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Abstract

A bipartite graph is said to be symmetric if it has symmetry of reflecting two vertex
sets. This paper investigates matching structure of symmetric bipartite graphs. We first
apply the Dulmage-Mendelsohn decomposition to a symmetric bipartite graph. The resulting
components, which are matching-covered, turn out to have symmetry. We then decompose a
matching-covered bipartite graph via an ear decomposition, which is a sequence of subgraphs
obtained by adding an odd-length path repeatedly. We show that, if a matching-covered
bipartite graph is symmetric, an ear decomposition can retain symmetry by adding no more
than two paths.

As an application of these decompositions to combinatorial matrix theory, we present a
natural generalization of Pólya’s problem. We introduce the problem of deciding whether
a rectangular {0, 1}-matrix has a signing that is totally sign-nonsingular or not, where a
rectangular matrix is totally sign-nonsingular if the sign of the determinant of each submatrix
with the entire row set is uniquely determined by the signs of the nonzero entries. We show
that this problem can be solved in polynomial time with the aid of the matching structure
of symmetric bipartite graphs. In addition, we provide a characterization of this problem in
terms of excluded minors.

1 Introduction

Let G = (U, V ; E) be a simple bipartite graph with two disjoint vertex sets U = {u1, . . . , um},
V = {v1, . . . , vn}, and edge set E ⊆ U × V . A bipartite graph G = (U, V ;E) with |U | = |V |
is said to be symmetric if (uj , vi) ∈ E holds for any (ui, vj) ∈ E. A symmetric bipartite graph
is associated with a combinatorially symmetric matrix [16], where a square matrix A = (aij)
of order n is said to be combinatorially symmetric if aij ̸= 0 implies aji ̸= 0 for any two
distinct indices i, j. Combinatorially symmetric matrices were studied in the contexts of matrix
completion problems [7] and qualitative matrix theory [8, 10, 25, 27]. Another work related to
symmetric bipartite graphs is given by Gabow [5], who discussed an upper degree-constrained
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partial orientation of graphs. This problem can be viewed as the problem of finding a degree-
constrained maximum subgraph that has at most one edge of (ui, vj) and (uj , vi) for any indices
i, j in a symmetric bipartite graph.

For a bipartite graph G = (U, V ; E), an edge subset M ⊆ E is a matching if no two edges
in M share a common vertex incident to them. A matching is perfect if |M | = |U | = |V |.
For an edge subset F ⊆ E, we denote by F⊤ = {(uj , vi) | (ui, vj) ∈ F} the transpose of F .
The matching structure of a symmetric bipartite graph has symmetry, since M is a matching if
and only if so is M⊤. This paper aims at investigating decompositions related to the matching
structure of symmetric bipartite graphs.

We first deal with the Dulmage-Mendelsohn decomposition (the DM-decomposition for short) [3,
4]. We say that a connected graph is matching-covered if every edge is contained in some perfect
matching. The DM-decomposition is a unique decomposition of a bipartite graph with respect
to the maximum matchings, which yields the matching-covered subgraphs and the remaining
subgraphs. The subgraphs obtained by the DM-decomposition are called the DM-components.
We show that, if a bipartite graph is symmetric, then each DM-component is the transpose
of some DM-component, where the transpose of a subgraph H = (U, V ; F ) is the subgraph
H⊤ = (U, V ; F⊤). A subgraph H = (U, V ; F ) is called symmetric if F = F⊤. Our result means
that a symmetric bipartite graph can be assembled from symmetric matching-covered subgraphs
and pairs of subgraphs whose union is symmetric.

Each of DM-components, i.e., a matching-covered bipartite graph, is characterized by the
ear decomposition [15]. An elementary path P of odd length is an ear of a subgraph G′ if G′

contains both of the end vertices of P , but no interior vertices and no edges. We denote by
G′ + P the subgraph obtained from G′ by adding an ear P . For a subgraph G′ of a graph G, an
ear decomposition starting from G′ is a sequence G0, G1, . . . , Gk of subgraphs such that G0 = G′,
Gk = G, and Gi = Gi−1 +Pi for some ear Pi of Gi−1 for i = 1, . . . , k. It is known that a bipartite
graph has an ear decomposition starting from an edge if and only if it is matching-covered.

Assume that a matching-covered bipartite graph G is symmetric. The symmetry of G mo-
tivates us to find an ear decomposition having symmetry. Unfortunately, G does not always
have an ear decomposition in which every subgraph is itself symmetric. In fact, the complete
bipartite graph with two vertex sets of size three has no such ear decomposition. Thus we may
have to add more than one ears to maintain symmetry in an ear decomposition. We will see,
however, that we can retain symmetry by adding no more than two ears. An ear decomposi-
tion G0, G1, . . . , Gk starting from G0 is called symmetric if one of two consecutive subgraphs is
symmetric, i.e., Gl−1 or Gl is symmetric for l = 1, . . . , k. We show that, if G is symmetric, G

has a symmetric ear decomposition starting from an edge or a crossing pair, where a crossing
pair is a pair of edges (ui, vj) ∈ E and (uj , vi) ∈ E for some distinct i, j ∈ N = {1, . . . , n}. In
addition, given a perfect matching, we describe a linear-time algorithm for finding a symmetric
ear decomposition.

As an application of these decompositions to combinatorial matrix theory, we discuss a gener-
alization of Pólya’s problem. A square matrix is said to be term-nonsingular if the determinant
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has a nonzero expansion term. A term-nonsingular matrix is sign-nonsingular if all nonzero
expansion terms of the determinant have the same sign. For a {0, 1}-matrix A, a signing of A is
a {0,±1}-matrix obtained from A by replacing some ones with minus ones. Pólya’s problem is
the problem of deciding whether a given square {0, 1}-matrix has a sign-nonsingular signing or
not. Such a sign-nonsingular signing is called a Pólya matrix. Pólya’s problem has a plenty of
polynomial-time equivalent problems [1, 11, 15, 17, 22]. Robertson, Seymour, and Thomas [21]
devised a polynomial-time algorithm for Pólya’s problem. Excellent surveys on Pólya’s problem
can be found in [18, 26].

An m× n matrix with m ≤ n is said to be totally sign-nonsingular if each term-nonsingular
submatrix of order m is sign-nonsingular. Totally sign-nonsingular matrices play an important
role in the sign-solvability of linear systems of equations [2, 12, 13, 24], linear programming [6],
and linear complementarity problems [9]. Total sign-nonsingurality can be recognized in poly-
nomial time by testing sign-nonsingularity of a related symmetric matrix [6].

In this paper, we introduce the problem of deciding whether a rectangular {0, 1}-matrix has
a totally sign-nonsingular signing or not. If a square matrix is term-nonsingular, this problem
is in fact Pólya’s problem. It follows from [6] that this problem can be reduced to the problem
of deciding whether a related symmetric matrix has a symmetric Pólya matrix with positive
diagonals or not. We show that a symmetric Pólya matrix with a nonzero diagonal entry can be
obtained in polynomial time with the aid of the DM-decomposition and ear decomposition for
symmetric bipartite graphs. This implies that a totally sign-nonsingular signing can be found
in polynomial time.

In addition, we characterize a matrix which has a totally sign-nonsingular signing in terms
of excluded minors. Let Bm,n denote the m × n matrix all of whose entries are equal to one.
Little [14] proved that, for a square matrix, B3,3 is the only obstruction to have a Pólya matrix (cf.
[20]). By analogy with this result, we show that a rectangular matrix A has a totally sign-
nonsingular signing if and only if A contains none of B3,3, B2,3, and the other specific matrix,
as we will see in Section 6. Our result includes a forbidden configuration characterization for
S-matrices by Brualdi and Shader [2] as a special case, where an S-matrix is an m × (m + 1)
matrix all of whose submatrices of order m are sign-nonsingular.

Before closing this section, we give some definitions and notations. For an m × n matrix
A = (aij), we define the associated bipartite graph G(A) = (U, V ;E) with vertex sets U =
{u1, . . . , um}, V = {v1, . . . , vn}, and edge set E = {(ui, vj) | aij ̸= 0, ui ∈ U, vj ∈ V }. Then A is
combinatorially symmetric if and only if G(A) is symmetric. A matrix A is term-nonsingular if
and only if G(A) has a perfect matching.

Let G = (U, V ; E) be a bipartite graph. For vertex subsets I ⊆ U and J ⊆ V , we denote by
G[I, J ] the subgraph induced by vertex subsets I and J . For a subgraph H, we denote by U(H)
and V (H) the sets of vertices in H belonging to U and V , respectively, and by E(H) the set of
edges in H. Let G\H be the graph obtained from G by deleting U(H) and V (H) together with
edges incident to them. For an edge subset F ⊆ E, we denote by U(F ) and V (F ) the set of the
end vertices of F which belong to U and V , respectively. For a matching M , we say that a path
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P of G is M -alternating if the elements of P alternate between elements of M and E \M along
P . For two edge subsets F1 and F2, the symmetric difference (F1 \F2)∪ (F2 \F1) is denoted by
F1△F2. Notice that, for an M -alternating path P with a matching M , the symmetric difference
M△E(P ) is also a matching.

This paper is organized as follows. Section 2 discusses the DM-decomposition of symmetric
bipartite graphs. In Section 3, we present the ear decomposition of matching-covered symmetric
bipartite graphs. Sections 4 to 6 describe applications of results in Sections 2 and 3. Section
4 discusses Pólya matrices of combinatorially symmetric matrices. In Section 5, we introduce
the problem of a totally sign-nonsingular signing of a rectangular matrix and discuss its com-
putational complexity. In Section 6, we characterize matrices having a totally sign-nonsingular
signing in terms of excluded minors.

2 DM-Decomposition of Symmetric Bipartite Graphs

In this section, we discuss symmetry of the DM-components of a symmetric bipartite graph.
We first review the Dulmage-Mendelsohn decomposition of a bipartite graph following the

exposition in [19]. Let G = (U, V ; E) be a bipartite graph with W = U ∪ V . A pair (I, J) of
I ⊆ U and J ⊆ V is said to be a cover if no edges exist between U \I and V \J . The size of a cover
(I, J) is defined to be |I|+ |J |. It is well-known that the maximum size of matchings is equal to
the minimum size of covers. For convenience, we define the cut function κ : 2W → Z∪ {+∞} as
follows:

κ(X) =

{
|U \ X| + |V ∩ X|, if (U \ X, V ∩ X) is a cover,
+∞, otherwise.

Note that κ(X) is finite if and only if (U \ X,V ∩ X) is a cover. The function κ satisfies
submodularity, i.e.,

κ(X) + κ(Y ) ≥ κ(X ∩ Y ) + κ(X ∪ Y ), ∀X, Y ⊆ W.

The set of minimizers of a submodular function forms a distributive lattice. Hence there exist
unique minimal and maximal minimizers.

Let L be the set of minimizers of κ. Take a maximal ascending chain X0 ( X1 ( · · · ( Xk

in L, where k is a nonnegative integer, and X0 and Xk are the unique minimal and maximal
minimizers, respectively. We put

W0 = X0,

Wl = Xl \ Xl−1, l = 1, . . . , k,

W∞ = W \ Xk.

(1)

The family of the difference sets {Wl | l = 0, 1, . . . , k,∞} is uniquely determined independently
of the choice of the chain by a Jordan-Hölder type theorem. Define a partial order ≼ on
{Wl | l = 1, . . . , k} by

Wh ≼ Wl ⇐⇒ [Wl ⊆ X ∈ L ⇒ Wh ⊆ X].
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Moreover, we extend this partial order to that on {Wl | l = 0, 1, . . . , k,∞} by defining

W0 ≼ Wl ≼ W∞, l = 1, . . . , k.

The pair of {Wl | l = 0, 1, . . . , k,∞} and ≼ defined above is called the Dulmage-Mendelsohn
decomposition of G. Let Ul = Wl ∩ U and Vl = Wl ∩ V for l = 0, 1, . . . , k,∞. The subgraphs
G[Ul, Vl] (l = 0, 1, . . . , k,∞) are called the DM-components. Note that the subgraph G[Uh, Vl]
has no edges for 0 ≤ l < h ≤ ∞.

We say that a bipartite graph with nonempty vertex set is DM-irreducible if it cannot be
decomposed into more than one nonempty component via the DM-decomposition. Suppose that
a bipartite graph with no vertices is DM-irreducible. Assume that |U | ≤ |V |. Since the DM-
irreducibility means that L contains no proper subsets of W , the graph G is DM-irreducible if
and only if κ(X) ≥ |U | + 1 for any nonempty proper subset X ( W . Thus a bipartite graph
G = (U, V ; E) with |U | = |V | is DM-irreducible if and only if it is matching-covered.

We now obtain the following theorem for a symmetric bipartite graph. For a vertex subset
X ⊆ W , we denote X⊤ = {vi ∈ V | ui ∈ X ∩ U} ∪ {ui ∈ U | vi ∈ X ∩ V }.

Theorem 2.1. Let G = (U, V ;E) be a symmetric bipartite graph, and ({Wl},≼) be the DM-
decomposition obtained by a maximal ascending chain X0 ( X1 ( · · · ( Xk in L. Then the
DM-decomposition satisfies the following.

(1) For each DM-component G[Ul, Vl] (l = 0, 1, . . . , k,∞), there exists a DM-component G[Uh, Vh]
which is the transpose of G[Ul, Vl].

(2) It holds that Wl ≼ Wh if and only if W⊤
l ≽ W⊤

h .

(3) If Wl = W⊤
l and Wh = W⊤

h (l ̸= h), then there exists no partial order between Wl and Wh.

Proof. Since G is symmetric, (U \ X,V ∩ X) is a cover if and only if so is (U ∩ X⊤, V \ X⊤).
Hence κ(X) = κ(W \ X⊤) holds for any X ⊆ W . This implies that X ∈ L if and only if
W \ X⊤ ∈ L. Hence X0 ( X1 ( · · · ( Xk is a maximal ascending chain in L if and only if
W \ X⊤

k ( W⊤ \ X⊤
k−1 ( · · · ( W⊤ \ X⊤

0 is that in L. As (1), this ascending chain in L yields
the partition {W ′

l | l = 0, 1, . . . , k,∞} of W :

W ′
0 = W⊤

∞,

W ′
l = (W \ X⊤

l−1) \ (W \ X⊤
l ) = W⊤

l , l = 1, . . . , k,

W ′
∞ = W \ (W \ X⊤

0 ) = W⊤
0 .

By a Jordan-Hölder type theorem, this coincides with {Wl | l = 0, 1, . . . , k,∞}. Therefore,
for each DM-component G[Ul, Vl] (l = 0, 1, . . . , k,∞), the subgraph G[V ⊤

l , U⊤
l ] is also a DM-

component of G, where V ⊤
l = W⊤

l ∩ U and U⊤
l = W⊤

l ∩ V . Thus the statement (1) holds.
To prove (2), assume that Wl ≼ Wh. Let X ∈ L be a minimizer such that W⊤

l ⊆ X. Then
Wl ∩ (W \X⊤) = ∅. Since W \X⊤ ∈ L, it holds that Wh ⊆ X⊤ or Wh ⊆ W \X⊤. By Wl ≼ Wh,
we have Wh ⊆ X⊤. This implies that W⊤

l ≽ W⊤
h . The converse holds in a similar way.

The statement (3) immediately follows from (2).
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The concept of the DM-decomposition is applied to matrices. Let A be a matrix and G(A)
be the associated bipartite graph. The DM-decomposition of a matrix A is the partition of rows
and columns obtained by the DM-decomposition of G(A). For I ⊆ U and J ⊆ V , the submatrix
corresponding to G[I, J ] is denoted by A[I, J ]. Since A[Uh, Vl] = O for 0 ≤ l < h ≤ ∞, the
matrix A can be rearranged into a block triangular matrix by row and column permutations. The
DM-decomposition can be computed efficiently with the aid of bipartite matching algorithms.
Note that, if A[Uh, Vl] ̸= O for 1 ≤ h < l ≤ k then Wh ≼ Wl holds, and, conversely, if Wh ≺ Wl

and there exists no Wl′ with Wh ≺ Wl′ ≺ Wl for 1 ≤ h, l ≤ k, then A[Uh, Vl] ̸= O. Thus the
DM-decomposition of a matrix can be depicted as in Fig. 1.

Let A be a combinatorially symmetric matrix. It follows from Theorem 2.1 that the DM-
decomposition of A can maintain symmetry. That is, for each DM-component A[Ul, Vl] (l =
0, 1, . . . , k,∞), the block submatrix A[Ul, Vl] is symmetric, or A[Ul ∪ Uh, Vl ∪ Vh] is symmetric
for some h ∈ {0, 1, . . . , k,∞}. Moreover, if both of A[Ul, Vl] and A[Uh, Vh] are symmetric, then
A[Uh, Vl] = A[Uh, Vl] = O. Thus a combinatorially symmetric matrix A has a permutation
matrix S such that S⊤AS is a block triangular matrix depicted as in Fig. 2. Such a block
triangular form of a combinatorially symmetric matrix can be obtained efficiently via the DM-
decomposition.

∗

O

V0 V1 Vk V∞· · ·

U0

U1

...

U∞

Uk

Figure 1: The DM-decomposition of a matrix

∗

O

V0V1VkV∞ · · ·

U0

U1

...

U∞

Uk

O

O

Figure 2: The DM-decomposition of a combina-
torially symmetric matrix

There is another block-triangular decomposition for a square matrix, which employs a simul-
taneous permutation of rows and columns. For a square matrix A of order n, define the directed
graph D(A) = (W,E) with W = {w1, . . . , wn} and E = {(wi, wj) | aij ̸= 0, i, j ∈ N}, where
N = {1, . . . , n}. Then the strongly-connected component decomposition of D(A) leads to an
upper-right block-triangularized form S⊤AS for some permutation matrix S. A square matrix
A is indecomposable if D(A) is strongly connected. For a combinatorially symmetric matrix
A, this decomposition is trivial, because A is indecomposable if and only if D(A) is connected.
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Theorem 2.1 suggests that, by the DM-decomposition of A, we can find a finer upper-left block-
triangular form by simultaneous permutations of rows and columns. For example, consider the
combinatorially symmetric matrix

A =

(
+1 −1
−1 0

)
.

Then A is indecomposable, while the DM-decomposition of A leads to two blocks of order one.

3 Ear Structure of Matching-Covered Symmetric Graphs

In this section, we discuss ear decomposition of a matching-covered symmetric bipartite graph.
Let G = (U, V ; E) be a matching-covered symmetric bipartite graph with |U | = |V | = n.
Recall that an ear decomposition G0, G1, . . . , Gk is symmetric if Gl or Gl+1 is symmetric for
l = 0, 1, . . . , k − 1. A diagonal edge is an edge (ui, vi) ∈ E for some i ∈ N = {1, . . . , n}. The
main purpose of this section is to prove the following theorem.

Theorem 3.1. Let G = (U, V ; E) be a matching-covered symmetric bipartite graph. Then G

has a symmetric ear decomposition starting from an edge or a crossing pair. In particular, if G

has a diagonal edge, G has a symmetric one starting from the diagonal edge.

We say that a subgraph G′ is central if G \ G′ has a perfect matching. In order to prove
Theorem 3.1, we first show that, for any central symmetric subgraph G′, there exist an ear P

of G′ and an ear Q of G′ + P such that G′ + P + Q is symmetric and central, where Q may be
empty.

Let G′ = (U ′, V ′; E′) be a central symmetric subgraph. If U ′ = U and V ′ = V , then any
diagonal edge and any crossing pair in E \ E′ are the desired ears. Hence we may assume that
U ′ ( U and V ′ ( V . Let Ḡ′ = G[U \ U ′, V \ V ′] be the remaining symmetric subgraph. Since
G′ is central, Ḡ′ has a perfect matching M .

We first assume that M = M⊤ holds. Note that, if a path P is M -alternating, then so is P⊤.
The graph G has an edge (ui, vj) for some ui ∈ U ′ and vj ̸∈ V ′. Since G is matching-covered, G

has a perfect matching M ′ with (ui, vj) ∈ M ′. The subgraph with edge set M ∪ M ′ consists of
paths and circuits, in which the connected component having ui forms an M -alternating ear P̂

of G′. If the inner vertices in P̂ and P̂⊤ are disjoint, then P̂⊤ is an ear of G′+ P̂ and G′+ P̂ + P̂⊤

is symmetric. Hence we may assume that P̂ and P̂⊤ have a common inner vertex. This implies
that there exists an index s ∈ N with us ∈ U(P̂ ) and vs ∈ V (P̂ ) such that all vertices in Pss

have different indices, where Pss is the path between us and vs along P̂ . Among such s, we
choose s such that the length of Pis is minimum, where Pis is the shorter one of the path from
ui to us along P̂ and the path from ui to vs along P̂ . Define P = Pis ∪ Pss ∪ P⊤

is , and Q to be
empty if Pss is a diagonal edge and Q = P⊤

ss otherwise. Then P is an M -alternating ear of G′,
and, if Q is nonempty, Q is an M -alternating ear of G′ + P . The subgraph G′ + P + Q has the
edge set E′ ∪ E(Pis ∪ Pss) ∪ E((Pis ∪ Pss)⊤), and hence G′ + P + Q is symmetric. Moreover,
since P and Q are M -alternating paths of odd length, G′ + P + Q is central.
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Therefore, the following lemma holds. Note that, if Q is empty, then P has exactly one
diagonal edge, and, otherwise, P and Q have no diagonal edges.

Lemma 3.2. Let G = (U, V ; E) be a matching-covered symmetric bipartite graph, and G′ =
(U ′, V ′; E′) be a central symmetric subgraph. Assume that the remaining subgraph Ḡ′ = G[U \
U ′, V \ V ′] has a perfect matching M with M⊤ = M . Then there exist an ear P of G′ and an
ear Q of G′ + P such that G′ + P + Q is central and symmetric, where Q may be empty.

We now discuss the case where M may not coincide with M⊤. For a bipartite graph G =
(U, V ; E) with a matching M , we define contracting an M -alternating circuit C to an edge (x, y)
as contracting U(C) and V (C) to vertices x and y, respectively, deleting resulting multiple edges,
and replacing M with M \ E(C) ∪ {(x, y)}. The reverse procedure is expanding an edge to a
circuit. Note that, if G is matching-covered and M is a perfect matching of G, then the graph
obtained by contracting an M -alternating circuit is also matching-covered.

Assume that M ̸= M⊤. Then consider M ∪ M⊤, which consists of diagonal edges, crossing
pairs, pairs of asymmetric circuits, and symmetric circuits. By M ̸= M⊤, the union M ∪ M⊤

has pairs of asymmetric circuits, or symmetric circuits. For each pair of asymmetric circuits
C and C⊤ in M ∪ M⊤, replace M with M△E(C). Moreover, for each symmetric circuit C

in M ∪ M⊤, contract C to a diagonal edge eC . Let F be the set of diagonal edges obtained
by the contraction of all symmetric circuits in M ∪ M⊤. The resulting graph G∗ is symmetric
and matching-covered, and G′ is a central symmetric subgraph of G∗. Moreover, M is a perfect
matching in G∗ \ G′ with M = M⊤.

Therefore, it follows from Lemma 3.2 that G∗ has an ear P∗ of G′ and an ear Q∗ of G′ + P∗

such that G′ +P∗ +Q∗ is symmetric and central, where Q∗ may be empty. If P∗ and Q∗ have no
edges in F , then G′ + P∗ + Q∗ is also a central symmetric subgraph of G. Assume that P∗ has a
diagonal edge e in F . Then Q∗ is empty. We denote by C the contracted circuit corresponding
to e. Since P∗ has exactly one edge in F , the edge subset E(P∗) \ {e} ∪E(C) forms an ear P of
G′ and an ear Q of G′ + P such that G′ + P + Q is symmetric and central.

By the above discussion, we obtain the following theorem.

Theorem 3.3. Let G be a matching-covered symmetric bipartite graph, and G′ be a central
symmetric subgraph. Then there exist an ear P of G′ and an ear Q of G′+P such that G′+P +Q

is central and symmetric, where Q may be empty.

For a symmetric bipartite graph with perfect matchings, the following proposition has been
shown.

Proposition 3.4 (Kakimura and Iwata [10]). Let G be a symmetric bipartite graph with perfect
matchings. If G is not a disjoint union of symmetric circuits, then G satisfies the following (a)
or (b).

(a) The graph G has a perfect matching with a diagonal edge (ui, vi) for some i ∈ N .
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(b) The graph G has a perfect matching with a crossing pair (ui, vj) and (uj , vi) for some
distinct i, j ∈ N .

Theorem 3.3, together with Proposition 3.4, implies Theorem 3.1.

Proof of Theorem 3.1. It is not difficult to see that a symmetric graph consisting of one circuit
has a symmetric ear decomposition starting from an edge. Assume that G is not a circuit. If G

has a diagonal edge, then the matching-coveredness of G implies that G has a perfect matching
with this edge. Otherwise, G has a perfect matching with a crossing pair by Proposition 3.4.
Hence G has a central subgraph G0 consisting of a diagonal edge or a crossing pair. By applying
Theorem 3.3 repeatedly, we obtain an ear decomposition G0, G1, . . . , Gk = G such that Gl or
Gl+1 is symmetric for l = 0, 1, . . . , k − 1.

This section concludes with a linear-time algorithm for finding a symmetric ear decomposi-
tion. The algorithm description is presented as follows.

Algorithm for symmetric ear decomposition.

Input: A matching-covered symmetric bipartite graph G = (U, V ;E) and a perfect matching
M ′ of G.

Step 0: If G consists of a circuit, then halt (G0 is the subgraph consisting of one edge and
G1 = G).

Step 1: Find a perfect matching M with a diagonal edge or a crossing pair using M ′. Let G0

be the subgraph consisting of a diagonal edge or a crossing pair in M .

Step 2: Do the following, so that M = M⊤.

2-1: For each pair of asymmetric circuits C and C⊤ in M∪M⊤, replace M with M△E(C).

2-2: For each symmetric circuit C in M ∪ M⊤, contract C to a diagonal edge eC . Let C
be the set of the contracted circuits.

Step 3: Set i = 0 and M = M \ E(G0). Repeat the following until Gi = G.

3-1: Find an M -alternating ear P̂ of Gi.

3-2: Using P̂ , find at most two M -alternating paths P and Q such that Gi + P + Q is
symmetric, where Q may be empty.

3-3: If P has an edge eC obtained by contracting some C ∈ C, then expand eC to C and
replace P and Q with two paths consisting of E(P ) \ {eC} ∪ E(C).

3-4: If Q is empty, set Gi+1 = Gi + P , M = M \ E(Gi+1), and i = i + 1. If Q is not
empty, set Gi+1 = Gi + P , Gi+2 = Gi+1 + Q, M = M \ E(Gi+2), and i = i + 2.
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Note that, in Step 1, we can find a perfect matching with a diagonal edge or a crossing
pair by using M ′ in O(|E|) time [10]. Therefore, the running time bound of this algorithm is
presented as follows.

Theorem 3.5. Let G = (U, V ; E) be a matching-covered symmetric bipartite graph, and M ′ be
a perfect matching in G. Then we can find a symmetric ear decomposition starting from an edge
or a crossing pair in O(|E|) time.

Proof. Steps 1 and 2 require O(|E|) time. Before repeating Step 3, we find M -alternating paths
from a vertex in G0 to all vertices in G by the depth first search in advance. By using the depth
first search tree, Step 3-1 requires O(|P̂ |) time to find an M -alternating ear P̂ . In Step 3, we
can find all of ears that use E(P̂ ∪ P̂⊤) in a symmetric ear decomposition in O(|P̂ ∪ P̂⊤|) time.
Therefore, the total time complexity is O(|E|) time.

4 Symmetric Pólya Matrices with a Nonzero Diagonal Entry

In this section, we discuss Pólya matrices of combinatorially symmetric matrices as an application
of the two decompositions described in Sections 2 and 3.

Pólya’s problem is equivalent to the problem of deciding whether a given bipartite graph
has an orientation called Pfaffian. Let G = (W,E) be a graph. An orientation

−→
G of G is a

directed graph obtained from G by orienting its edges. For an orientation
−→
G of G, a circuit

C of even length in G is said to be oddly (evenly) oriented in
−→
G if an odd (even) number of its

edges are directed in the same direction along C. For a graph G = (W,E), we say that an
orientation of G is Pfaffian if every central circuit of even length is oddly oriented. For a square
matrix A, it is known that A has a Pólya matrix if and only if G(A) has a Pfaffian orientation.
Robertson, Seymour, and Thomas [21] devised a polynomial-time algorithm to decide whether
a given bipartite graph has a Pfaffian orientation (cf. McCuaig [18]).

Suppose that a bipartite graph G = (U, V ; E) with perfect matchings has Pfaffian orienta-
tions. We discuss constructing a Pfaffian orientation of G. We may assume that a bipartite
graph G = (U, V ; E) is matching-covered, because G has a Pfaffian orientation if and only if so
does each DM-component. Since G is matching-covered, G has an ear decomposition starting
from an edge [15]. It is known that the following theorem holds.

Theorem 4.1 (Little [14], Seymour and Thomassen [23]). Let G be a matching-covered bipartite
graph which has Pfaffian orientations, and G0, G1, . . . , Gk = G be an ear decomposition starting
from an edge with Gl = Gl−1 +Pl for l = 1, . . . , k. Then an orientation is Pfaffian if and only if
C1, . . . , Ck are oddly oriented, where Cl is a central circuit of Gl which uses Pl for l = 1, . . . , k.

Theorem 4.1 suggests a polynomial-time algorithm for finding a Pfaffian orientation as fol-
lows. Let G be a matching-covered bipartite graph which has Pfaffian orientations. Obtain an
ear decomposition G0, G1, . . . , Gk = G with Gl = Gl−1+Pl starting from an edge for l = 1, . . . , k.
Orient the edge of G0 arbitrary. For l = 1, . . . , k, find a central circuit Cl of Gl which uses Pl, and
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orient all edges in Pl such that Cl is oddly oriented. Then the obtained orientation of Gk = G

is a Pfaffian orientation.
Let G = (U, V ; E) be a symmetric bipartite graph with perfect matchings. Suppose that G

has a Pfaffian orientation. We discuss to find a symmetric Pfaffian orientation in G, where an
orientation of a bipartite graph is symmetric if the two edges of any crossing pair are oriented in
the same direction. Again, we may assume that G is matching-covered, because it follows from
Theorem 2.1 that G has a symmetric Pfaffian orientation if and only if so does each symmetric
DM-component and each non-symmetric DM-component has a Pfaffian orientation. Then we
have the following theorem.

Theorem 4.2. Let G = (U, V ; E) be a matching-covered symmetric bipartite graph with a diag-
onal edge. If G has a Pfaffian orientation, then G has a symmetric one.

Proof. By Theorem 3.1, G has a symmetric ear decomposition G0, G1, . . . , Gk = G starting from
a diagonal edge. Let Pl be the path such that Gl = Gl−1 + Pl for l = 1, . . . , k. The subgraph
G0, which consists of one diagonal edge, has a symmetric Pfaffian orientation. For an integer
l ∈ {0, 1, . . . , k−1}, assume that, if Gl is symmetric, it has a symmetric Pfaffian orientation

−→
G l.

Suppose that Gl+1 = Gl+Pl+1 is symmetric. Since the length of Pl+1 is odd and Pl+1 = P⊤
l+1,

the ear Pl+1 has only one diagonal edge e. Let Cl+1 be a central circuit of Gl+1 which uses Pl+1.
By orienting e properly,

−→
G l can be extended to a symmetric orientation

−→
G l+1 of Gl+1 such that

Cl+1 is oddly oriented. Since
−→
G l+1 is Pfaffian by Theorem 4.1, Gl+1 has a symmetric Pfaffian

orientation.
Next suppose that Gl+1 = Gl+Pl+1 is not symmetric. Then Gl+2 = Gl+1+Pl+2 is symmetric.

Let Cl+1 be a central circuit in Gl+1 which uses Pl+1. Since Gl+1 is not symmetric, there exists
an edge e = (ui, vj) with (uj , vi) ̸∈ E(Pl+1). By orienting e properly,

−→
G l can be extended to a

symmetric orientation
−→
G l+1 of Gl+1 such that Cl+1 is oddly oriented, which implies that

−→
G l+1

is Pfaffian by Theorem 4.1. Consider the symmetric orientation
−→
G l+2 of Gl+2 which includes

−→
G l+1. If Pl+2 is also an ear of Gl, then C⊤

l+1 is an oddly oriented central circuit using Pl+2 in
−→
G l+2. Otherwise, Pl+2 ∪ P⊤

l+2 forms a symmetric central circuit C with no diagonal edges by
P⊤

l+2 ⊆ Pl+1. Since C has a symmetric orientation in
−→
G l+2, the circuit C is oddly oriented.

In both cases,
−→
G l+2 has an oddly oriented central circuit using Pl+2. Thus the symmetric

orientation
−→
G l+2 is Pfaffian by Theorem 4.1.

Therefore, for any l = 0, 1, . . . , k, if Gl is symmetric then Gl has a symmetric Pfaffian
orientation by induction, and hence so does G = Gk.

Since a symmetric ear decomposition can be obtained in linear time by Theorem 3.5, we
have the following corollary.

Corollary 4.3. Let G = (U, V ; E) be a matching-covered symmetric bipartite graph with a
diagonal edge, and M be a perfect matching of G. Assume that G has a Pfaffian orientation.
Then we can find a symmetric Pfaffian orientation in O(|E|) time.
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Theorem 4.2 can be written as the following corollary in terms of a Pólya matrix. Recall
that a square matrix A is DM-irreducible if and only if G(A) is matching-covered.

Corollary 4.4. Let A be a DM-irreducible symmetric {0, 1}-matrix with a nonzero diagonal
entry. If A has a Pólya matrix, then A has a symmetric one.

If A has no diagonal entries, then it is not necessarily true that A has a Pólya matrix which
is symmetric. For example, consider the symmetric matrix

A =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

Then A has a Pólya matrix 
0 +1 +1 +1

+1 0 −1 +1
−1 −1 0 +1
+1 −1 +1 0

 .

However, A has no Pólya matrix which is symmetric. Indeed, if A has a Pólya matrix in the
form of 

0 a1 a2 a3

a1 0 a4 a5

a2 a4 0 a6

a3 a5 a6 0

 ,

where a1, . . . , a6 ∈ {1,−1}, then the determinant has nonzero expansion terms a2
1a

2
6, −a1a3a4a6,

−a2a3a4a5, and −a1a2a5a6. Since these nonzero expansion terms have the same sign, a2
1a

2
6 =

−a1a3a4a6 and −a1a2a5a6 = −a2a3a4a5 hold. The former implies a1a6 = −a3a4 while the latter
a1a6 = a3a4, which is a contradiction.

5 Totally Sign-Nonsingular Signing

Recall that an m × n rectangular matrix is totally sign-nonsingular if each term-nonsingular
submatrix of order m is sign-nonsingular. This section and Section 6 discuss the problem of
deciding whether a given rectangular {0, 1}-matrix has a totally sign-nonsingular signing or not.
If a matrix is term-nonsingular, this problem is equivalent to Pólya’s problem.

We first show the following theorem.

Theorem 5.1. We can decide in polynomial time whether a given m × n {0, 1}-matrix A with
m ≤ n has a totally sign-nonsingular signing or not.
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For an m × n matrix A, we define the augmented matrix of A, denoted by A∗, as follows:

A∗ =

(
O A

A⊤ I

)
,

where I is the identity matrix of order n. The bipartite graph associated with A∗ is denoted
by G∗, called the augmented graph of G. That is, for a bipartite graph G = (U, V ; E) with
U = {u1, . . . , um} and V = {v1, . . . , vn}, the augmented graph G∗ is defined to be G∗ = (U ∪
Ṽ , Ũ ∪ V ; E ∪ Ẽ ∪ Ed), where Ũ = {ũ1, . . . , ũm} and Ṽ = {ṽ1, . . . , ṽn} are copies of U and
V , respectively, and Ẽ and Ed are the edge sets defined by Ẽ = {(ṽj , ũi) | (ui, vj) ∈ E} and
Ed = {(ṽi, vi) | i = 1, . . . , n}.

The following proposition asserts the equivalence between the total sign-nonsingularity of
a matrix A and the sign-nonsingularity of A∗. A matrix A is said to have row-full term-rank
if A has a term-nonsingular submatrix with row size. Note that, if A does not have row-full
term-rank, A is clearly totally sign-nonsingular.

Proposition 5.2 (Iwata and Kakimura [6]). Let A be a matrix with row-full term-rank. Then
A is totally sign-nonsingular if and only if the augmented matrix A∗ is sign-nonsingular.

We give the following lemma for signings of the augmented matrices.

Lemma 5.3. Let A be an m × n rectangular matrix with m < n. If the augmented matrix A∗

of A has a Pólya matrix, then A has a totally sign-nonsingular signing.

Proof. It follows from Corollary 4.4 that A∗ has a symmetric Pólya matrix, denoted by Ã∗. We
denote N = {1, . . . , n}. Let Ã be the submatrix of Ã∗ corresponding to A, and di for i ∈ N be
the diagonal entry of column i in Ã∗. The determinant of Ã∗ is given by

det Ã∗ =
∑
J⊆N,
|J|=m

dJ(det Ã[J ])(det Ã[J ]),

where dJ =
∏

i ̸∈J di and Ã[J ] is the square submatrix of Ã with column subset J . Since Ã∗ is
a Pólya matrix, all nonzero expansion terms of det Ã∗ have the same sign. This implies that,
for any J ⊆ V such that Ã[J ] is term-nonsingular, Ã[J ] is sign-nonsingular. Thus Ã is totally
sign-nonsingular.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. If A is square, then we can find a totally sign-nonsingular signing, i.e.,
a Pólya matrix, in polynomial time. Assume that m < n. Note that A has a totally sign-
nonsingular sining if and only if so does each DM-component. Hence we may assume without
loss of generality that A is DM-irreducible, which implies that A has row-full term-rank. By
Proposition 5.2, if A∗ has no Pólya matrices, then A has no totally sign-nonsingular signings. It
follows from Lemma 5.3 that, if A∗ has a Pólya matrix, then A has a totally sign-nonsingular
signing. Thus we can obtain a totally sign-nonsingular signing by testing whether A∗ has a
Pólya matrix or not.
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Testing sign-nonsingularity is polynomially equivalent to Pólya’s problem [14, 23] (see also
[28]). Theorem 5.1, together with Proposition 5.2, is summarized as the following corollary.

Corollary 5.4. The following problems are polynomially equivalent.

(1) Deciding whether a given square matrix has a Pólya matrix or not (Pólya’s problem).

(2) Deciding whether a given square matrix is sign-nonsingular or not.

(3) Deciding whether a given rectangular matrix has a totally sign-nonsingular signing or not.

(4) Deciding whether a given rectangular matrix is totally sign-nonsingular or not.

We say that two matrices A and A′ with same size are equivalent if A′ can be obtained from
A by multiplying −1 to some rows and columns, that is, if there exist two {1,−1}-diagonal
matrices Dr and Dc with A′ = DrADc. It is known in [14] that, if a DM-irreducible square
{0, 1}-matrix has a Pólya matrix, then all of the Pólya matrices are equivalent. For totally
sign-nonsingular signings, a similar statement holds.

Theorem 5.5. If a DM-irreducible {0, 1}-matrix A has a totally sign-nonsingular signing, then
all of totally sign-nonsingular signings are equivalent.

Let G = (U, V ; E) be a bipartite graph with two disjoint vertex sets U = {u1, . . . , um} and
V = {v1, . . . , vn} (m ≤ n). We say that a matching M is left-perfect if |M | = |U |. For a bipartite
graph G = (U, V ; E), the neighbor of X ⊆ U , denoted by ΓG(X), is the set of vertices in V that
connect some vertex in X, that is, ΓG(X) = {vj ∈ V | ∃ui ∈ X, (ui, vj) ∈ E}. We need the
following well-known proposition (e.g., see [15, 19]).

Proposition 5.6. Let G = (U, V ;E) be a bipartite graph with |U | ≤ |V |.

• The graph G has a left-perfect matching if and only if |ΓG(X)| ≥ |X| for any subset X ⊆ U .

• The graph G is DM-irreducible if and only if |ΓG(X)| ≥ |X| + 1 for any nonempty proper
subset X ( U .

Proposition 5.6 implies the following lemma.

Lemma 5.7. Let G = (U, V ; E) be a connected bipartite graph with |U | < |V |. Then G is
DM-irreducible if and only if G∗ is DM-irreducible.

Proof. By Proposition 5.6, if G is not DM-irreducible, then G has a proper subset X ( U with
|ΓG(X)| < |X| + 1, which implies that |ΓG∗(X)| < |X| + 1 holds. Thus the sufficiency holds.

To show the necessity, assume that G is DM-irreducible, and that G∗ is not DM-irreducible.
By Proposition 5.6, G∗ has a proper subset X ( U ∪ Ṽ with |ΓG∗(X)| < |X| + 1. Since
G has a left-perfect matching, so does G∗. Hence the subset X satisfies |ΓG∗(X)| = |X| by
Proposition 5.6. We denote XU = X ∩ U and XṼ = X ∩ Ṽ . Let Y = ΓG∗(X), YŨ = Y ∩ Ũ ,
and YV = Y ∩ V (See Fig. 3). Then XṼ ̸= ∅ holds by the DM-irreducibility of G. This implies
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that YŨ ̸= ∅ because G has no isolated vertex. Since |ΓG∗(XṼ )| > |XṼ | by the existence of
diagonal edges in Ed, we have XU ̸= ∅. The definition of ΓG∗ implies that G∗[XṼ , Ũ \ YŨ ] and
G∗[XU , V \ YV ] have no edges.

We will show that YV = XV and XU = YU , where XV = {vj ∈ V | ṽj ∈ XṼ } and
YU = {ui ∈ U | ũi ∈ YŨ}. First, assume to the contrary that YV ̸= XV . Since YV ⊇ XV , there
exists a nonempty set ZV = YV \XV . By |Y | = |X| and |YV | > |XV |, it holds that ZU = XU \YU

is nonempty. The DM-irreducibility of G implies that |ΓG∗(ZU )| ≥ |ZU | + 1. Since G∗[ZU , XV ]
is a subgraph of the transpose of G∗[XṼ , Ũ \ YŨ ], the subgraph G∗[ZU , XV ] has no edges. This
implies that |ΓG∗(X)| ≥ |ΓG∗(ZU )| + |XV | + |YŨ | ≥ |ZU | + 1 + |XṼ | + |YU | ≥ |X| + 1, which
contradicts that |ΓG∗(X)| = |X|. Thus YV = XV holds. By |Y | = |X| and |YV | = |XV |, it
holds that |XU | = |YU |. Since XU has no isolated vertex, XU ⊆ YU holds, and hence we have
XU = YU .

By YV = XV and XU = YU , the subgraph G∗[U \XU , XV ] is the transpose of G∗[XṼ , Ũ \XŨ ].
This implies that G∗[U \XU , XV ] and G∗[XU , V \XV ] have no edges, which contradicts that G

is connected. Thus G∗ is DM-irreducible.

ZV

YV

XU

XṼ

ZU

YŨ

OO

O

O

XV

Figure 3: The matrix associated with an augmented bipartite graph

Theorem 5.5 immediately follows from Proposition 5.2 and Lemma 5.7.

Proof of Theorem 5.5. Since A is DM-irreducible, so is A∗ by Lemma 5.7. Proposition 5.2 implies
that each totally sign-nonsingular signing of A corresponds to a symmetric Pólya matrix of A∗.
Since all of symmetric Pólya matrices of A∗ are equivalent, so are all of totally sign-nonsingular
signings of A.
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6 Excluded Minor Characterization for Totally Sign-Nonsingular

Singing

We say that a graph G is a subdivision of a graph H if G is obtained from H by replacing
some edges of H by an internally disjoint paths with at least two edge. A graph G is an even
subdivision of a graph H if G is obtained from H by replacing some edges of H by internally
disjoint paths of odd length. A bipartite graph G = (U, V ;E) with |U | = |V | contains a graph
H if G has a central subgraph which is isomorphic to some even subdivision of H.

Let Km,n denote the complete bipartite graph with two disjoint vertex sets of size m and n,
respectively. Little [14] gave the following necessary and sufficient condition of a bipartite graph
having Pfaffian orientations. Another proof is given in [20].

Proposition 6.1 (Little [14]). A bipartite graph has a Pfaffian orientation if and only if the
graph does not contain K3,3.

Let G = (U, V ; E) be a bipartite graph with |U | ≤ |V |. A subgraph G′ is said to be left-
central if G\G′ has a left-perfect matching. We say that an orientation of G is totally Pfaffian if
every left-central circuit is oddly oriented. If |U | = |V | this is equivalent to Pfaffian orientations.
By the definition, a matrix A has a totally sign-nonsingular signing if and only if the associated
bipartite graph G(A) has a totally Pfaffian orientation.

The main purpose of this section is to characterize a bipartite graph having totally Pfaffian
orientations. We say that a bipartite graph G = (U, V ;E) with |U | < |V | contains a graph H

if G has a left-central subgraph which is isomorphic to some even subdivision of H. Let L3,5

denote the bipartite graph associated with the following matrix: +1 0 0 +1 +1
0 +1 0 +1 +1
0 0 +1 +1 +1

 .

Then we have the following theorem, which we will prove later.

Theorem 6.2. Let G = (U, V ; E) be a DM-irreducible bipartite graph with |U | < |V |. Then G

has a totally Pfaffian orientation if and only if G does not contain either K2,3 or L3,5.

Figures 4 and 5 depict K2,3 and L3,5, respectively.
For a bipartite graph G, the graph G has a totally Pfaffian orientation if and only if so does

each of the DM-components. Therefore, Theorem 6.2, together with Proposition 6.1, leads to
the following corollary.

Corollary 6.3. Let G = (U, V ; E) be a bipartite graph. Then G has a totally Pfaffian orientation
if and only if G contains none of K3,3, K2,3, and L3,5.

Let A be an m × (m + 1) DM-irreducible matrix. Then A is totally sign-nonsingular if and
only if all square submatrices of order m are sign-nonsingular. Such matrix is called an S-matrix.
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Figure 4: The bipartite graph K2,3

Figure 5: The bipartite graph L3,5

The following characterization for S-matrices, given by Brualdi and Shader [2], is derived as a
special case of Theorem 6.2.

Corollary 6.4 (Brualdi and Shader [2]). A m× (m + 1) {0, 1}-matrix A has a signing which is
an S-matrix if and only if G(A) does not contain K2,3.

Proof of Theorem 6.2

The rest of this section is devoted to the proof of Theorem 6.2. It is obvious that K2,3 and
L3,5 have no totally Pfaffian orientations. Hence the necessity of Theorem 6.2 follows from the
following lemma.

Lemma 6.5. Let G be a bipartite graph which contains a graph H. If G has a totally Pfaffian
orientations, then so does H.

Proof. The graph G has a left-central subgraph K isomorphic to an even subdivision of H. Let
−→
G be a totally Pfaffian orientation of G. We define an orientation of H as follows. Let e = (u, v)
be an edge of H. The subgraph K of G has the two vertices u′ and v′ corresponding to u and v,
respectively, and the path between u′ and v′ corresponding to e. Consider traversing this path
from u′ to v′. If the number of edges in the forward direction is odd, then we orient the edge e

from u to v, otherwise orient it from v to u. Since a left-central circuit in K is oddly oriented if
and only if so is the corresponding left-central circuit in H, this orientation is a totally Pfaffian
orientation of H.

Therefore, it suffices to prove the sufficiency. To do this, we provide the following proposition,
which follows from Proposition 5.6.

Proposition 6.6. Let G = (U, V ; E) be a bipartite graph with |U | < |V |, and M be a left-perfect
matching of G. The graph G is DM-irreducible if and only if, for any v ∈ V (M), there exists
an M -alternating path from v to some vertex in V \ V (M).

For a path P and two vertices x, y in P , let P [x, y] be the subpath of P between x and y. We
denote W (H) = U(H) ∪ V (H) for a subgraph H. For two circuits C and C ′, we simply denote
by C△C ′ the subgraph consisting of E(C)△E(C ′). The following claim is observed in [20].
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Claim 1. For a directed graph, let C and C ′ be two circuits of even length such that P = C ∩C ′

is a path. Then D = C△C ′ is also a circuit of even length. Moreover, the followings hold.

• If P is an odd-length path, the number of evenly oriented circuits in {C, C ′, D} is even.

• If P is an even-length path, the number of evenly oriented circuits in {C, C ′, D} is odd.

Let G = (U, V ; E) with |U | < |V | be a DM-irreducible bipartite graph which does not have
a totally Pfaffian orientation. We may assume that G is a minimal such graph with respect to
the operations of edge and vertex deletion and replacing an odd path all of whose inner vertices
have degree two with one edge. Then G is connected.

The following claim says that we can delete one edge preserving DM-irreducibility. Here we
denote by Ge the bipartite graph obtained from G by deleting an edge e.

Claim 2. There exists an edge e ∈ E such that Ge is DM-irreducible.

Proof. Consider the augmented graph G∗ = (U∗, V ∗; E ∪ Ẽ ∪ Ed). Since G is DM-irreducible,
so is G∗ by Lemma 5.7. Since G∗ is symmetric, G∗ has a symmetric ear decomposition
G∗

0, G
∗
1, . . . , G

∗
k = G∗ starting from a diagonal edge by Theorem 3.1. We denote G∗

l = G∗
l−1 + Pl

for l = 1, . . . , k. Let h be the last index such that Ph contains some edge in E ∪ Ẽ. Then each
of Ph+1, . . . , Pk is an ear consisting of one diagonal edge in Ed. Since G is minimal, Ph is either
a path of three length using a diagonal edge or a path consisting of one edge in E ∪ Ẽ. If Ph

is a path of three length using a diagonal edge e, then G∗
h−1 is symmetric, and we define G′∗ to

be the subgraph consisting of G∗
h−1 + Ph+1 + · · · + Pk. Otherwise, if Ph consists of one edge in

E ∪ Ẽ, then G∗
h−2 is symmetric, and we define G′∗ = G∗

h−2 + Ph+1 + · · · + Pk. Let G′ be the
bipartite graph whose augmented graph is G′∗. Since G′∗ is DM-irreducible, so is G′ by Lemma
5.7. The graph G′ is obtained from G by deleting an edge.

Let e = (u, v) be an edge such that Ge is DM-irreducible. The minimality of G implies that
Ge has a totally Pfaffian orientation

−→
Ge. Consider an orientation

−→
G of G such that the edge e is

directed arbitrarily and the other edges are directed in the same directions as those in
−→
Ge. Since

−→
G is not totally Pfaffian, there exists an evenly oriented left-central circuit C.

We divide the proof into the following two cases: (1) the case where G has an evenly oriented
left-central circuit C with e ̸∈ E(C) and (2) the other case, i.e., all evenly oriented left-central
circuits have the edge e.

Case (1): G has an evenly oriented left-central circuit not having the edge e

Assume that G has an evenly oriented left-central circuit C with e ̸∈ E(C). Let M be a left-
perfect matching such that C is M -alternating. Since Ge is totally Pfaffian, C is not left-central
in Ge, which implies by Proposition 5.6 that there exists a vertex subset X ⊆ U \ U(C) such
that |ΓGe\C(X)| ≤ |X| − 1. We may suppose that we choose X such that |X| is minimum. On
the other hand, C is left-central in G, and hence |ΓG\C(X)| ≥ |X|. These inequalities imply that
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u ∈ X, v ̸∈ ΓGe\C(X), and |ΓGe\C(X)| = |X|−1 hold. We denote G′
e = Ge[U \X, V \ΓGe\C(X)].

The subgraph G′
e has a left-perfect matching M ∩ E(G′

e).
Let Y = ΓGe(X) \ ΓGe\C(X). Then Y ⊆ V (C) holds. Since Ge is DM-irreducible, we have

|ΓGe(X)| ≥ |X| + 1, which implies that |Y | ≥ 2 by |ΓGe\C(X)| = |X| − 1. For a graph G and a
vertex y, we denote by G − y the subgraph obtained from G by deleting y together with edges
incident to y. Then the following claim holds.

Claim 3. There exist y1, y2 ∈ Y such that G′
e − y1 − y2 has a left-perfect matching.

Proof. Since G is DM-irreducible, G has an M -alternating path P from the vertex v ∈ V (M) to
some vertex w ̸∈ V (M) by Proposition 6.6. Then w ∈ V (G′

e). Hence P has a vertex in Y . Let
y1 be the vertex in Y ∩ V (P ) which is closest to w along P . Then P [y1, w] is an M -alternating
path in G′

e. The graph G′
e − y1 has a left-perfect matching M△E(P [y1, w]).

We denote G′′
e = G′

e − y1 and Y ′ = Y \ {y1}. Let J ⊆ U \ X be the maximum subset such
that |ΓG′′

e
(J)| = |J |. Note that V (G′′

e) \ ΓG′′
e
(J) is nonempty because of |U | + 1 ≤ |V |. Since

Ge is DM-irreducible, it holds that |ΓGe(X ∪ J)| ≥ |X| + |J | + 1. Moreover, |ΓGe(X ∪ J)| =
|ΓGe\C(X)| + |Y ∪ ΓG′′

e
(J)| = |ΓGe\C(X)| + |Y ′ \ ΓG′′

e
(J)| + |ΓG′′

e
(J)| + 1 holds. Hence we have

|Y ′ \ ΓG′′
e
(J)| ≥ 1 by |ΓGe\C(X)| = |X| − 1 and |ΓG′′

e
(J)| = |J |. Take y2 ∈ Y ′ \ ΓG′′

e
(J). Then

G′′
e − y2 has a left-perfect matching by the maximality of J .

It follows from Claim 3 that G′
e has a left-perfect matching M ′ with y1, y2 ̸∈ V (M ′). Taking

M ∪ M ′, we obtain two disjoint M -alternating paths Pi in G′
e from yi to some two vertices

wi ̸∈ V (M) for i = 1, 2, respectively. We may assume that C, P1, and P2 have been chosen to
minimize |E(C ∪ P1 ∪ P2)|.

Since we have chosen X such that |X| is minimum, Ge[X, ΓGe\C(X)] is DM-irreducible,
which implies by Proposition 6.6 that Ge[X, ΓGe\C(X)∪{y1, y2}] has an M -alternating path Ri

from u to yi for i = 1, 2. Define Ti = Pi ∪Ri ∪ {e} for i = 1, 2. The path Ti is an M -alternating
path from v to wi.

For i = 1, 2, the subgraph with edge set E(Pi) \ E(C) is the set of paths, denoted by
Q1

i , Q
2
i , . . . , Q

pi
i , where pi is a positive integer. We may assume that Q1

i , Q
2
i , . . . , Q

pi
i appear in

this order along Pi from yi to wi. Then the path Qj
i for 1 ≤ j ≤ pi−1 is an M -alternating ear of

C, and Qpi
i is an M -alternating path from a vertex in U(C) to wi. We denote the end vertices

of Qj
i by sj

i ∈ U(C) and tji ∈ V (C) for i = 1, 2 and j = 1, . . . , pi.

Claim 4. If p1 ≥ 2 or p2 ≥ 2, then G contains K2,3.

Proof. It suffices to show the case of p1 ≥ 2. Then Qp1−1
1 is an M -alternating ear of C. Let

Cp1−1 be the path along C from sp1−1
1 to tp1−1

1 such that D = Qp1−1
1 ∪Cp1−1 is an M -alternating

circuit. The other path from sp1−1
1 to tp1−1

1 along C is denoted by C̄p1−1 (see Fig. 6).
First assume that there exist sj

i ∈ U(C̄p1−1) and tji ∈ V (Cp1−1) for some i ∈ {1, 2} and
j ∈ {1, . . . , pi − 1}. Let D′ be the M -alternating circuit consisting of Qj

i and C. Then D′ ∪
Qp1−1

1 ∪ C̄p1−1 is an even subdivision of K2,3, denoted by H. By taking M△E(P1[t
p1−1
1 , w1]),

we know that H is left-central.
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Next assume that there exist no i ∈ {1, 2} and j ∈ {1, . . . , pi − 1} such that sj
i ∈ U(C̄p1−1)

and tji ∈ V (Cp1−1). By tp1−2
1 ∈ V (Cp1−1), where t01 = y1, this assumption implies that tj−1

1 ∈
V (Cp1−1) and sj

1 ∈ V (Cp1−1) for any j = 1, . . . , p1−1. Hence Q1
1, Q

2
1, . . . , Q

pi−1
1 are ears of Cp1−1.

Since M△E(T1) is a left-perfect matching in Ge and C△D is (M△E(T1))-alternating, the circuit
C△D is oddly oriented. Hence D is evenly oriented by Claim 1. Since M△E(T2) is a left-perfect
matching in Ge, the circuit D is not (M△E(T2))-alternating. This implies that P2 has an edge
in Cp1−1. Moreover, by the choice of P1 and P2, the path P2 also has an edge in C̄p1−1. Hence
there exists an ear Qk

2 with some k ∈ {1, . . . , p2 − 1} from sk
2 ∈ U(Cp1−1) to tk2 ∈ V (C̄p1−1). It

follows from the assumption that tj2 ∈ V (C̄p1−1) for any j = k, . . . , p2 − 1 and tj2 ∈ V (Cp1−1) for
any j = 0, . . . , k − 1, where t02 = y1. Then we obtain |E(D ∪ P1 ∪ P2)| < |E(C ∪ P1 ∪ P2)| since
the terminal edges in C̄p1−1 are not contained in D ∪ P1 ∪ P2. This contradicts the choice of C,
P1, and P2.

Qp1−1
1

Qj
i

sj
i

tji

D

sp1−1
1

tp1−1
1

tp1
1

sp1
1

D′

C

Figure 6: The case of p1 ≥ 2 (Claim 4)

w2

s1
2

y1

y2

R2

w1

s1
1

R1

vu

C

e

Q1
1

Q1
2 P ′

Figure 7: The case of p1 = p2 = 1 (Claim 5)

Claim 5. If p1 = p2 = 1, then G contains K2,3 or L3,5.

Proof. By p1 = p2 = 1, the vertices y1, s
1
1, y2, s

2
1 appear in this order along C. First assume that

neither of w1 and w2 coincide with v (see Fig. 7). Then H = R1 ∪ R2 ∪ {e} ∪ C ∪ Q1
1 ∪ Q2

1

is an even subdivision of L3,5. Moreover, H is left-central, because M \ E(H) is a left-perfect
matching in G \H. Thus G contains L3,5. Next assume that either of w1 and w2 coincides with
v. We may assume that w1 = v. Then H ′ = R1 ∪ R2 ∪ {e} ∪ P ′ ∪ Q1

1 an even subdivision of
K2,3, where P ′ is the path along C from y1 to y2 with s1

1 ∈ U(P ′) and s1
2 ̸∈ U(P ′). We know

that H ′ is left-central, because (M△E(P2)) \ E(H ′) is a left-perfect matching in G \ H ′. Thus
G contains K2,3.
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Case (2): all evenly oriented left-central circuits have the edge e

Assume that all evenly oriented left-central circuits have the edge e = (u, v). Let C0 be one of
such evenly oriented left-central circuits. Since G has no totally Pfaffian orientation even if e

is oriented oppositely, there exists an oddly oriented left-central circuit C1 which uses e. We
choose C0 and C1 such that |E(C01)| is maximum, where C01 is the connected component of
C0 ∩C1 having e. For i = 0, 1, let Mi be a left-perfect matching such that Ci is Mi-alternating.
We may assume that e ̸∈ Mi for i = 0, 1 and that |V (M0) ∩ V (M1)| is maximum.

For i = 0, 1, we denote by Ĉi the path obtained from Ci by deleting e. Let D0 be the subgraph
with edge set E(C0) \E(C1), and D1 the subgraph with E(C1) \E(C0), and D = D0 ∪D1. We
denote the connected components of D0 by D1

0, . . . , D
p
0, where p is a positive integer. Each

component Di
0 is a path. We may assume that D1

0, . . . , D
p
0 appear in this order along Ĉ0 from

u to v. For i = 1, . . . , p, the end vertices of Di
0 are denoted by si and ti, where si is closer to

u along Ĉ0 than ti. Let Di
1 be the path of D1 whose end vertices are si and ti, and Di be the

circuit consisting of Di
0 and Di

1 for i = 1, . . . , p.
We first show the following claims.

Claim 6. Let P be a path with end vertices w ∈ W (D0) \ {s1} and z ∈ W (D1) \ {tp}. Assume
that W (P ∩ Ĉ0[u,w]) = {w} and W (P ∩ Ĉ1[z, v]) = {z}. Then the circuit C ′ = Ĉ0[u,w] ∪ P ∪
Ĉ1[z, v] ∪ {e} is not left-central.

Proof. Assume that C ′ is left-central. If C ′ is oddly oriented, then C ′ and C0 contradict the
maximality of |E(C01)|. Otherwise, C ′ and C1 contradict the maximality of |E(C01)|.

Claim 7. The path D1
i is not Mj-alternating ear of Cj, where (i, j) = (0, 1) and (1, 0).

Proof. Assume to the contrary that D1
0 is an M1-alternating ear of C1. Then the two circuits

D1 and C1△D1 are left-central by taking M1△E(D1) if necessary. If p ≥ 2, then either C0

and C1△D1 or C1 and C1△D1 contradict the choice of C0 and C1. Hence we have p = 1 and
C0 = C1△D1. By Claim 1, D1 is evenly oriented, which contradicts the assumption of Case (2).
Thus D1

0 is not an M1-alternating ear of C1. In a similar way, D1
1 is not an M0-alternating ear

of C0.

A path P is said to be (M0,M1)-path if the elements of P alternate between elements of M0

and M1 along P . An (M0, M1)-path is both M0-alternating and M1-alternating. An (M0, M1)-
path is maximal if one of its end vertices is in V (M0)\V (M1) and the other is in V (M1)\V (M0).

We will next show in Claims 9 and 10 that G contains K2,3 or L′
3,5, where L′

3,5 is the bipartite
graph obtained from L3,5 by deleting one vertex with degree one. For that purpose, we need the
following claim.

Claim 8. Assume that E(Ci) \ E(C01) and Mi \ E(C01) for i = 0, 1 have been chosen to
minimize |E(C0 ∪C1)∪M0 ∪M1|. Let R be an (M0, M1)-ear of Ci with end vertices w ∈ U(Di)
and z ∈ V (Di) for some i ∈ {0, 1}. Then R ∪ Ĉi[w, z] is Mi-alternating, and w ∈ U(Ĉi[s1, z])
holds.
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Proof. It suffices to show the case of i = 0. Assume that C ′ = R∪Ĉ0[w, z] is not M0-alternating.
Since C ′ is left-central by taking M0△E(C0), the circuit C ′ is oddly oriented by the assumption
of Case (2). Claim 1 implies that C ′

0 = C0△C ′ is evenly oriented. The circuit C ′
0 satisfies that

|E(C ′
0 ∪C1) ∪M0 ∪M1| < |E(C0 ∪C1) ∪M0 ∪M1|, since the terminal edges of Ĉ0[w, z] are not

contained in E(C ′
0 ∪C1)∪M0 ∪M1. This contradicts the minimality of |E(C0 ∪C1)∪M0 ∪M1|.

Thus C ′ is not M0-alternating, which implies that w ∈ U(Ĉi[s1, z]).

Using Claim 8, we obtain Claims 9 and 10 as follows. Figures 8 and 9 will be helpful to
understand the proofs of these claims.

Claim 9. If s1 ∈ U , then G contains K2,3.

Proof. We may suppose that E(Ci) \ E(C01) and Mi \ E(C01) for i = 0, 1 have been chosen to
minimize |E(C0 ∪ C1) ∪ M0 ∪ M1|. We will show that such C0 and C1 form a left-central even
subdivision of K2,3.

Let P be the maximal (M0,M1)-path with s1 ∈ U(P ). The path P is denoted by a sequence
of edges e1

0, e
1
1, . . . , e

r
0, e

r
1, where ej

0 = (xj , yj−1) ∈ M0 and ej
1 = (xj , yj) ∈ M1 with xj ∈ U and

y0, yj ∈ V for j = 1, . . . , r. We denote s1 = xk for some k ∈ {1, . . . , r}.
We will first show that P [xk, y0] ( D1

0. Assume to the contrary that there exists an edge of
P [xk, y0] not in E(D1

0). Let l in 1, . . . , k− 1 be the maximum index such that el
1 ̸∈ E(D1

0). Note
that P [xk, yl] ⊆ D1

0 holds. Since D1 is not M1-alternating by Claim 7, yl ̸= t1 holds. If P [yl, y0]
does not have an edge in E(C1), then M0 and M1△E(P [yl, y0]) contradict the minimality of
|E(C0 ∪ C1) ∪ M0 ∪ M1|. Hence P [yl, y0] has an edge in E(C1). Since P [xk, yl] ⊆ D1

0 and
yl ∈ V , there exists no (M0,M1)-ear of C0 from yl to a vertex in U(D0) by Claim 8. Hence
the subpath P [yl, y0] includes an (M0,M1)-path Q from yl to a vertex yl′ in V (D1) such that
W (Q ∩ C0) = {yl} and W (Q ∩ C1) = {yl′}. The vertex yl′ is not equal to tp, and P [xk, yl′ ]
is an M1-alternating ear of C1. Let D′ = P [xk, yl′ ] ∪ Ĉ1[xk, yl′ ]. Since the circuit C1△D′ is
M ′

1-alternating, where M ′
1 = M1△E(D′), this circuit contradicts Claim 6. Thus P [xk, y0] ( D1

0

and y0 ∈ V (D1
0) \ {t1} hold.

We next show that, for any edge f ∈ M0 in E(D1
0[y

0, t1]), we have f ∈ M1. Indeed,
if w ∈ U(D1

0[y
0, t1]) has two distinct edges f = (w, z) ∈ M0 and f ′ = (w, z′) ∈ M1, then

P ′ = D1
0[y

0, w] ∪ {f ′} is an M1-alternating path by choosing w that is closest to y0 along D1
0,

and hence M0 and M1△E(P ′) contradict the minimality of |E(C0 ∪ C1) ∪ M0 ∪ M1|. Thus
D1

0[y
0, t1] is also M1-alternating, and hence t1 ∈ U holds. This implies that C1△D1 is an M ′′

1 -
alternating circuit, where M ′′

1 = M1△E(P [y0, yk]). By the maximality of |E(C01)|, we have
p = 1 and C0 = C1△D1.

Therefore, by p = 1 and s1, t1 ∈ U , the subgraph C0 ∪ C1 is an even subdivision of K2,3 (see
Fig. 8). Since G \ (C0 ∪C1) has a left-perfect matching M1 \E(C0 ∪C1), this is left-central.

Claim 10. If s1 ∈ V , then there exist Mi and Ci for i = 0, 1 such that M1 = M0△E(P ) for
some (M0,M1)-path P , and C0 ∪ C1 ∪ P forms a left-central even subdivision of L′

3,5.
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Figure 8: The case of s1 ∈ U (Claim 9)
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Figure 9: The case of s1 ∈ V (Claims 10 & 12)

Proof. In a similar way to Claim 9, suppose that E(Ci)\E(C01) and Mi\E(C01) for i = 0, 1 have
been chosen to minimize |E(C0 ∪ C1) ∪ M0 ∪ M1|. Let w0 ∈ U(C0) be the vertex that has two
distinct edges of M0 and M1. Choose w0 that is closest to s1 along Ĉ0. Note that D0[s1, w0] is
M1-alternating. Claim 7 implies that w0 ∈ U(D1

0). Let P be the maximal (M0, M1)-path having
w0. The path P is denoted by a sequence of edges e1

0, e
1
1, . . . , e

r
0, e

r
1, where ej

0 = (xj , yj−1) ∈ M0

and ej
1 = (xj , yj) ∈ M1 with xj ∈ U and y0, yj ∈ V for j = 1, . . . , r. We denote w0 = xk for

some k ∈ {1, . . . , r}.
We first note that there exists an edge in E(P [xk, y0]) \ E(D1

0). Indeed, if P [xk, y0] ⊆ D1
0,

then M0 and M1△E(P [yk, y0]) contradict the minimality of |E(C0 ∪ C1) ∪ M0 ∪ M1|. Let l

in 1, . . . , k − 1 be the maximum index such that el
1 = (xl, yl) ̸∈ E(D0). Then yl ∈ V (D1

0)
holds. If P [yl, y0] does not have an edge in E(C1), then M0 and M1△E(P [yl, y0]) contradict the
minimality of |E(C0 ∪ C1) ∪ M0 ∪ M1|. Hence P [y0, yl] has an edge in E(C1). Moreover, since
D1

0[s
1, xk] is M1-alternating and yl ∈ V , there exists no (M0,M1)-ear of C0 from yl to a vertex

in U(D0) by Claim 8, which implies that P [y0, yl] has no edges in E(C0).
Let l′ in 1, . . . , k − 1 be the index such that yl′ ∈ V (P ) is the vertex of V (C1) that is closest

to v along Ĉ1. Then C ′ = Ĉ0[u, yl]∪P [yl, yl′ ]∪ Ĉ1[yl′ , v]∪{e} is an M ′
1-alternating circuit, where

M ′
1 = M1△E(P [yk, y0]). Hence C ′ is left-central. Since yl ∈ V (D1

0)\{s1}, it follows from Claim
6 that yl′ = tp. This implies that el′+1

0 ∈ E(D0) and el′
1 ∈ E(D1). Since P [y0, yl] has no edges in

E(C0), we have l = l′. Therefore, by yl ∈ V (D1
0) and yl′ = tp, we obtain p = 1 and yl = yl′ = t1.

Thus P includes Ĉ0[w0, t
1].

In a similar way, let w1 ∈ U(C1) be the vertex that has two distinct edges of M0 and M1.
Choose w1 that is closest to s1 along Ĉ1. Note that D1

1[s
1, w1] is M0-alternating. Let P ′ be the

maximal (M0,M1)-path having w1. Then P ′ includes Ĉ1[w1, t
1]. Since P ′ has the vertex t1, the

path P ′ coincides with P .
By p = 1, the subgraph with edge set E(P ) \ E(C0 ∪ C1) consists of two paths from V \

V (C0∪C1) to U(D0) and U(D1), respectively (see Fig. 9). Therefore, by s1, t1 ∈ V , the subgraph
C0 ∪ C1 ∪ P is an even subdivision of L′

3,5, denoted by L. The subgraph L is left-central, since
G \L has a left-perfect matching M0 \E(L). The minimality of |E(C0 ∪C1)∪M0 ∪M1| implies
that M0 = M1△E(P ).
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Claim 9 implies that, if s1 ∈ U , then G contains K2,3. Thus we henceforth assume s1 ∈ V .
By Claim 10, take Ci and Mi for i = 0, 1 such that M1 = M0△E(P ) for some (M0,M1)-path
P , and C0 ∪ C1 ∪ P , denoted by L, forms a left-central even subdivision of L′

3,5. Since D is
one circuit, we simply denote s1 = s and t1 = t. The path P is denoted by a sequence of
edges e1

0, e
1
1, . . . , e

r
0, e

r
1, where ej

0 = (xj , yj−1) ∈ M0 and ej
1 = (xj , yj) ∈ M1 with xj ∈ U and

y0, yj ∈ V for j = 1, . . . , r. Let xk be the vertex in U(D0) that is closest to yr along P , and xk′

be the vertex in U(D1) that is closest to y0. We may assume that k = r and k′ = 1 by taking
M0△E(P [yk, yr]) and M1△E(P [y0, yk′−1]).

Claim 11. There is no M0-alternating ear of L between (W (D0) \ {s, t}) ∪ {yr} and (W (D1) \
{s, t}) ∪ {y0}.

Proof. If suffices to show that there is no M0-alternating ear of L from U(D0) to V (D1)∪ {y0}.
Assume that L has such an M0-alternating ear Q from w ∈ U(D0) to z ∈ V (D1) ∪ {y0}.

First assume that z ∈ V (D1[s, x1]). Then C ′ = D1[u, z] ∪ Q ∪ D0[w, v] ∪ {e} is an M0-
alternating circuit, which contradicts Claim 6. Next assume that z ∈ V (Ĉ1[x1, t]). Then C ′′ =
Ĉ1[t, z] ∪ Q ∪ Ĉ0[w, t] is M0-alternating. Hence C0△C ′′ is left-central, which contradicts Claim
6. Finally, assume that z = y0. Let D′ = Ĉ1[s, z] ∪ {e1

0} ∪ Q ∪ Ĉ0[w, s] and D′′ = D1△D′.
Then one of D′ and D′′ is evenly oriented by Claim 1, because D1 is oddly oriented. Since D′

is (M0△E(C0))-alternating and D′′ is M0-alternating, both of D′ and D′′ are left-central. This
contradicts the assumption of Case (2).

Since Ge is DM-irreducible, Proposition 6.6 implies that there exists an M0-alternating path
R from some vertex u′ in U(Ĉ0[u, s]) to a vertex v′ ̸∈ V (M0) such that e ̸∈ E(R) and W (Q ∩
Ĉ0[u, s]) = {u′}. We may suppose that D0, D1, and R have been chosen to minimize |E(R ∪
C0 ∪ C1)|.

The subgraph with edge set E(R) \ E(L) is the set of M0-alternating paths, denoted by
R1, R2, . . . , Rq, where q is a positive integer. We may assume that R1, R2, . . . , Rq appear in
this order along R from u′ to v′. Then the path Rj for 1 ≤ j ≤ q − 1 is an M0-alternating
ear of L, and Rq is an M0-alternating path from a vertex in U(L) to v′. Note that Rj is also
M1-alternating. We denote the end vertices of Rj by wj ∈ U and zj ∈ V for j = 1, . . . , q.
In the same way as Claim 8, if Rj is an M0-alternating ear of L with wj , zj ∈ W (D0), then
C0[wj , zj ] ∪ Rj is M0-alternating and wj ∈ U(Ĉ0[s, zj ]) by the minimality of |E(R ∪ C0 ∪ C1)|.

We next show the following claim, which completes the proof of Case (2) in Theorem 6.2.
The proof of this claim uses the same technique as that of Proposition 6.1 by Norine, Little, and
Teo [20].

Claim 12. The graph G contains K2,3 or L3,5.

Proof. Suppose that z1 ∈ V (Ĉ0[t, v]). Then Ĉi[w1, z1] ∪ R1 is an Mi-alternating circuit for
i = 0, 1, and hence these two circuits are oddly oriented by the assumption of Case (2). This
implies that D is evenly oriented by Claim 1, which is a contradiction. Thus z1 ̸∈ V (Ĉ0[t, v])
holds.
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We first consider the case of q ≥ 2. By z1 ̸∈ V (Ĉ0[t, v]), we have z1 ∈ V (D). Since R1 is also
M1-alternating, we may assume that z1 ∈ V (D0). Then C ′ = Ĉ0[w1, z1]∪R1 is an M0-alternating
circuit not having the edge e. Hence C ′ is oddly oriented by the assumption of Case (2). Since
D is oddly oriented, D△C ′ is evenly oriented by Claim 1. If there exists an M0-alternating path
P ′ from a vertex w′ ∈ U(D0[s, z1]) to a vertex z′ ̸∈ V (M0) with W (P ′ ∩ (D ∪ C ′)) = {w′}, then
the circuit D△C ′ is left-central by taking M0△E(P ′ ∪ D0[w′, t] ∪ P [t, y0]), which contradicts
the assumption of Case (2). Thus there are no such M0-alternating paths from U(D0[s, z1]) to
V \ V (M). This implies that xr ∈ U(D0[z1, t]) and q ̸= 2.

Assume that z2 ∈ V (Ĉ0[t, v]). Then the subgraph with edge set E(C0∪R1∪R2)\E(Ĉ0[z1, z2])
forms an even subdivision of K2,3. By xr ∈ U(D0[z1, t]), this subdivision is left-central by taking
M0△E(D0[z2, xr] ∪ {er

1}). Hence we may assume that R2 is an M0-alternating ear of D0. Note
that Rj∪D0[wj , zj ] is an M0-alternating circuit for 1 < j < q. Hence we have zj+1 ∈ V (D0[zj , t])
if j < q − 1 and wj+1 ∈ V (D0[zj−1, zj ]) if 1 < j < q. Letting C ′′ = R2 ∪ D0[w2, z2], we
define M ′

0 = M0△E(C ′′), C ′
0 = C0△C ′′, and R′ to be the subgraph with E(R)△E(C ′′). Then

R′ is an M0-alternating path from u′ to v′ and C ′
0 is an evenly oriented circuit. They satisfy

|E(R′∪C ′
0∪C1)| < |E(R∪C0∪C1)|, since the terminal edges of D0[w2, z2] are not in R′∪C ′

0∪C1.
This contradicts the choice of C0, C1, and R. Thus, if q ≥ 2, then G contains K2,3.

It remains to discuss the case of q = 1. If z1 = yr, then H = C0 ∪ {er
1} ∪ R1 is an even

subdivision of K2,3. Otherwise, H = L ∪ R is an even subdivision of L3,5. In both cases, H is
left-central because M0 \ E(H) is a left-perfect matching of G \ H.
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