代数学基礎演習 III

- 1. 2面体群 $D_3 = \langle \sigma, \tau \mid \sigma^3 = \tau^2 = e, \ \sigma\tau = \tau\sigma^2 \rangle$ の部分群 $H_1 = \{e, \tau\sigma\} < D_3, H_2 = \{e, \sigma, \sigma^2\} < D_3$ を考える。
- (i) D_3 における左 H_1 コセットを全て具体的にかきあげよ。
- (ii) $xH_1 \neq H_1x$, $x \in D_3$, となる例を具体的にあげよ。
- (iii) D_3 における左 H_2 コセットを全て具体的にかきあげよ。
- 2. $(\mathbb{Z}/9\mathbb{Z})^{\times}$ の元を全てかきあげ、さらにそれぞれの元の位数を答えよ。
- 3. Gを群、H < Gを部分群とする。
- (i) $a \in G$ に対して

$$aHa^{-1} := \{aha^{-1} \mid h \in H\}$$

と定めるとこれはGの部分群であることを示せ。この aHa^{-1} を部分群Hのaによる共役とよぶ。またすべての $a \in G$ に対して $aHa^{-1} = H$ をみたすH < GをGの正規部分群とよび, $H \triangleleft G$ で表す。

- (ii) S₃の正規部分群をすべてあげよ。
- 4. 群 G に対して, $Z(G):=\{x\in G\mid$ すべての $y\in G$ に対して xy=yx が成立 $\}$ とおく。
- (i) $Z(G) \triangleleft G$ を示せ (Z(G)) を G の中心 (the center of G) とよぶ)。
- (ii) $G = \mathfrak{S}_3$ に対して $Z(\mathfrak{S}_3)$ を求めよ。
- **5.** (i) $Z(GL_2(\mathbb{C}))$ を決定せよ。
- (ii) $Z(GL_n(\mathbb{C}))$ を決定せよ。
- **6.** H を G の部分群とする。左 H コセットたちによる分割が $G=\coprod_{x\in S}xH$ と与えられるとき, $G=\coprod_{x\in S}Hx^{-1}$ は右 H コセットたちによる G の分割であることを示せ。
- 7. (i) $G=\left\{\left(\begin{smallmatrix} 1 & a \\ 0 & b\end{smallmatrix}\right)\in M_2(\mathbb{R})\mid b\neq 0
 ight\}$ は $\mathrm{GL}_2(\mathbb{R})$ の部分群であることを示せ。
- (ii) $H_1 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix} \mid b \neq 0 \right\}$ は G の部分群であるが,G の正規部分群ではないことを示せ。
- (iii) $H_2 = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{R} \right\} \triangleleft G$ を求せ。
- 8. Gの正規部分群 H_1 , H_2 に対して $H_1 \cap H_2 \triangleleft G$ を示せ。
- 9. 部分群 H < G の指数 [G : H] = 2 ならば, $H \triangleleft G$ であることを示せ。
- **10.** G の部分群 H, K に対して, $HK := \{hk \in G \mid h \in H, k \in K\} \subset G$ とおく。

(i)
$$G = \operatorname{GL}_2(\mathbb{R}), H = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}, K = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$$
 とした場合, HK は G の部分群ではないことを示せ。

(ii) H, K の少なくとも一方がG の正規部分群であるならば HK は G の部分群になることを示せ。

11. アーベル群Gの任意の部分群はGの正規部分群であることを示せ。

12. (i)
$$i := \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix}, \quad j := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \operatorname{GL}_2(\mathbb{C})$$
 とおくとき、
$$i^4 = e := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i^2 = j^2 = -e, \quad ji = i^3j$$

が成り立つことを示せ。

- (ii) $\operatorname{GL}_2(\mathbb{C})$ の中で i,j が生成する部分群 Q のすべての元を e,i,j を適当に用いてかけ (この Q を四元数群とよぶ)。 Q はアーベル群であるか?
- **13.** (i) 四元数群 Q の中心 Z(Q) を求めよ。
- (ii) Q の部分群をすべて求め、さらにそのすべてがQ の正規部分群であることを確かめよ (全ての部分群が正規部分群でも、その群はアーベル群とは限らない例である)。
- **14.** $x, y \in G$ に対して $xyx^{-1}y^{-1} \in G$ を x, y の交換子とよぶ。また交換子全体が生成する G の部分群を G の交換子群とよんで [G,G] とかく:

$$[G,G]:=\langle xyx^{-1}y^{-1}\mid x,y\in G\rangle$$

- (i) [G,G] の各生成元 $xyx^{-1}y^{-1}$ の $g \in G$ による共役 $g(xyx^{-1}y^{-1})g^{-1}$ について考えることによって, $[G,G] \triangleleft G$ であることを示せ。
- (ii) \mathfrak{S}_3 の交換子群 $[\mathfrak{S}_3,\mathfrak{S}_3]$ を定義に基づいてもとめよ。