∏p+q−1
k=q Vk(P (Ωk+pz))

by (34),

T (z)
∣∣∣ B(Ω2pz)

p+q−1∏
k=q

Vk(P (Ωk+pz)).

Therefore T (z) divides B(Ω2pz) by Lemma 11 with (35). Continuing this

process, we see that T (z) divides B(Ωpkz) and so B(Ωpku) = 0 for all positive

integers k. Since uλ �= 0 (1 ≤ λ ≤ n), by Lemmas 1 and 7, there exist a

nonzero n-dimensional vector v with rational integer components and positive

integers d, e such that uvΩe(Ωdk−E) = 1 for all k ≥ 0, where E is the identity

matrix. Then

uv(Ωd−E)Ωdk+e

= 1

for all k ≥ 0. Letting v(Ωd − E)Ωe = (bn−1, . . . , b0) and letting {bk}k≥0 be a

linear recurrence defined by (2) with the initial values b0, . . . , bn−1, we have

u
bdk+n−1

1 · · · ubdk
n = 1 (37)

for all k ≥ 0. Therefore by Lemma 10, together with (2), {bk}k≥0 satisfies the

linear recurrence relation

bk+d = cbk (k ≥ 0), (38)

where c is a nonzero rational number. On the other hand, there exists a

nonzero rational number c′ such that (ak0+n−1, . . . , ak0) = c′(bn−1, . . . , b0) by

(36), (37), and Lemma 10. Hence by (2), we have

ak+k0 = c′bk (k ≥ 0). (39)

By (38) and (39), ak+d = cak for all k ≥ k0. Then by (2), ak+d = cak (k ≥ 0),

which contradicts Lemma 9, and so we can conclude that B(Ωpz) divides

B(z)zI . Therefore B(z) is a monomial in z1, . . . , zn by Lemmas 1 and 12.

Hence we can conclude that G(z) ∈ C[z1, . . . , zn], since G(z) = A(z)/B(z) ∈
C[[z1, . . . , zn]].

Secondly we show that Qk(X) = Uk(X)/Vk(X) ∈ C[X] (q ≤ k ≤ p+q−1).

Since Uk(X) and Vk(X) are coprime in C[X] with Vk(0) �= 0, Uk(P (Ωkz))

and Vk(P (Ωkz)) are coprime polynomials in C[z1, . . . , zn] with Vk(P (0)) �= 0.

By Lemma 11, Vk(P (Ωkz)) and Vk′(P (Ωk
′
z)) are coprime if k �= k′. Since
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G(z) ∈ C[z1, . . . , zn] and so G(Ωpz) ∈ C[z1, . . . , zn],

p+q−1∑
k=q

Uk(P (Ωkz))

Vk(P (Ωkz))
∈ C[z1, . . . , zn]

by (7). Hence Vk(P (Ωkz)) divides Uk(P (Ωkz)) and so Vk(P (Ωkz)) ∈ C× for

any k (q ≤ k ≤ p+ q − 1). Therefore Vk(X) ∈ C× and so Qk(X) ∈ C[X] (q ≤
k ≤ p+ q − 1).

Finally we prove that Qk(X) ∈ C (q ≤ k ≤ p + q − 1), which implies

G(z) ∈ C by Lemma 8. To the contrary we assume that Qk(X) �∈ C for some

k (q ≤ k ≤ p + q − 1). Let g be the number of terms appearing in G(z).

Iterating (7), we get

G(z)− α2g+1G(Ω(2g+1)pz) =
2g∑
l=0

αl
p+q−1∑
k=q

Qk(P (Ωk+lpz)).

Then the number of terms appearing in the right-hand side is at least 2g + 1,

since (ak+n−1 : . . . : ak) �= (ak′+n−1 : . . . : ak′) in P n−1(Q) for any distinct non-

negative integers k and k′ by Lemma 9 and so the nonconstant terms appearing

in the right-hand side never cancel one another. This is a contradiction, since

the number of terms appearing in the left-hand side is at most 2g, and the

proof of the theorem is completed.

Proof of Theorem 2. Letting G(z) = A(z)/B(z), where A(z) and B(z) are

coprime polynomials in C[z1, . . . , zn], and letting for each k (q ≤ k ≤ p+q−1),

Qk(X) = Uk(X)/Vk(X), where Uk(X) and Vk(X) are coprime polynomials in

C[X], we have

A(z)B(Ωpz)
p+q−1∏
k=q

Vk(P (Ωkz)) = A(Ωpz)B(z)
p+q−1∏
k=q

Uk(P (Ωkz)) (40)

by (8). We can put (A(Ωpz), B(Ωpz)) = zI , where I ∈ Nn, by Lemma 6.

Then

A(Ωpz)
∣∣∣ A(z)zI

p+q−1∏
k=q

Vk(P (Ωkz)),

A(z)
∣∣∣ A(Ωpz)

p+q−1∏
k=q

Uk(P (Ωkz)),

B(Ωpz)
∣∣∣ B(z)zI

p+q−1∏
k=q

Uk(P (Ωkz)),
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and

B(z)
∣∣∣ B(Ωpz)

p+q−1∏
k=q

Vk(P (Ωkz)).

Since Uk(0) �= 0, Vk(0) �= 0 (q ≤ k ≤ p+q−1), by the same way as in the proof

of Theorem 1, we see that A(Ωpz) divides A(z)zI and that B(Ωpz) divides

B(z)zI . Therefore A(z) and B(z) are monomials in z1, . . . , zn by Lemmas 1

and 12. Then by (40),

p+q−1∏
k=q

Uk(P (Ωkz))

/ p+q−1∏
k=q

Vk(P (Ωkz)) ∈ C×.

Here, Uk(P (Ωkz)) and Vk′(P (Ωk
′
z)) (k �= k′) are coprime polynomials in

C[z1, . . . , zn] by Lemma 11, and Uk(P (Ωkz)), Vk(P (Ωkz)) are coprime polyno-

mials in C[z1, . . . , zn] for each k (q ≤ k ≤ p+q−1). Therefore Uk(X), Vk(X) ∈
C× (q ≤ k ≤ p + q − 1) and so Qk(X) ∈ C× (q ≤ k ≤ p + q − 1). Hence

G(z) ∈ C by Lemma 8, and the proof of the theorem is completed.
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