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Abstract. For an elliptic curve E over Q, putting K = Q(E[p]) which is the
p-th division field of E for an odd prime p, we study the ideal class group ClK
of K as a Gal(K/Q)-module. More precisely, for any j with 1 ⩽ j ⩽ p − 2, we
give a condition that ClK ⊗Fp has the symmetric power Symj E[p] of E[p] as its
quotient Gal(K/Q)-module, in terms of Bloch-Kato’s Tate-Shafarevich group of
Symj VpE. Here VpE denotes the rational p-adic Tate module of E. This is a
partial generalization of a result of Prasad and Shekhar for the case j = 1.

1. Introduction

The ideal class groups of number fields, the Tate-Shafarevich groups and the Selmer
groups of elliptic curves are central objects to study in number theory. Many people
have noticed the existence of various relations between the class groups and the
Tate-Shafarevich groups, or the class groups and the Selmer groups. For example
in [14], Washington considered a specific elliptic curve defined by the equation of
the simplest cubic, and studied a relation between its 2-Selmer group and the class
group of its 2-division field. In [6], Nekovář studied a relation between the ideal class
groups of certain quadratic fields and the Tate-Shafarevich groups of twists of the
cubic Fermat curve. We note here that they studied the ideal class groups of abelian
number fields over Q. In this paper, for an elliptic curve E over Q and an odd prime
p, we suppose that the group of p-torsion points E[p] of E is irreducible as a Galois
module, and study the ideal class group of the p-th division field K = Q(E[p]) of
E which is a non-commutative Galois extension of Q. More precisely, we relate the
ideal class group ClK of K with Bloch-Kato’s Tate-Shafarevich groups for symmetric
powers of VpE, where VpE denotes the rational p-adic Tate module of E.

Recently Prasad and Shekhar have proved the following theorem on ClK with
K = Q(E[p]), which we first recall. In the situation above, the Galois group
G := Gal(K/Q) acts on the class group ClK. In [10], they considered ClK as a
G-module and proved the following result relating ClK with the Tate-Shafarevich
group X(E/Q) of E over Q.
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Theorem (Prasad-Shekhar). Let ρE,p : Gal(Q̄/Q) → Aut(E[p]) ∼= GL2(Fp) be the
Fp-valued Galois representation associated to E. Suppose that the following condi-
tions on E hold:

(a) E has good reduction at p.
(b) In the case that E has good ordinary reduction at p, ap(E) ≡ 1 (mod p), and

E has no CM over an extension of Qp, then ρE,p is wildly ramified at p.
(c) For every prime number l ̸= p, the Tamagawa number cl(E/Ql) of E/Ql is

prime to p.
(d) E[p] is an irreducible Gal(Q̄/Q)-module.

Then the condition dimFp(X(E/Q)[p]) ⩾ 2 implies that the Fp-representation ClK ⊗Fp

of G has E[p] as its quotient representation.

From the above theorem, we see that the Fp-rank of X(E/Q)[p] gives us the
information on ClK ⊗Fp as a G-module. We remark that they also studied in
[10] the condition on which ClK ⊗Fp has E[p] as its quotient representation even
if X(E/Q)[p] = 0.

The main result of this article is an analogy of the above theorem for the symmetric
powers of E[p]. In the following, we further assume that the representation ρE,p is
surjective, so the Galois group G = Gal(K/Q) is isomorphic to GL2(Fp). It is a
well-known fact that any irreducible representation of G = GL2(Fp) in characteristic
p is of the form SymjE[p] ⊗ deti (0 ⩽ j ⩽ p − 1, 0 ⩽ i ⩽ p − 2), where det
denotes the determinant character of GL2(Fp). So taking the above theorem one
step further, we consider the condition on which the Fp-representation ClK ⊗Fp of G
has an irreducible representation SymjE[p] as its quotient representation.

Now we explain our main result. For any j with 1 ⩽ j ⩽ p − 1, we define
V j
p := Symj(VpE) to simplify the notation. One of the key objects in the main result

is Bloch-Kato’s Tate-Shafarevich group XBK
Q (V j

p ) of V j
p whose definition we shall

recall in Definition 2.2 in Section 2. See also [1, Definition 5.1]. The main result of
this article is as follows.

Theorem 1.1. Let p > 3. For any j with 1 ⩽ j ⩽ p− 2, suppose that the following
conditions on E hold:

(a′) E has good reduction at p.
(b′) In the case that E has good ordinary reduction at p, ap(E)j ≡ 1 (mod p),

and E has no CM over an extension of Qp, then ρE,p is wildly ramified at p.
(c′) If E has potentially multiplicative reduction at l ̸= p, then vl(j(E)) is prime to

p, where vl denotes the normalized l-adic valuation and j(E) the j-invariant
of E.

(d′) The representation ρE,p is surjective.
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Then the condition dimFp(X
BK
Q (V j

p )[p]) ⩾ j + 1 implies that the Fp-representation
ClK ⊗Fp of G has SymjE[p] as its quotient representation.

Remark 1.2. The assumptions (a′) in Theorem 1.1 and (a) in the theorem of Prasad
and Shekhar are the same. The assumption (b′) for j = 1 is exactly (b). The assump-
tion (c′) implies the assumption (c) when E has good or split multiplicative reduction
at every prime since we have cl(E/Ql) = −vl(j(E)) when E has split multiplicative
reduction at l. The assumption (d′) also implies the assumption (d). Hence when
j = 1, we can deduce the theorem of Prasad and Shekhar from our Theorem 1.1 if
E has only good or split multiplicative reduction at any prime and the representa-
tion ρE,p is surjective. So interestingly, using Bloch-Kato’s Tate-Shafarevich groups
XBK

Q (V j
p ) for various j other than j = 1, we can get more information about the

structure of ClK ⊗Fp as a G-module.

Remark 1.3. We can generalize the argument in this paper for more general Galois
representations other than SymjE[p]. In Remark 2.3, we explain that we can show
a result analogous to Theorem 1.1 for the Fp-valued Galois representations attached
to modular forms using a similar argument in this article.

We give a sketch of the proof of Theorem 1.1 in Section 2 dividing it into 3 steps.
We prove step 1 in Section 3, step 2 in Section 4 and step 3 in Sections 5 and 6.

2. A sketch of the proof

We mainly follow the strategy of the proof of Prasad and Shekhar in [10]. They
used the classical p-Selmer group Selp(E/Q) but, to treat representations such as
SymjE[p], we have to deal with Bloch-Kato’s Selmer group H1

f which we first recall.

For a field F , GF denotes its absolute Galois group Gal(F/F ). We define T j
p :=

Symj(TpE), Aj
p := V j

p /T
j
p

∼= SymjE[p∞], where TpE is the integral p-adic Tate
module of E. For every prime l, we define a local condition H1

f (Ql, V
j
p ) in H1(Ql, V

j
p )

as {
H1

f (Ql, V
j
p ) := Ker

(
H1(Ql, V

j
p ) → H1(Qur

l , V
j
p )
)

(l ̸= p)

H1
f (Qp, V

j
p ) := Ker

(
H1(Qp, V

j
p ) → H1(Qp, V

j
p ⊗Bcrys)

)
(l = p).

Here Qur
l is the maximal unramified extension of Ql and Bcrys denotes Fontaine’s crys-

talline period ring which is defined in [1, Section 1]. Then we define H1
f (Ql, A

j
p) :=

π
(
H1

f (Ql, V
j
p )
)

for each prime l, where π : H1(Ql, V
j
p ) → H1(Ql, A

j
p) is the homo-

morphism induced by the natural map π : V j
p → Aj

p. We define Bloch-Kato’s Selmer
group for V j

p and Aj
p using these local conditions.
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Definition 2.1. For V j
p = Symj(VpE) and Aj

p = V j
p /T

j
p
∼= SymjE[p∞], we define

Bloch-Kato’s Selmer groups as

H1
f (Q, V j

p ) := Ker

(
H1(Q, V j

p )
∏

Locl−−−−→
∏
l

H1(Ql, V
j
p )

H1
f (Ql, V

j
p )

)
,

H1
f (Q, Aj

p) := Ker

(
H1(Q, Aj

p)
∏

Locl−−−−→
∏
l

H1(Ql, A
j
p)

H1
f (Ql, A

j
p)

)
,

where Locl denotes the restriction of cohomology classes to the decomposition group
at l and the products run over all prime numbers.

The p-part of Bloch-Kato’s Tate-Shafarevich group XBK
Q (V j

p ) is defined in [1,
Definition 5.1] as follows.

Definition 2.2. We define the p-part of Bloch-Kato’s Tate-Shafarevich group for
V j
p (= Symj(VpE)) as

XBK
Q (V j

p ) :=
H1

f (Q, Aj
p)

π(H1
f (Q, V

j
p ))

,

where the cohomology groups H1
f (Q, Aj

p), H
1
f (Q, V j

p ) are defined as in Definition 2.1
and π : H1(Q, V j

p ) → H1(Q, Aj
p) is the canonical homomorphism induced by the

natural map π : V j
p → Aj

p. In other words, XBK
Q (V j

p ) is defined by the exact sequence

0 → π(H1
f (Q, V j

p )) → H1
f (Q, Aj

p) → XBK
Q (V j

p ) → 0.

Now we give a sketch of the proof of Theorem 1.1. In the following argument, we
assume that the conditions (a′), (b′), (c′) and (d′) in Theorem 1.1 hold.

(Step1) We show the restriction map

ResK/Q : H1(Q, SymjE[p]) → H1(K, SymjE[p])G

is an isomorphism where G denotes Gal(K/Q).

For a number field F , we define the unramified cohomology groupH1
ur(F, Sym

jE[p])
as the subgroup of cohomology classes in H1(F, SymjE[p]) which are trivial on the
inertia group at every place of F . Assuming the claim in (Step1), the restriction
ResK/Q induces an injective homomorphism between unramified cohomology groups

ResK/Q : H1
ur(Q, SymjE[p]) → H1

ur(K, Sym
jE[p])G.

Using class field theory, we have H1
ur(K, Sym

jE[p])G = HomG(ClK ⊗Fp, Sym
jE[p]).

Every nontrivial homomorphism in HomG(ClK ⊗Fp, Sym
jE[p]) is surjective since

SymjE[p] is irreducible. Thus the condition H1
ur(Q, SymjE[p]) ̸= 0 implies that
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ClK ⊗Fp has SymjE[p] as its quotient G-module. We will construct nontrivial ele-
ments in H1

ur(Q, SymjE[p]) using Bloch-Kato’s Selmer group in the succeeding steps.

(Step2) We show that the image of H1
f (Q, Sym

jE[p]) in H1(Qur
l , Sym

jE[p]) is zero
for any prime number l ̸= p.

Here the cohomology group H1
f (Q, Sym

jE[p]) is defined as follows. We have an
exact sequence

0 → SymjE[p]
ι−→ Aj

p

×p−→ Aj
p → 0

from which we obtain an exact sequence

0 →
H0(Q, Aj

p)

pH0(Q, Aj
p)

→ H1(Q, SymjE[p])
ι−→ H1(Q, Aj

p)[p] → 0,

where the map ι in the first exact sequence denotes the inclusion. We define the
cohomology group H1

f (Q, Sym
jE[p]) as the inverse image of the p-torsion part of

Bloch-Kato’s Selmer group H1
f (Q, Aj

p)[p] under ι. Assuming the claim in (Step2), for
the restriction map

Resurp : H1
f (Q, SymjE[p]) → H1(Qur

p , Sym
jE[p]),

we have Ker(Resurp ) ⊂ H1
ur(Q, SymjE[p]). Thus it suffices to show Ker(Resurp ) ̸= 0 to

get the main theorem.

(Step3) We study the image of Resurp and prove that dimFp(Im(Resurp )) ⩽ j.

In Definition 2.2, we have an exact sequence
0 → π(H1

f (Q, V j
p )) → H1

f (Q, Aj
p) → XBK

Q (V j
p ) → 0.

Since the group π(H1
f (Q, V j

p )) is p-divisible, the above homomorphism H1
f (Q, Aj

p) →
XBK

Q (V j
p ) is still surjective when restricted on the p-torsion parts. SinceH1

f (Q, Sym
jE[p])

is defined as the inverse image of H1
f (Q, Aj

p)[p] under the surjection ι, we have a
surjective map H1

f (Q, Sym
jE[p]) ↠ XBK

Q (V j
p )[p]. So if we assume the condition

dimFp(X
BK
Q (V j

p )[p]) ⩾ j+1 in Theorem 1.1, then we have dimFp(H
1
f (Q, Sym

jE[p])) ⩾
j + 1. From the claim in (Step3), we have Ker(Resurp ) ̸= 0 and the theorem follows.

Remark 2.3. We can apply the above argument to more general p-adic Galois
representations. For example, the representations attached to modular forms can
be treated. Let f be a normalized new eigen cusp form whose coefficients are in
Q and level prime to p. For this modular form f , we have an associated integral
p-adic Galois representation ρf,p : GQ → AutZp(Tf,p)

∼= GL2(Zp), where Tf,p is
its representation space which is a free Zp module of rank 2. Let ρf,p : GQ →
AutFp(T f,p) ∼= GL2(Fp) be the mod p reduction of ρf,p. We consider twists of these
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representations. For a square-free integer D and j ∈ Z, let ρf,p(j,D) := ρf,p ⊗ χD ⊗
χj
cyc : GQ → AutZp(Tf,p(j,D)) ∼= GL2(Zp) be a twist of ρf,p by a quadratic Dirichlet

character χD associated to D and χj
cyc, where χcyc is the p-adic cyclotomic character.

Let ρf,p(j,D) : GQ → GL2(Fp) be the mod p reduction of ρf,p(j,D) corresponding to
T f,p(j,D) := Tf,p(j,D)⊗Z/p. For the Fp-valued representation ρf,p(j,D), we have a
number field Kf,p,(j,D) corresponding to the kernel of ρf,p(j,D). Let Clf,p,(j,D) be the
ideal class group ofKf,p,(j,D). We can apply the same argument in this article to the p-
adic representation Vf,p(j,D) := Tf,p(j,D)⊗Qp under similar assumptions to those in
Theorem 1.1. Then we can deduce that the condition dimFp(X

BK
Q (Vf,p(j,D))[p]) ⩾ 2

implies that the Fp-representation Clf,p,(j,D) ⊗ Fp of Gal(Kf,p,(j,D)/Q) has T f,p(j,D)
as its quotient representation. Assuming the Bloch-Kato conjecture, we can make
some numerical examples of the above result with some calculations of special values
of L-functions attached to f and various χD. We will describe the details of this
result in our forthcoming paper.

3. Injectivity of the restriction map

In this section, we prove the claim in (Step1) in the previous section.

Proposition 3.1. Suppose the representation ρE,p is surjective. Then the restriction
map

ResK/Q : H1(Q, SymjE[p]) → H1(K, SymjE[p])G

is an isomorphism.

(Proof of Proposition 3.1)
It suffices to show that H1(G, SymjE[p]) = H2(G, SymjE[p]) = 0. We use the

following lemma.

Lemma 3.2. Let G be a finite group and V a finite dimensional representation of
G over a field F of characteristic p. If there is a normal subgroup H of G such that

(1) #H is prime to p
(2) V H = 0

then H i(G, V ) = 0 for all i ⩾ 0.

(Proof of lemma 3.2)
The condition (2) implies H0(G, V ) = 0. We have the inflation-restriction exact

sequence
0 → H1(G/H, V H)

inf−→ H1(G, V )
res−→ H1(H, V )G.

Since V H = 0 and #H is prime to p, the first and the third term in the above sequence
are 0 and we get H1(G, V ) = 0. Since H1(H, V ) = 0, we also have the inflation-
restriction exact sequences for the cohomology groups of higher degree inductively
to get H i(G, V ) = 0 for i ⩾ 0. □
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We go back to the proof of the proposition. Since we assume 1 ⩽ j ⩽ p − 2,
there is an element c ∈ F×

p such that cj ̸= 1. The central element cI acts on E[p]
by multiplication by c, here I denotes the unit matrix in GL2(Fp). Then cI acts on
SymjE[p] by multiplication by cj (̸= 1). Let C be the subgroup of G generated by
cI. Since cI is a central element and c ∈ F×

p , C is a normal subgroup of G and #C
is prime to p. So the subgroup C satisfies the conditions (1), (2) of Lemma 3.2, then
we have H i(G, SymjE[p]) = 0 for i ⩾ 0 and 1 ⩽ j ⩽ p− 2. Hence the injectivity of
ResK/Q : H1(Q, SymjE[p]) → H1(K, SymjE[p])G follows. □

4. The cohomology group H1
f (Q, Sym

jE[p])

Next we show the claim in (Step2) in Section 2.

Proposition 4.1. For a prime l ̸= p, suppose vl(j(E)) is prime to p when E has
potentially multiplicative reduction at l. Then the elements in H1

f (Q, Sym
jE[p]) are

unramified outside p.

(Proof of Proposition 4.1)
Since p is an odd prime, any elements in H1(Q, SymjE[p]) are unramified at the

infinite place of Q automatically.
For every prime number l ̸= p, we have the following commutative diagram

H1
f (Q, Sym

jE[p])
ι //

Resurl

��

H1
f (Q, Aj

p)[p] //

resurl

��

0

0 //
H0(Qur

l , A
j
p)

pH0(Qur
l , A

j
p)

// H1(Qur
l , Sym

jE[p])
ι // H1(Qur

l , A
j
p)[p] // 0.

Here Resurl denotes the restriction of cohomology classes to the inertia at l and ι is
the homomorphism induced by the inclusion SymjE[p] ↪→ Aj

p. What we have to
show is that for any cohomology classes c ∈ H1

f (Q, Sym
jE[p]), we have Resurl (c) = 0.

So it suffices to show H0(Qur
l ,Aj

p)

pH0(Qur
l ,Aj

p)
= 0.

(Case 1) E has good reduction at l.
In this case, SymjE[pn] is unramified at l for any positive integer n. So we have

H0(Qur
l , A

j
p) = (Qp/Zp)

⊕(j+1) to get H0(Qur
l ,Aj

p)

pH0(Qur
l ,Aj

p)
= 0.

(Case 2) E has split multiplicative reduction at l.

In this case, using the result of Tate, we have an isomorphism E(Ql) ∼= Ql
×
/⟨q⟩

as GQl
-modules, here q is the Tate period for E in Ql. Then for a positive integer n,

the group of pn-torsion points E[pn] is isomorphic to a free Z/pn-module generated
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by ζpn and pn
√
q, where ζpn and pn

√
q denote a primitive pn-th root of unity and a

pn-th root of q respectively. So with respect to this basis, GQur
l

acts on E[pn] via(
1 τq,n
0 1

)
,

where τq,n : GQur
l
→ Z/pn is the map defined by g( pn

√
q) = pn

√
q · ζτq,n(g)pn (g ∈ GQur

l
).

For a positive integer n, we compute H0(Qur
l , Sym

jE[pn]) explicitly. First, we fix a
basis of SymjE[pn] over Z/pn as

u0 := ζ⊗j
pn , u1 := ζ⊗j−1

pn ⊗ pn
√
q, . . . , ui := ζ⊗j−i

pn ⊗ pn
√
q⊗i, . . . , uj := pn

√
q⊗j.

Lemma 4.2. For an element x := a0u0 + a1u1 + · · · + ajuj ∈ SymjE[pn] with
ai ∈ Z/pn, the condition x ∈ SymjE[pn]

GQur
l is equivalent to the condition

a0 ∈ Z/pn, a1τq,n(g) = a2τq,n(g) = · · · = ajτq,n(g) = 0 in Z/pn (∀g ∈ GQur
l
).

(Proof of Lemma 4.2)
This can be proved by an explicit calculation. For i with 0 ⩽ i ⩽ j and g ∈ GQur

l
,

we have

g(ui) = g(ζ⊗j−i
pn ⊗ pn

√
q⊗i) = ζ⊗j−i

pn ⊗ (τq,n(g)ζpn + pn
√
q)⊗i =

i∑
k=0

(
i

k

)
τq,n(g)

kui−k.

So for x := a0u0 + a1u1 + · · ·+ ajuj ∈ SymjE[pn], we can deduce that the condition
x ∈ SymjE[pn]

GQur
l is equivalent to the condition

j∑
k=i+1

(
k

i

)
akτq,n(g)

k−i = 0 in Z/pn (0 ⩽ i ⩽ j − 1)(1)

for all g ∈ GQur
l

. When i = j − 1, we have
(

j
j−1

)
ajτq,n(g) = 0 from the equation (1)

to get ajτq,n(g) = 0 since j ⩽ p− 2. When i = j − 2, we have(
j − 1

j − 2

)
aj−1τq,n(g) +

(
j

j − 2

)
ajτq,n(g)

2 = 0

from (1). Since ajτq,n(g) = 0 and j ⩽ p − 2, we also have aj−1τq,n(g) = 0. By
backward induction on i, we can get aiτq,n(g) = 0 for 1 ⩽ i ⩽ j. □

We go back to the proof of Proposition 4.1. If there is an element g ∈ GQur
l

such
that τq,n(g) ∈ (Z/pn)×, then we have a1 = a2 = · · · = aj = 0 and SymjE[pn]

GQur
l ∼=

Z/pn for any n from Lemma 4.2. Thus we haveH0(Qur
l , A

j
p)

∼= Qp/Zp and H0(Qur
l ,Aj

p)

pH0(Qur
l ,Aj

p)
=

0. So we will show in the following that there exists such g ∈ GQur
l

under the assump-
tions in Proposition 4.1. It is a well-known fact that if an elliptic curve E over Ql
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has split multiplicative reduction, then vl(j(E)) = −vl(q) where vl is the normalized
l-adic valuation on Ql and q is the Tate period for E. Since we assume vl(j(E)) is
prime to p, q is not a p-th power in Ql. So we have pn

√
q /∈ Ql for any n ∈ Z>0 and

pn
√
q /∈ Qur

l since vl(q) > 0. Then there exists g ∈ GQur
l

such that τq,n(g) ∈ (Z/pn)×
for any n and the proposition follows in this case.
(Case 3) E has non-split multiplicative reduction at l.

In this case, E has split multiplicative reduction at l over the unramified quadratic
extension F of Ql. So we can imitate the argument in the (Case 2) over F to get the
desired result.
(Case 4) E has additive potentially multiplicative reduction at l.

In this case, E has split multiplicative reduction at a prime above l over a ramified
quadratic extension L of Ql. So there exists some quadratic twist E ′ of the elliptic
curve E, which has split multiplicative reduction at l and for each positive integer
n, as GQl

-modules, we have
E[pn] ∼= E ′[pn]⊗ χ

here χ denotes the ramified quadratic character corresponds to L. Taking the Tate
period q for E ′, for some suitable basis {v1, v2}, we know that the action of GQur

l
on

E[pn] is of the form: (
1 τq,n
0 1

)
⊗ χ

as in the argument in (Case 2). We again fix a basis of SymjE[pn] over Z/pnZ as

u0 := v⊗j
1 , u1 := v⊗j−1

1 ⊗ v2, . . . , ui := v⊗j−i
1 ⊗ v⊗i

2 , . . . , uj := v⊗j
2 .

For an element x := a0u0 + a1u1 + · · ·+ ajuj ∈ SymjE[pn] with ai ∈ Z/pnZ, we can
show that the condition x ∈ SymjE[pn]

GL·Qur
l is equivalent to the condition

a0 ∈ Z/pnZ, a1τq,n(g) = a2τq,n(g) = · · · = ajτq,n(g) = 0 in Z/pn (∀g ∈ GL·Qur
l
)

by the same calculation as in the proof of Lemma 4.2 since χ is trivial on GL·Qur
l

. On
the other hand, we have pn

√
q /∈ Qur

l for any positive integer n by the assumption that
p does not divide vl(q) = −vl(j(E ′)) = −vl(j(E)). We know pn

√
q is also not contained

in L · Qur
l because L · Qur

l /Qur
l is a quadratic extension and p ̸= 2. So there exists

g ∈ GL·Qur
l

such that τq,n(g) ∈ (Z/pn)× for every n and we get a1 = a2 = . . . = aj = 0

as in the argument in (Case 2). Thus we get (SymjE[pn])
GL·Qur

l = Z/pn · u0 and
(SymjE[pn])

GQur
l = (Z/pn · u0)Gal(L/Ql). Let τ denote a generator of the Galois group

Gal(L/Ql). Then τ(u0) = χ(τ)ju0 = (−1)ju0. So we have

SymjE[pn]
GQur

l =

{
0 (j is odd)
Z/pn · u0 (j is even).



10

We have H0(Qur
l ,Aj

p)

pH0(Qur
l ,Aj

p)
= 0 in both cases.

(Case 5) E has additive potentially good reduction at l.
Let ρ : GQ → GL2(Zp) be the representation associated to the integral p-adic Tate

module of E. It is a well-known fact that when E has potentially good reduction
at l, then #ρ(GQur

l
) is finite and its possible prime divisors are only 2 and 3. See

for example, [2, Section 3.3]. So we get p ∤ #ρ(GQur
l
) since we assume p ⩾ 5.

Let ρj : GQ → GLj+1(Zp) be the representation attached to T j
p . Then we have

Ker(ρ) ⊂ Ker(ρj) to get a natural surjection ρ(GQur
l
) ↠ ρj(GQur

l
). Thus we also get

p ∤ #ρj(GQur
l
). This implies that there is an open normal subgroup U of GQur

l
such

that ρj(U) = 0 and [GQur
l
: U ] is prime to p. Then we have the inflation-restriction

exact sequence

0 → H1(GQur
l
/U, (T j

p )
U) → H1(GQur

l
, T j

p ) → H1(U, T j
p )

GQur
l
/U → H2(GQur

l
/U, (T j

p )
U).

Since the order of GQur
l
/U is prime to p, we have H i(GQur

l
/U, (T j

p )
U) = 0 for i = 1, 2

and obtain an isomorphism

H1(GQur
l
, T j

p )
∼= H1(U, T j

p )
GQur

l
/U

induced by the restriction map. We know that U acts trivially on T j
p to getH1(U, T j

p ) =

Hom(U, T j
p ). Since T j

p is torsion-free, this group Hom(U, T j
p ) and of course its sub-

groupH1(U, T j
p )

GQur
l
/U are torsion-free. On the other hand, we have an exact sequence

0 → T j
p → V j

p → Aj
p → 0 from which we also have an exact sequence

0 → (T j
p )

GQur
l ⊗Qp/Zp → (Aj

p)
GQur

l → H1(GQur
l
, T j

p )[p
∞] → 0.

Since H1(GQur
l
, T j

p )[p
∞] = 0 from the above argument, we have (T j

p )
GQur

l ⊗Qp/Zp
∼=

(Aj
p)

GQur
l and (Aj

p)
GQur

l = H0(GQur
l
, Aj

p) is divisible. Thus H0(Qur
l ,Aj

p)

pH0(Qur
l ,Aj

p)
= 0. We have

proved the Proposition 4.1 in all cases. □

5. The image of the restriction map Resurp

We finally prove the following proposition which is the claim in (Step 3).

Proposition 5.1. For the restriction map

Resurp : H1
f (Q, SymjE[p]) → H1(Qur

p , Sym
jE[p]),

we have
dimFp(Im(Resurp )) ⩽ j.
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For the above restriction map, we have a decomposition

Resurp : H1
f (Q, SymjE[p])

Locp−−→ H1(Qp, Sym
jE[p])

ResQur
p /Qp−−−−−−→ H1(Qur

p , Sym
jE[p]).

Here the homomorphism Locp is the restriction of cohomology classes to the decom-
position group at p, and ResQur

p /Qp is the restriction of them to the inertia group at
p. So first we study the image of Locp. We have the following commutative diagram

H1
f (Q, Sym

jE[p])
ι //

Locp

��

H1
f (Q, Aj

p)[p] //

locp

��

0

0 //
H0(Qp, A

j
p)

pH0(Qp, A
j
p)

// H1(Qp, Sym
jE[p])

ι // H1(Qp, A
j
p)[p] // 0.

So we have Im(Locp) ⊂ ι−1(H1
f (Qp, A

j
p)[p]) and there is an exact sequence

0 →
H0(Qp, A

j
p)

pH0(Qp, A
j
p)

→ ι−1(H1
f (Qp, A

j
p)[p])

ι−→ H1
f (Qp, A

j
p)[p] → 0.(2)

So we have an inequality

dimFp(Im(Locp)) ⩽ dimFp

(
H0(Qp, A

j
p)

pH0(Qp, A
j
p)

)
+ dimFp

(
H1

f (Qp, A
j
p)[p]

)
.(3)

The dimension of H1
f (Qp, A

j
p)[p] can be computed by p-adic Hodge theory. We use

the following fact in [8, Section 9.2.2].

Proposition 5.2. Let V be a p-adic representation of GQp and
DdR(V ) := (V ⊗BdR)

GQp ,D+
dR(V ) := (V ⊗B+

dR)
GQp , where BdR is the Fontaine’s de

Rham period ring. If V is a de Rham representation, then

dimQp(H
1
f (Qp, V )) = dimQp(DdR(V )/D+

dR(V )) + dimQpH
0(Qp, V ).(4)

The p-adic representation VpE is crystalline with Hodge-Tate weight {0,1} because
of the assumption that E has good reduction at p. Since the functor DdR is compati-
ble with taking symmetric powers, we can compute that dimQp(DdR(V

j
p )/D

+
dR(V

j
p )) =

(j + 1)− 1 = j. By the equality (4) and the definition of H1
f (Qp, A

j
p), we have

dimFp

(
H1

f (Qp, A
j
p)[p]

)
= j + dimQpH

0(Qp, V ).(5)

From (3), (5), we have

dimFp(Im(Locp)) ⩽ dimFp

(
H0(Qp, A

j
p)

pH0(Qp, A
j
p)

)
+ j + dimQpH

0(Qp, V ).(6)
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In the following, we compute the first term and the third term of the right-hand side
of (6).

Proposition 5.3. Suppose that E has good supersingular reduction at p. Then

dimFp

(
H0(Qp, A

j
p)

pH0(Qp, A
j
p)

)
= dimQpH

0(Qp, V ) = 0.

(Proof of Proposition 5.3)
Since the computations of dimFp

H0(Qp,A
j
p)

pH0(Qp,A
j
p)

and dimQpH
0(Qp, V

j
p ) are very similar,

we only describe precise computations for dimFp
H0(Qp,A

j
p)

pH0(Qp,A
j
p)

.
If E has good supersingular reduction at p, for every positive integer n, E[pn]

is isomorphic to the group of the pn-torsion points of the Lubin-Tate formal group
associated to a prime −p over an unramified quadratic extension F of Qp ([3, Propo-
sition 8.6]). So E[pn] is a free OF/p

n-module of rank 1 and we take its basis zn
over OF/p

n, where OF denotes the ring of integers of F . The Galois group GQur
p

acts on zn via the character χLT := χLT mod pn. Here χLT : GQur
p

↠ O×
F is the

Lubin-Tate character associated to the prime element −p of F . We take yn := z⊗j
n

as a basis of SymjE[pn] over OF/p
n. For an element x = ayn (a ∈ OF/p

n) in
SymjE[pn], the condition that x ∈ SymjE[pn]

GQur
p is equivalent to the condition

that a(χLT
j(g) − 1) = 0 for all g ∈ GQur

p
. Since we assume j < p − 1, there exists

g ∈ GQur
p

such that χLT
j(g) − 1 ∈ (OF/p

n)× and we get a = 0. Hence we have
SymjE[pn]GQp = SymjE[pn]

GQur
p = 0 for all n and H0(Qp, A

j
p) = SymjE[p∞]GQp = 0.

□
Here we introduce some notations for the good ordinary reduction case. If E has

good ordinary reduction at p, we have an exact sequence

0 → TpÊ → TpE → TpẼp → 0,

where Ẽp is the mod p reduction of the curve E and Ê is the kernel of the reduction.
We take a basis {v1, v2} of TpE as a Zp-module such that TpÊ = Zpv1 and we have
the representation ρE : GQp → GL2(Zp) with respect to this basis. For each positive
integer n, {v1 mod pn, v2 mod pn} form a basis of the free Z/pn-module E[pn] and
this basis yields the representation ρE,pn : GQp → GL2(Z/pn). The action of g ∈ GQp

on TpE can be written as the matrix(
χcyc(g)ψ

−1(g) u(g)
0 ψ(g)

)
.(7)

Here χcyc denotes the p-adic cyclotomic character, ψ is the unramified character
determined by the action of GQp on TpẼp, and u(g) ∈ Zp. Also the action of g ∈ GQp
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on E[pn] is written as (
χpn(g)ψ

−1
n (g) un(g)

0 ψn(g)

)
.(8)

Here χpn denotes the mod pn cyclotomic character, ψn is the mod pn reduction of ψ,
and un(g) = u(g) mod pn.

Proposition 5.4. Suppose that E has good ordinary reduction at p. Consider the
following 4 cases.

(A) ajp ̸≡ 1 mod p.
(B) ajp ≡ 1 mod p, E has CM over an extension of Qp.
(C) ajp ≡ 1 mod p, E does not have CM over an extension of Qp and ρE,p(GQp)

is not diagonalizable.
(D) ajp ≡ 1 mod p, E does not have CM over an extension of Qp, ρE,p(GQp) is

diagonalizable.

Then, in each case, the dimensions dimFp
H0(Qp,A

j
p)

pH0(Qp,A
j
p)

and dimQpH
0(Qp, V

j
p ) are as in

the table below.
XXXXXXXXXXXXCase

dimension
dimFp

H0(Qp,A
j
p)

pH0(Qp,A
j
p)

dimQpH
0(Qp, V

j
p )

(A) 0 0
(B) 1 0
(C) 0 0
(D) 1 0

(Proof of Proposition 5.4)
Here we also describe precise computations only for dimFp

H0(Qp,A
j
p)

pH0(Qp,A
j
p)

. First we
assume that E has CM over some extension of Qp. For each positive integer n, we
take v1 := v1 mod pn, v2 := v2 mod pn as a basis of E[pn] over Z/pn, and we take a
basis of SymjE[pn] over Z/pn as follows:

w0 := v1
⊗j, w1 := v1

⊗j−1 ⊗ v2, . . . , wi := v1
⊗j−i ⊗ v2

⊗i, . . . , wj := v2
⊗j.

Since E has CM, we may assume that u(g) in (8) is 0 for all g ∈ GQp . Then we have

g(wi) = g(v1
⊗j−i ⊗ v2

⊗i) = (χpn(g)v1)
⊗j−i ⊗ v2

⊗i = χpn(g)
j−iwi (g ∈ GQur

p
).

For an element x := a0w0+a1w1+ · · ·+ajwj (ai ∈ Z/pn) in SymjE[pn], the condition
x ∈ SymjE[pn]

GQur
p is equivalent to the condition

a0χpn(g)
j = a0, a1χpn(g)

j−1 = a1, . . . , aj−1χpn(g) = aj−1, aj ∈ Z/pn (∀g ∈ GQur
p
).
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Since j ⩽ p− 2, for each i there exists g ∈ GQur
p

such that χpn(g)
j−i − 1 ∈ (Z/pn)×.

Thus we have SymjE[pn]
GQur

p = Z/pn · wj to get SymjE[pn]GQp = (Z/pn · wj)
Frobp=1.

We know Frobp acts on wj via the character ψj
n = ψj mod pn in (8). Since ψ is an

infinite order character, there exists a non-negative integer s such that ψ(Frobp)
j ≡ 1

mod ps and ψ(Frobp)
j ̸≡ 1 mod ps+1. Then

SymjE[pn]GQp =

{
Z/pnwj (n ⩽ s)
pn−sZ/pnwj (n ⩾ s+ 1).

Especially if s = 0, in other words if ajp ≡ ψ(Frobp)
j ̸≡ 1 mod p, then we have

SymjE[pn]GQp = 0 for all n, and we get

(Aj
p)

GQp ∼=

 0 (ajp ̸≡ 1 mod p)
1

ps
Z/Z (1 ⩽ s <∞).

Thus we get the desired result in the case (B) and partially in the case (A) when E
has CM.

Next we consider the case where E does not have CM over an extension of Qp. In
this case, there exists a non-negative integerm such that ρE,pm(GQp) is diagonalizable
and ρE,pm+1(GQp) is not diagonalizable. For each n, we take the basis w0, w1, . . . , wj

for SymjE[pn] over Z/pn as in the previous argument.
For any n ⩽ m, we may assume un(g) = 0 in (8) for all g ∈ GQur

p
. So we can imitate

the argument in the case where E has CM, and get SymjE[pn]GQp = (Z/pn·wj)
Frobp=1.

For n ⩾ m+ 1, we have un(GQp) ̸= 0 and un(GQp) ⊂ pmZ/pnZ. We first consider
SymjE[pn]

GQab
p . With respect to the basis {v1, v2}, the group GQab

p
acts on E[pn] via(

1 un(g)
0 1

)
.

For an element x := a0w0+a1w1+ · · ·+ajwj (ai ∈ Z/pn) in SymjE[pn], we can show
that the condition x ∈ SymjE[pn]

GQab
p is equivalent to the condition

a0 ∈ Z/pnZ, a1un(g) = a2un(g) = . . . = ajun(g) = 0 (∀g ∈ GQab
p
)(9)

by exactly the same computation to the one in the proof of Lemma 4.2 if we think
un as τq,n. We have un(GQur

p
) = pmZ/pnZ by the definition of the integer m and [5,

Lemma 3.5]. Here we study the image of GQab
p

under the map un.

Lemma 5.5. For n ⩾ m+ 1, un(GQab
p
) = pmZ/pnZ.

(Proof of Lemma 5.5)
When n = m + 1, um+1(GQab

p
) = pmZ/pm+1Z or 0 since um+1(GQab

p
) forms an

additive group. If um+1(GQab
p
) = 0, then ρE,m+1(GQur

p
) is abelian but we can show
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that this can not be happen using [5, Lemma 3.5] and the definition of the integer
m. Thus we have um+1(GQab

p
) = pmZ/pm+1Z. For n ⩾ m + 1, taking compatible

bases of E[pn] for all n as in [5, Lemma 3.5], we have un(g) ≡ um+1(g) (mod pm+1)
for g ∈ GQab

p
and obtain un(GQab

p
) = pmZ/pnZ(= un(GQur

p
)). □

Hence if x ∈ SymjE[pn]
GQab

p , we have a1, a2, . . . , aj ∈ pn−mZ/pnZ from (9) and

a1un(g) = a2un(g) = . . . = ajun(g) = 0 in Z/pnZ(10)

still for g ∈ GQur
p

since un(GQur
p
) = pmZ/pnZ.

We next consider a condition on a0, a1, . . . , aj such that x = a0w0 + · · · + ajwj ∈
SymjE[pn]

GQur
p . For g ∈ GQur

p
and i with 1 ⩽ i ⩽ j,

g(aiwi) = aig(v1
⊗j−i ⊗ v2

⊗i) = ai(χpn(g)v1)
⊗j−i ⊗ (un(g)v1 + v2)

⊗i

= aiχ
j−i
pn (g)v1

⊗j−i ⊗

(
i∑

k=0

(
i

k

)
un(g)

i−kv1
⊗i−k ⊗ v2

⊗k

)
= aiχ

j−i
pn (g)v1

⊗j−i ⊗ v2
⊗i = aiχ

j−i
pn (g)wi.

Here we use (10) in the fourth equality for i with 1 ⩽ i ⩽ j since x ∈ SymjE[pn]
GQur

p ⊂
SymjE[pn]

GQab
p . For i = 0, we also have g(a0w0) = a0χ

j
pn(g)w0 for g ∈ GQur

p
. So the

condition x ∈ SymjE[pn]
GQur

p is equivalent to the condition

a0χpn(g)
j = a0, . . . , aj−1χpn(g) = aj−1, aj ∈ pn−mZ/pnZ(11)

for all g ∈ GQur
p

. Again we can take g ∈ GQur
p

such that χpn(g)
j−i − 1 ∈ (Z/pn)× for

each i to get a0 = a1 = . . . = aj−1 = 0. Thus we get SymjE[pn]GQp = (pn−mZ/pn ·
wj)

Frobp=1 for n ⩾ m+ 1.
If ρE,p(GQp) is not diagonalizable, in other words if m = 0, SymjE[pn]GQp =

SymjE[pn]
GQur

p = 0 for all n from the above computations and (Aj
p)

GQp = 0. Thus
we get the desired result in the case (C) and partially in the case (A).

If m ⩾ 1, from the above argument, we have

SymjE[pn]GQp =

{
(Z/pnwj)

Frobp=1 (n ⩽ m)
(pn−mZ/pnZ · wj)

Frobp=1 (n ⩾ m+ 1).

We know that Frobp acts on SymjE[pn]
GQur

p via the character ψj
n = ψj mod pn for

all n. We again take a non-negative integer s such that ψ(Frobp)
j ≡ 1 mod ps and

ψ(Frobp)
j ̸≡ 1 mod ps+1. If s = 0, in other words if ajp ̸≡ 1 mod p, then we have

SymjE[pn]GQp = 0 for all n. If s > 0 we have

SymjE[pn]GQp ∼=
{

Z/pnwj (n ⩽ min{m, s})
pn−min{m,s}Z/pnwj (n > min{m, s}).
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Thus we get

(Aj
p)

GQp ∼=

 0 (ajp ̸≡ 1 mod p)
1

pmin{m,s}Z/Z (1 ⩽ s <∞).

So finally, we have the desired result in the case (D) and the case (A) completely.
□

6. Non-injectivity of the restriction map ResQur
p /Qp

From (6) and Proposition 5.4, we deduce Proposition 5.1 in the case (A) and (C),
and the main theorem follows. Since we assume (b′) in Theorem 1.1, (D) in the
table in Proposition 5.4 does not occur. For the case (B), we prove the following
proposition.

Proposition 6.1. In the case (B), the restriction map

ResQur
p /Qp : ι

−1(H1
f (Qp, A

j
p)[p]) → H1(Qur

p , Sym
jE[p])

is not injective.

From this proposition, also in the case (B), we can deduce Proposition 5.1 and the
main theorem follows. Thus the main theorem follows in all possible cases (A), (B)
and (C) under the assumptions in Theorem 1.1.

(Proof of Proposition 6.1)
We have the following commutative diagram

0 //
H0(Qp, A

j
p)

pH0(Qp, A
j
p)

��

// ι−1(H1
f (Qp, A

j
p)[p])

ResQur
p /Qp

��

0 //
H0(Qur

p , A
j
p)

pH0(Qur
p , A

j
p)

// H1(Qur
p , Sym

jE[p]).

From the table in Proposition 5.4, we have dimFp

(
H0(Qp,A

j
p)

pH0(Qp,A
j
p)

)
= 1 in the case (B).

Since we have already computed SymjE[p∞]
GQur

p in the case in the proof of Proposi-
tion 5.4, we also get dimFp

(
H0(Qur

p ,Aj
p)

pH0(Qur
p ,Aj

p)

)
= 0. So by the above commutative diagram,

the dimension of the kernel of ResQur
p /Qp is at least 1. Thus the proposition follows.

□
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