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Abstract

A digraph is odd-cycle-symmetric if every arc in any elementary odd directed cycle has the reverse
arc. This concept arises in the context of the even factor problems, which generalize the path-matching
problems. While the even factor problem is NP-hard in general digraphs, it is solvable in polynomial
time for odd-cycle-symmetric digraphs. This paper provides a characterization of odd-cycle-symmetric
digraphs and presents a linear time algorithm to determine whether a given digraph is odd-cycle-
symmetric or not. The paper also discusses the weighted version.

1 Introduction

A directed graph (digraph) is odd-cycle-symmetric if every arc in any elementary odd directed cycle has
the reverse arc. Odd-cycle-symmetric digraphs were introduced in the context of the even factor problems.

An even factor in a digraph is a collection of vertex-disjoint directed paths and even directed cycles,
which is introduced by Cunningham and Geelen [2] as a generalization of a path-matching [1]. It is known
that the problem of finding a maximum even factor is NP-hard in general, but solvable in polynomial
time if the digraph is weakly symmetric [2], which is a special case of the odd-cycle-symmetric digraphs.
A digraph is said to be weakly symmetric if every arc in any directed cycle has the reverse arc. We say a
digraph is symmetric if every arc has the reverse arc. Recently, Pap [5] devised a polynomial algorithm
for the even factor problem in an odd-cycle-symmetric digraph.

This paper gives a characterization of the odd-cycle-symmetric digraphs. For this purpose, we intro-
duce the notion of a cycle-connected digraph. A digraph is said to be cycle-connected if it is strongly
connected and its underlying graph is 2-connected. A digraph is said to be bipartite if its underlying graph
is bipartite. Our main result (Theorem 1) asserts that a cycle-connected digraph is odd-cycle-symmetric
if and only if it is symmetric or bipartite.

A digraph can be decomposed into cycle-connected components. This decomposition preserves odd-
cycle-symmetry. Therefore, it follows from Theorem 1 that an odd-cycle-symmetric digraph can be
decomposed into bipartite digraphs and symmetric digraphs. Since the decomposition can be done in
linear time with the aid of basic graph algorithms, odd-cycle-symmetry can be recognized in linear time.
Note that a weakly symmetric digraph can be decomposed into symmetric cycle-connected components.
Thus the class of odd-cycle-symmetric digraphs is slightly broader than that of weakly symmetric digraphs.
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In addition, we discuss odd-cycle-symmetry of weighted digraphs. Let w be a weight function defined
on the arc set of an odd-cycle-symmetric digraph G. Then (G,w) is said to be odd-cycle-symmetric if the
sum of the weights of the arcs in any elementary odd directed cycle C is the same as that of its reverse
cycle C̄.

For an odd-cycle-symmetric weighted digraph (G,w), Király and Makai [4] presented a linear program
that describes the maximum weight even factor problem, and proved the dual integrality. Takazawa [7]
presented a combinatorial primal-dual algorithm to find a maximum weight even factor in an odd-cycle-
symmetric weighted digraph. His algorithm also gives a constructive proof of the dual integrality.

In the same way as the unweighted case, we deal with a cycle-connected weighted digraph G. Theorem
1 implies that, if G is odd-cycle-symmetric, then it is bipartite or symmetric. If G is bipartite, then
(G,w) is clearly odd-cycle-symmetric for any weight function w. We show that, for a digraph G that is
not bipartite but symmetric, (G,w) is odd-cycle-symmetric if and only if there exists a function p on the
vertex set such that d(a) = p(v) − p(u) for each arc a = (u, v) in G, where d(a) = w(a) − w(ā) for each
arc a and its reverse arc ā. Odd-cycle-symmetry of a weighted digraph can be tested in linear time by
checking the existence of such function p.

We conclude this section by giving some definitions and notations. In this paper, we consider
digraphs with no loops and no multiple arcs. We denote by (u, v) the arc from u to v. We say
P = (v1, a1, . . . , vk, ak, vk+1) is a path if ai = (vi, vi+1) for 1 ≤ i ≤ k. A path is said to be even if
k is even, and odd if k is odd. If vi 6= vj for i 6= j, then P is said to be elementary. We call v1 and vk+1

the end vertices of P , and the other vertices the interior vertices. A cycle C is a path which ends at the
vertex it begins with, namely, C = (v1, a1, . . . , vk, ak, v1). If vi 6= vj (i 6= j, 1 ≤ i, j ≤ k), then C is said
to be elementary.

For paths P1 = (v1, a1, . . . , vk, ak, vk+1) and P2 = (vk+1, ak+1, . . . , vl, al, vl+1), we denote by P1 ·P2 the
path (v1, a1, . . . , vk, ak, vk+1, ak+1, . . . , vl+1). For a subgraph G′ and a path P in a digraph G, we denote
by G′ + P the subgraph that consists of the vertices and the arcs of G′ and P .

For an arc a, we denote by ā the reverse arc (if exists). For a path P = (v1, a1, . . . vk, ak, vk+1), the
reverse path (if exists) is denoted by P̄ , that is P̄ = (vk+1, āk, vk, . . . , ā1, v1).

2 Odd-Cycle-Symmetry

Our main result is the following theorem.

Theorem 1. A cycle-connected digraph G is odd-cycle-symmetric if and only if G is bipartite or sym-
metric.

In order to prove Theorem 1, we use the ear decomposition of cycle-connected digraphs. Let G be a
digraph, and G′ a subgraph of G. We say that an elementary path P in G is an ear of G′ if G′ contains
both of the end vertices of P , but no interior vertices and no arcs. An ear is said to be proper if its
end vertices are distinct. Then the following lemma holds for cycle-connected digraphs. This lemma was
shown by Grötschel [3], where cycle-connected digraphs are called strong blocks.

Lemma 2. Let G be a cycle-connected digraph, and G′ a subgraph of G with at least two vertices. If
G′ 6= G then G′ has a proper ear.
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Proof. Assume that there exist no proper ears of G′ = (V ′, A′). Let v1, . . . , vh ∈ V ′ be all vertices from
which some arcs in A \ A′ leave, and Si be the set of vertices which can be reached from vi without
using arcs of A′. Since G′ has no proper ears, V ′ ∩ Si = {vi} for each i. Since G is strongly connected,
vj is reachable from any vertex in Sj . Hence Si ∩ Sj = ∅ for i 6= j, so S1, . . . , Sh is a partition of
(V \ V ′) ∪ {v1, . . . , vh}. Since there are no arcs between Si and Sj for i 6= j, we can separate Si \ {vi}
from V \ Si by deleting vi, which contradicts that the underlying graph of G is 2-connected.

We also give a characterization of digraphs without elementary odd cycles.

Lemma 3. A strongly connected digraph G has no elementary odd cycles if and only if G is bipartite.

Proof. The necessity is obvious. To see the sufficiency, suppose G = (V,A) has no elementary odd cycles.
Then G has no odd cycles. Let a ∈ A be an arc from u to v such that ā 6∈ A. Since G is strongly
connected and has no odd cycles, there exists an odd path P from v to u. Then there exist no even paths
from u to v, and hence the digraph obtained from G by adding the reverse arc ā also has no odd cycles.
Thus G′ = (V,A ∪ Ā) has no odd cycles, which means G is bipartite.

By these lemmas, we have the following proposition.

Proposition 4. Let G be a cycle-connected odd-cycle-symmetric digraph that is not bipartite. There
exists a sequence G0, G1, . . . , Gk = G of subgraphs such that the following (A) and (B) hold.

(A) G0 consists of an elementary odd cycle C and its reverse cycle C̄.

(B) Gi+1 is obtained from Gi by adding Pi and P̄i, where Pi is a proper ear having the reverse path P̄i,
for i = 0, 1, . . . , k − 1.

Furthermore, the sequence G0, G1, . . . , Gk satisfies the following (C) and (D).

(C) There exist both an elementary even path and an elementary odd path from u to v in Gi = (Vi, Ai)
for every vertex pair u, v ∈ Vi.

(D) If P is a proper ear of Gi, then every arc of P has the reverse arc.

Proof. By Lemma 3, G has an elementary odd cycle C. Hence there exists a subgraph G0 satisfying
(A). Since Lemma 2 and the condition (D) assure that there exists a sequence G0, G1, . . . , Gk = G of
subgraphs such that (A) and (B) hold, it suffices to show (C) and (D).

We prove (C) and (D) by induction on i. Obviously, G0 satisfies (C) and (D). Suppose (C) and (D)
hold for i = j. Let Pj be a proper ear of Gj from sj to tj . Then the reverse path P̄j exists by the
induction hypothesis of the condition (D). Consider Gj+1 = Gj + Pj + P̄j .

We first show that the condition (C) holds for i = j + 1.

1. Suppose u, v ∈ Vj . Then it follows from the induction hypothesis that there exist both an elementary
even path and an elementary odd path from u to v in Gj+1.

2. Suppose u ∈ Vj and v ∈ Vj+1 \Vj . Let P ′ be a path from sj to v along Pj . Since there exist both an
elementary even path Pe and an elementary odd path Po from u to sj in Gj , one of Pe ·P ′ and Po ·P ′

is an elementary even path, and the other is an elementary odd path. If v ∈ Vj and u ∈ Vj+1 \ Vj ,
we can prove that there exist both an elementary even path and an elementary odd path from u to
v in a similar way.
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3. Suppose u, v ∈ Vj+1 \ Vj . Without loss of generality we assume sj , v, u, and tj appear on Pj in this
order. Let P ′ be a path from u to tj along Pj , and P ′′ a path from sj to v along Pj . Since there
exist both an elementary even path Pe and an elementary odd path Po from tj to sj in Gj , one of
P ′ · Pe · P ′′ and P ′ · Po · P ′′ is an elementary even path, and the other is an elementary odd path.

Thus there exist both an elementary even path and an elementary odd path from u to v in Gj+1 for every
vertex pair u, v ∈ Vj+1.

We next show that the condition (D) holds for i = j + 1. Let P be a proper ear of Gj+1 from s to t.
Since there exist both an elementary even path Pe and an elementary odd path Po from t to s in Gj+1,
either P · Pe or P · Po is an elementary odd cycle. Hence every arc of P has the reverse arc.

We are now ready to prove Theorem 1. The necessity is obvious, as bipartite digraphs have no odd
cycles. To prove the sufficiency, assume that a digraph G is odd-cycle-symmetric. If G is not bipartite,
then it is symmetric by Proposition 4, which completes the proof of Theorem 1.

Theorem 1 leads to a linear time algorithm for recognizing odd-cycle-symmetry of a digraph as follows.

Corollary 5. Given a digraph G, we can determine whether G is odd-cycle-symmetric in O(m+n) time,
where m and n are the numbers of the arcs and vertices, respectively.

Proof. We can decompose G into strongly connected components in linear time [8]. We can also decompose
each strongly connected component into the components whose underlying graphs are 2-connected in
linear time [6, 8]. Note that these components are also strongly connected, and hence cycle-connected.
Since every cycle in G is contained in some component, G is odd-cycle-symmetric if and only if every
component is odd-cycle-symmetric. By Theorem 1, it suffices to check if every obtained component D

is bipartite or symmetric. We can check whether D is bipartite or not in O(mD + nD) time, where mD

and nD represent the numbers of the arcs and vertices of D, respectively. Checking the symmetry of D

requires O(mD +nD) time. Thus we can determine whether G is odd-cycle-symmetric or not in O(m+n)
time.

3 Odd-Cycle-Symmetry of Weighted Digraphs

Let G = (V,A) be an odd-cycle-symmetric digraph, and w be a weight function defined on the arc set A.
We write w(P ) = Σa∈P w(a) for a path P , and w(C) = Σa∈Cw(a) for a cycle C. Then (G,w) is said to
be odd-cycle-symmetric if w satisfies that w(C) = w(C̄) for every elementary odd cycle C.

If an arc a has the reverse arc ā, then d(a) denotes w(a) − w(ā). Note that w(C) = w(C̄) for a cycle
C is equivalent to d(C) = 0.

Theorem 6. Let G = (V,A) be a cycle-connected symmetric digraph that is not bipartite. A weighted
digraph (G,w) is odd-cycle-symmetric if and only if there exists a function p on V such that d(a) =
p(v) − p(u) for each arc a = (u, v) ∈ A.

Proof. The necessity is obvious, as the existence of such a function p implies that w(C ′) = w(C̄ ′) for every
elementary cycle C ′. To prove the sufficiency, we assume that (G,w) is odd-cycle-symmetric. A digraph
G has an elementary odd cycle C by Lemma 3.

Let G0, G1, . . . , Gk = G be a sequence of subgraphs of G which satisfies the following conditions.

1. The subgraph G0 consists of C and C̄.
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2. For i = 0, 1, . . . , k − 1, Gi+1 = Gi + Pi + P̄i, where Pi is a proper ear of Gi from si to ti.

Proposition 4 guarantees the existence of such a sequence.
We show by induction on i that Gi = (Vi, Ai) has a function pi on Vi such that d(a) = pi(v) − pi(u)

for each arc a = (u, v) ∈ Ai. It is trivial that G0 satisfies this property. Suppose Gj satisfies the property.
Consider Gj+1 = Gj + Pj + P̄j .

By Proposition 4, there exist both an elementary even path Pe and an elementary odd path Po from
tj to sj in Gj , and either Pj · Pe or Pj · Po is an elementary odd cycle. Furthermore, Pe and Po satisfy
d(Pe) = d(Po) = pj(sj)− pj(tj). Thus we have d(Pj) = pj(tj)− pj(sj). We define a function pj+1 on Vj+1

as follows. If v ∈ Vj , then we set pj+1(v) = pj(v). Otherwise, we set pj+1(v) = pj(sj)+d(Pv), where Pv is
a path from sj to v along Pj . Then d(a) = pj+1(v) − pj+1(u) holds for each arc a = (u, v) ∈ Aj+1. Thus
Gj+1 satisfies the property.

Since G = Gk, there exists a function p on V such that d(a) = p(v) − p(u) for each arc a = (u, v) ∈
A.

Corollary 7. Given a weighted digraph (G,w), we can determine whether (G,w) is odd-cycle-symmetric
in O(m + n) time, where m and n are the numbers of the arcs and vertices, respectively.

Proof. As in the the proof of Corollary 5, recognizing odd-cycle-symmetry of (G,w) can be reduced to
that of cycle-connected digraphs in linear time. Hence we may assume G = (V,A) is cycle-connected. A
cycle-connected weighted digraph (G,w) is odd-cycle-symmetric if and only if G is bipartite, or G is a
symmetric graph with a function p such that d(a) = p(v)−p(u) for each arc a = (u, v) ∈ A. Whether G is
bipartite or not can be checked in linear time. It also takes a linear time to check whether G is symmetric
or not. The existence of the function p can be checked in O(m + n) time as follows. Take a vertex r ∈ V

and find a directed spanning tree T in G rooted at r. For each vertex v ∈ V , let Pv be the unique path
from r to v in T , and set p(v) := d(Pv). Note that p(r) = 0. Then for each arc a = (u, v) ∈ A \ T , check
if d(a) = p(v) − p(u) holds.

Thus we can determine whether (G,w) is odd-cycle-symmetric or not in linear time.
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