演習4

- **I.** (X,d) を距離空間とする。 $\mathcal{O}_d := \{O \subset X \mid \forall x \in O \text{ に対して } \exists \varepsilon > 0 \text{ s.t. } B_{\varepsilon}(x) \subset O\}$ とおく。 \mathcal{O}_d は $\mathcal{S} := \{B_{\varepsilon}(x) \mid x \in X, \ \varepsilon > 0\}$ が生成する X の開集合系;つまり $\mathcal{O}_d = \mathcal{O}(\mathcal{S})$ である、ことを確かめよ。
- **II.** 距離空間 (X,d) の任意の相異なる 2 点 $x,y \in X$ $(x \neq y)$ に対してかならず $B_{\varepsilon}(x) \cap B_{\varepsilon'}(y) = \emptyset$ $(x \in B_{\varepsilon}(x), y \in B_{\varepsilon'}(y))$ をみたす $\varepsilon > 0$, $\varepsilon' > 0$ が存在することを示せ。
- (i) $S = \{\{1, 2\}, \{2, 3\}, \{4\}\}$ が生成する X の開集合系 $\mathcal{O}(S)$ を求めよ。
- (ii) 上の問題 II で示した距離空間の性質に着目して、(i) で与えた位相空間 $(X, \mathcal{O}(\mathcal{S}))$ は距離空間 (X, d) に対応する位相空間 (X, \mathcal{O}_d) にはならないことを示せ。
- IV. $X = \{1, 2, 3\}$ の位相 $\mathcal{O} = \{\emptyset, X, \{1, 2\}, \{2, 3\}, \{2\}\}$ 考える。
- (i) (X, \mathcal{O}) の閉集合系を決定せよ。
- (ii) 閉包 $\{2\}$, $\{1\}$, $\{1,3\}$, $\{1,2\}$ をそれぞれ求めよ。
- (iii) 内点集合 {1}°, {2}°, {1,3}°, {2,3}° をそれぞれ求めよ。

I. 任意の $O \in \mathcal{O}_d$ が S の元つまり balls の和集合であることを確認すれば よい;これは実際、 $O = \bigcup_{x \in O} B_{\varepsilon(x)}(x)$ 、ただし $\varepsilon(x) > 0$ は $x \in O$ に対して とれる $x \in B_{\varepsilon(x)}(x) \subset O$ を満たす正数、であるからよい。 $S \subset \mathcal{O}_d \subset \mathcal{O}(S)$ でかつ \mathcal{O}_d は開集合系の公理を満たしているので $\mathcal{O}(S)$ の特徴付け (S をふくむ開集合系のなかで最弱のもの) から $\mathcal{O}_d = \mathcal{O}(S)$ である。