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Abstract

In numerical computations of tsunamis due to submarine earthquakes, it is frequently
assumed that the initial displacement of the water surface is equal to the permanent shift
of the seabed and that the initial velocity field is equal to zero, and the shallow water
equations are often used to simulate the propagation of tsunamis. In this paper we give a
mathematically rigorous justification of this tsunami model starting from the full water wave
problem by comparing the solution of the full problem and that of the tsunami model. We
also show that in some case we have to impose a nonzero initial velocity field, which arises
as a nonlinear effect.

1 Introduction

Tsunamis are known as one of disastrous phenomena of water waves and characterized by having
very long wavelength. They are generated mainly by a sudden deformation of the seabed with
a submarine earthquake. The motion of tsunamis can be modeled as an irrotational flow of an
incompressible ideal fluid bounded from above by a free surface and from below by a moving
bottom under the gravitational field. The model is usually called the full water wave problem.
Because of complexities of the model, several simplified models have been proposed and used
to simulate tsunamis. One of the most common models of tsunami propagation is the shallow
water model under the assumptions that the initial displacement of the water surface is equal to
the permanent shift of the seabed and that the initial velocity field is equal to zero. Namely, in
numerical computations of tsunamis due to submarine earthquakes, one usually uses the shallow
water equations

(1'1) { 77t+v' ((h+n_b1)u) :07

u+ (u-V)u+gVn =0
under the following particular initial conditions
(1.2) Nlt=0 = b1 — bo, ult=0 = 0,

where 7 is the variation of the water surface, u is the velocity of the water in the horizontal
directions, g is the gravitational constant, h is the mean depth of the water, by is the bottom
topography before the submarine earthquake, and by is that after the earthquake. The aim of
this paper is to give a mathematically rigorous justification of this shallow water model starting
from the full water wave problem, especially, the justification of the initial conditions (1.2).

In this paper two non-dimensional parameter § and ¢ play an important role, where ¢ is
the ratio of the water depth h to the wave length A and ¢ is the ratio of the duration ty of the
submarine earthquake to the period of tsunami \/\/gh. We note that \/gh is the propagation
speed of linear shallow water waves and that the duration of the seabed deformation is very
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short compared to the period of tsunamis in general. Therefore, € should be a small parameter.
It is known that the shallow water equations (1.1) are derived from the full water wave problem
in the limit 6 — +0. The derivation goes back to G.B. Airy [1]. Then, K.O. Friedrichs [4]
derived systematically the equations by using an expansion of the solution with respect to §2.
See also H. Lamb [10] and J.J. Stoker [16]. A mathematically rigorous justification of the
shallow water approximation for two-dimensional water waves over a flat bottom was given by
L.V. Ovsjannikov [14, 15] under the periodic boundary condition with respect to the horizontal
spatial variable, and then by T. Kano and T. Nishida [8] in a class of analytic functions. See
also [9, 7]. The justification in Sobolev spaces was given by Y.A. Li [12] for two-dimensional
water waves over a flat bottom and by B. Alvarez-Samaniego and D. Lannes [2] and the author
[6] for three-dimensional water waves where non-flat bottoms were allowed. However, there is
no rigorous result concerning the shallow water approximation in the case of moving bottom nor
the justification of the initial conditions (1.2).

In this paper we will show that under appropriate conditions on the initial data and the
bottom topography the solution of the full water wave problem can be approximated by the
solution of the tsunami model (1.1) and (1.2) in the limit §,e — 40 under the restriction
62/e — +0. This means that if the speed of seabed deformation is fast but not too fast, then
the tsunami model would be a good approximation to the full water wave problem. Moreover,
we also show that in the critical limit 6, — +0 and 62/ — o with a positive constant o the
initial conditions (1.2) should be replaced by

1

to
(1.3) N)t=0 = b1 — by, ul=—o = V(Q/ bt('at)th>v
0

where b = b(z,t) is a bottom topography during the deformation of the seabed. One of the
hardest parts of the analysis is to derive a uniform bound of the solution with respect to small
parameters d and € for the full water wave problem together with its derivatives, especially, for

the time interval 0 < t < € when the deformation of the seabed takes place. To this end, we
adopt and extend the techniques used by the author [6].

We proceed to formulate the problem mathematically. Let x = (x1,x2,... ,x,) be the hor-
izontal spatial variables and x,; the vertical spatial variable. We denote by X = (z,x,41) =
(x1,... ,Tn,Tny1) the whole spatial variables. We will consider a water wave in (n + 1)-

dimensional space and assume that the domain Q(t) occupied by the water at time ¢, the water
surface I'(¢), and the bottom X(t) are of the forms

Qt) ={X = (#,2n41) € R"™; b(z,t) < 2py1 < h+n(z,t)},
L(t) = {X = (z,2n41) € R" w1 = h+ (2, 1)},
B(t) = {X = (v,2n11) € R™; 2041 = b(a, 1)},

where h is the mean depth of the water. The functions b and 7 represent the bottom topography
and the surface elevation, respectively. In this paper b is a given function, while 7 is the unknown.
In fact, our main interest is the behavior of this function 7, namely, the water surface.

We assume that the water is incompressible and inviscid fluid, and that the flow is irro-
tational. Then, the motion of the water is described by the velocity potential ® = ®(X,¢)
satisfying the equation

(1.4) Ax®=0 in Q)
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where Ay is the Laplacian with respect to X, that is, Ax = A+ 92, and A = 0] +--- + 92
The boundary conditions on the water surface are given by

(1.5)

N+ V®-Vn— 0y 1P =0,
P+ | Vx®2+gn=0 on I(t),

where V = (01,...,0,)" and Vx = (01,... ,0,,0,:1)" are the gradients with respect to = =
(z1,...,2,) and to X = (z,x,41), respectively, and g is the gravitational constant. The first
equation is the kinematical condition and the second one is the restriction of Bernoulli’s law on
the water surface. The kinematical boundary condition on the bottom is given by

(16) bt+V<I’ 'Vb—8n+1(13 =0 on E(t)
Finally, we impose the initial conditions
(17) n = "o, ¢ = q)o at t=0.

These are the basic equations for the full water wave problem.

Next, we rewrite the equations (1.4)—(1.6) in an appropriate non-dimensional form. Let A
be the typical wave length and h the mean depth. We introduce a non-dimensional parameter
0 by 6 = h/)\ and rescale the independent and dependent variables by

A - - -
1.8 = AT, ntl = hZTpi1, t=—t, &= A\/ghd, = hn, b= hb.
(1.8) T T, Tpt1 Tn+1 \/g_h g n n

Putting these into (1.4)—(1.6) and dropping the tilde sign in the notation we obtain

(1.9) FPAP+097,, =0 in Q)
52 (nt +Vo- VU) — Op11P =0,
(1‘10) 2 1 2 1 2
(1.11) (b +VP-Vb) — 9,11 ®=0 on X(t),
where

Qt) = {X = (2, Tp41) € R, b(w,t) < xpy1 <1 +77($7t)}7
L(t) = {X = (z,2n41) € R™ 5 g = 1+ (2, 1)},
S(t) = {X = (@,2n41) € R"™; 21 = b(z, 1) }.
Moreover, we assume that the seabed deforms only for time interval [0,?o] in the dimensional

variable ¢, so that the function b = b(x,t) which represents the bottom topography can be
written in the form

B _f bo(z) for 7<0,
(112 o) = Bantfe), Ber)={ P o T2
in the non-dimensional variables, where ¢ is a non-dimensional parameter defined by

to

YN

(1.13)
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We note that in this non-dimensional time variable the bottom deforms only for the short time
interval 0 < ¢ < € and it holds that b; = e~!3,. Since we are interested in asymptotic behavior
of the solution when 6, — +0, we always assume 0 < d,& < 1 in the following.

As in the usual way, we transform equivalently the initial value problem (1.9)-(1.11) and
(1.7) to a problem on the water surface. To this end, we introduce a new unknown function ¢
by

(1.14) d(x,t) = O(x, 1+ n(x,t),t),

which is the trace of the velocity potential on the water surface. Then, we see that the initial
value problem is transformed equivalently to the following.

= APN(,b,8)¢ + €7 AN (1, b, 8)3- = 0,
(1.15) ¢+ n+5Vol
—32(14 82V )~H (AP (0, b, 8)p — e AN (n, b, 0)B; + Vi - V) =0,

(116) n = "o, gf):qbo at tZO,

where APN = APN(n,b,d) and ANN = ANN(n,b,0) are linear operators depending on (n,b,d) and
called the Dirichlet-to-Neumann and the Neumann-to-Neumann maps for Laplace’s equation,
and ¢g = Po(+, 14+n0(+)). Insection 3 we will give the definition and basic properties of these maps
APY and A™Y. We will investigate this initial value problem (1.15) and (1.16) mathematically
rigorously in this paper.

The contents of this paper are as follows. In section 2 we formally derive the tsunami model
(1.1)—(1.3) from the full water wave problem, analyze a so-called generalized Rayleigh—Taylor
sign condition, and give our main results in this paper. In section 3 we define the Dirichlet-
to-Neumann map APY, the Neumann-to-Neumann map A™, and related operators. Then, we
give basic properties of the operators and derive explicit forms of their Fréchet derivatives with
respect to the surface variation 1 and the bottom topography b. In section 4 we study a boundary
value problem for the scaled Laplace’s equation (1.9) and derive some elliptic estimates for the
solution by using the techniques in [6]. Especially, we analyze carefully the dependence of the
small parameter §. In section 5, using the estimates obtained in section 4 we derive uniform
bounds of the maps APN, AN, and related operators with respect to small § in Sobolev spaces.
In section 6 we reduce the full nonlinear equations (1.15) to quasi-linear equations. Finally, in
section 7, by applying energy estimates to the quasi-linear equations derived in section 6 we
prove main theorems.

Notation. For s € R, we denote by H?® the Sobolev space of order s on R equipped with

the inner product (u,v)s = (2m) ™" [z, (1 +[£])**@(£)0(£)dE, where @ is the Fourier transform of
u, that is, 4(£) = [gn u(z)e ™ ¢dz. We put [ulls = v/(u, u)s, (u,v) = (u,v)o, and ||ul| = |julfo.
The norm of a Banach space X is denoted by | - ||x. We put 0; = 0/0x;, 0;; = 0;0;, and
Oiji = 0;0;0;. A pseudo-differential operator P(D), D = (Dx,...,D,) and D; = —id;, with
a symbol P(€) is defined by P(D)u(z) = (2m)™" [g. P(&)a(§)e”d¢. We put J =1+ |D|, so
that |lu||s = ||/®u||. For operators A and B, we denote by [A, B] = AB — BA the commutator.
Throughout this paper, we denote inessential constants by the same symbol C.

2 A shallow water approximation

In this section we begin to study formally asymptotic behavior of the solution (1%, e ) to the
initial value problem (1.15) and (1.16) when 6,6 — 40 and derive the shallow water equations
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with appropriate initial conditions, whose solution approximates (175’5, Ve ) in a suitable sense.
Then, we analyze a so-called generalized Rayleigh—Taylor sign condition which is important for
the well-posedness of the initial value problem, and give our main results in this paper.

It is known that the Dirichlet-to-Neumann map APY = APN(n,b,d) can be approximated by
the second order differential operator up to O(6?) as

(2.1) AN (5,0, 8) = =V - (141 — b)V) + O(5?).

For example, we refer to [6] for the above expansion. We proceed to expand the Neumann-to-
Neumann map AN = A¥N(n, b, §) with respect to 62. For a given function 3 on ¥, we denote by
® the solution of the boundary value problem

A+ 02,0 =0 in Q,
(2.2) =0 on T,
—0p1® 4+ 02Vb- VO =623 on X.

Here and in what follows, for simplicity we omit the dependence of the time ¢ in the notation.
Then, we see that

23) O ®)@ain) = O ®)ebw) + [ j’;“@%H@)(x,z)dz
— _828(x) + 62Vb(x) - (V) (z, b(x)) — 62 /b x:*l(Acp)(x, 2)dz,

which implies that (0,,41®)(X) = O(6?) and that (V0,4+1®)(X) = O(6%). This and the relation

(2.4) (V) (2, 211) = (VO)(z, 1 +n(x)) + /1 i"?)(vam@)(x, 2)dz
n(x

imply that (V®)(X) = (V®)(x, 1+ n(x)) + O(4?). Differentiating the Dirichlet boundary con-
dition ®(x,1 + n(z)) = 0 on I' we obtain

(2.5) (V) (2,1 +n(x)) = =(On419) (2,1 +n(2))Vn(z),

which is O(62). Therefore, we obtain V®(X) = O(6?) so that A®(X) = O(6?). It follows from
these relation and (2.3) that (9,41®)(X) = —628(z) + O(§*), which together with (2.5) implies
that (V®)(x, 1+ n(z)) = 628(z)Vn(z) + O(6*). Thus, by (2.4) we obtain

(2.6) (VO)(X) = 6°B(z) V(@) + 6*(1 + n(z) — 2011) VB(2) + O(6").
Particularly, it holds that

(A®)(X) = 8*V - (B(z)Vn(x)) + 6° V() - VB(x) + 8*(1 + n(z) — 2041)AB(z) + O(5).
Therefore, by (2.3) we get

(9n119)(X) = ~82B(x) + 6*Vb(a) - (B(2) V() + (1 + n(x) — b(z))
— 6" (@01 — b(@))(V - (B(2)Vin(a)) + Vn(x) - VB(@))
+ 50 (14 () — i) — (L 0(a) — b(2))?) AB(x) + O(F).

Vi (x))
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Since the Neumann-to-Neumann map AN is defined by (ANN3)(x) = 6~ 2(0,11®) (2, 1 +n(z)) —
Vn(z) - (V®)(x,1+n(x)), we obtain

@7)  Nb,0)8 = 5~V (40— D)(Vn)B+ 5(1+n - BVE) +0(5Y).

For the definition of the map A™Y, we refer to Definition 3.1 in the next section. In view of (2.1)
and (2.7), we see that the equations in (1.15) can be approximated by the ordinary differential
equations

1 1 2
23) { =16, +10(e + 8,
bt

2
= 1(2)°82+ HO(2 + oY).
By resolving these equations under the initial conditions (1.16), we obtain
n(z,t) = no(x) + B(x,t/e) — bo(x) + O(e + 62),

(2.9) 182 [t/

at) = dufa) + 5 [ Brlardr + 20+

for the time interval 0 <t < e. Particularly, we get

n(x,e) = mo(x) + (b1(z) — bo(= ))+0(6+52)

(210) ¢(x75) _ QbO( + lﬁ/ ﬂT x ’7') dr + - 0(6 +54)

As 0, — +0 these data converge only in the case when 62/ also converges to some value o.
Therefore, in this paper we will consider asymptotic behavior of the solution (7%¢,¢%¢) to the
initial value problem (1.15) and (1.16) in the limit

52
(2.11) d,e — +0, - 0

On the other hand, noting that 3, = 0 and b = b; for ¢ > €, we see that the equations in (1.15)
can be approximated by the partial differential equations

M4V (47— b)V8) = O?),
(212 { b+ HV6P = O(6?)

for t > e. Therefore, taking the limit (2.11) of (2.12) and (2.10) we obtain

n + V- ((1+ b1)Ve®) =0
¢ + 1" +2!V¢°\2 0

with initial conditions
0 0 o [ 2
n’ =mno+ (b1 —bo), ¢ :¢0+§/ Br(-,7)*dr  at t=0.
0

Finally, putting u° := V¢° and taking the gradient of the second equation, we are led to the
shallow water equations

(2.13) { n + V- (147" =b)u’) =0,

uf + (u? - V)u? + vn® =0
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with initial conditions
1
(2.14) n° =no+ (b1 —by), u’=Veo+ v(g/ ﬁT(-,7)2d7> at t=0.
0

Moreover, u? satisfies the irrotational condition
(2.15) rot u® = 0,

where rot u is the rotation of u = (uy,... ,u,)? defined by rot u = (Oju; — Ojuj)1<i j<n. Here, we
note that in the case (19, ¢p) = 0, if we rewrite (2.13) and (2.14) in the dimensional variables,
then we obtain (1.1) and (1.3).

We proceed to analyze a generalized Rayleigh—Taylor sign condition. It is known that the
well-posedness of the initial value problem (1.4)—(1.7) for water waves may be broken unless a
generalized Rayleigh—Taylor sign condition —9p/ON > ¢y > 0 on the water surface is satisfied,
where p is the pressure and N is the unit outward normal to the water surface. In the following
we will consider this important condition in the limit (2.11).

In the dimensional variables we have so-called Bernoulli’s law

1 1 .
(2.16) D, + 5|VX<1>|2 + ;(p —po) +9(xns1 —h)=0 in Q(t),

where p is a constant density and py is a constant atmospheric pressure. This equation is
obtained by integrating the conservation of momentum, that is, the Euler equation 0 = p(vt +
(v-Vx)v) +Vxp+pgeni1 = pVx (P + 1 Vx P2+ %(p —po) + g(zn41 — h)), where v = Vx @
is the velocity and e, is the unit vector in the vertical direction. We rescale the pressure p
by p = po + pghp. Putting this and (1.8) into (2.16) and dropping the tilde sign in the notation
we obtain

1
(2.17) —p=&; + 5(1V¢>\2 +672(0,419)2) + (Tpy1 — 1)

Moreover, in the non-dimensional variables the generalized Rayleigh—Taylor sign condition can
be written in the form a > ¢y > 0, where

(2.18) a:=—(1+6*Vn*)" (8nr1p — 6°V - V)|
= —(On+1P)Ir )
1 _
— 14 {anﬂ (@t +5(vOP+ 6 Z(an“@)?)) }(
=14 (On41P + VO - V1P — (9541 P)AD)|

ING)
NG

where we used the relation (VQ)|ru) = V(Qlr«)) — (On+1Q)|r@) V7, the boundary condition on
the water surface (1.10), and scaled Laplace’s equation (1.9).

We proceed to consider asymptotic behavior of this function @ in the limit (2.11), so that
we can assume 02 = O(g). We note that ® satisfies (1.9), (1.11), and (1.14), and that we have
(1.12). Therefore, as in the same calculation in the previous section we see that

52 52
VO = V6~ — B,V = — (141~ 2u41)V: + 0(5")
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and that )

52 52 1)
Oni1® = Zfr + 02V (Vo= =f, Vi = Z(1+n— bV, )

— 6%*(zpy1 — D) (V : (qu - %QBTW) - §Vn : Vﬁr)

52 52
— 5 (=)’ = (L0 = 5)*) Ap- + 0.

Here, it follows from (2.8) that n; = 13- +O(1), ¢, = %( ) B24+0(1), and that Ve, — %BTVm =
O(1). Therefore,

A 52 52 02\ ?
G0l = (2) 1= 01908+ 29 (50 (v0- Zovn)) - (Z) v v

62\ ? 1
+ (;) V. ((1 + 0 = 0) B Vi 4 S (10 — b)QVﬁw) +0(5%).

Putting these into (2.18) we obtain
5\? 52 52
219)  a=1+(2) (=PRI + 2% (Vo - T,V0) 5,

n (§>2v- (17— B)(Tm)Ber + (L4 1= B2VE-,) + O().

On the other hand, in view of (2.9) and (2.11) we define an approximate solution (7@, ¢©) in
the fast time scale 7 = t/e by

{ nO(z,7) = 170( )+ B(x,7) — B(x,0),

(2.20) qb(o)(:v T) := ¢o(x / Br(z,T) dT

Then, we have at least formally

n(z,t) =10z, t/e) + O(e),  ¢(,t) = ¢ (w,t/e) + o(1)

for (z,t) € R™ x [0,¢]. Taking this and (2.19) into account we define a function a(®) = a(©)(z, 1)
by

(2.21) a® =2V — o8, v . v,
+0V - (147 = B)Tn®)3rr + 21+ 7 — 5PV5.,),

where (79, ¢(0) is the approximate solution defined in (2.20). We note that this function a(®)
is explicitly written out in terms of the initial data (19, ¢o), the bottom topography [, and the
constant ¢ in the limit (2.11). Then, by (2.19) we see that

2
a(x,t) =1+ <g) (1- 82V (z,t/e)? + C))Brr(z,t/e)
+0(aO(x,t/e) + Coprr(z,t/e)) +o(1),

where C' > 0 is an arbitrary constant. Therefore, the generalized Rayleigh—Taylor sign condition
is satisfied if the following conditions are fulfilled. The conditions depend on the relations
between § and e.
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Assumption 2.1 There exist constants C,c > 0 such that for any (z,7) € R" x (0,1) the
following conditions are satisfied.

(1) In the case §/¢ — 0: No conditions.

(2) In the case §/c — v: 1+ 123, (x,7) > c.

(3) In the case §/c — oo and §2/e — 0: Brr(x,7) > 0.

(4) In the case §/c — oo and §2/e — o: Brr(2,7) >0 and 1 + J(a(o) +0CB;r)(z,7) > c.

From a technical point of view, we also impose the following condition.

Assumption 2.2 For any (z,7) € R" x (0, 1) the following conditions are satisfied.

(1) In the case §/¢ — v: No conditions.
(2) In the case §/e — oo: Brrr(z,7) < 0.

The following theorem is one of the main results in this paper and asserts the existence of
the solution to the initial value problem for the full water wave problem with uniform bounds
of the solution independent of § and € on the time interval [0, ¢].

Theorem 2.1 Let My,co > 0, r > n/2, and s > (n+9)/2. Under the Assumptions 2.1 and
2.2, there exist constants Cy, oo, 0,7 > 0 such that for any ¢ € (0,0¢], € € (0,20], (M0, ¢0), and
b satisfying |62 /e — | < 0, (1.12), and

{ 18T 5072 + 18- (T)ls+5 + 1| Brr (Tl s+1 + |Brrr (T) |52 < Mo,
IV@olls+3 + [[molls+4 < Mo,  1+mo(z) —bo(x) 2 co  for (z,7) € R" x (0,1),

the initial value problem (1.15) and (1.16) has a unique solution (n,$) = (%%, $%%) on the time
interval [0, €] satisfying

I792(0) 1O (1/)ls2 + 16%(0) — 9Ot/ < Cole + 182/ — o),
7% ()]ls4+3 + VOO (t) | s42 < Co,
1+ na’s(x,t) —b(z,t) > co/2  for (x,t) € R" x[0,¢],

where (N0, ¢(0)) is the approzimate solution in the fast time variable T = t/e defined by (2.20).

Once we obtain this kind of existence theorem of the solution with uniform bounds, combining
the existence result obtained in [6] where the case of a fixed bottom was investigated, we can
easily consider the limits &, — 0 of the solution (n%¢, ¢%).

Theorem 2.2 Under the same hypothesis of Theorem 2.1, there exists a time T > 0 independent
of 6 € (0,80] and € € (0,e0] such that the solution (n°<,¢%) obtained in Theorem 2.1 can be
extended to the time interval [0,T] and satisfies

1770 = Olls1 + V6% (8) = w O)lls1 < Cole + |62/ —ol)  for e <t<T.

where (n°,u") is a unique solution of the shallow water equations (2.13) under the initial condi-
tions (2.14) and u® satisfies the irrotational condition (2.15).
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3 The operators APY, ANN, APP_ and ANP

Throughout this and the next sections the time ¢ is arbitrarily fixed, so that Q(t), I'(¢), X(¢),
n(z,t), and b(z,t) are simply denoted by €, I, ¥, n(z), and b(z), respectively. Introducing a
(n+1) x (n+ 1) matrix I5 by
(B, 0
Is = ( 0 &t )

where FE, is the n X n unit matrix, we consider the boundary value problem

Vx I}Vx® =0 in Q,
(3.1) ®=9 on T,
(Vb,-1)T - I2Vx® =3 on X.

We note that the first and the third equations in (3.1) with 3 replaced by —e~!3, are nothing
but those in (1.9) and (1.11), respectively, and the second equation in (3.1) corresponds to (1.14).
Under suitable assumptions on n and b, for any functions ¢ on I' and  on ¥ in some class there
exists a unique solution ® of the boundary value problem (3.1).

Definition 3.1 The solution ® will be denoted by (¢, 3)". Using the solution ® we define linear
operators APN = APN(n,b,d), ANN = ANN(n,b,0) APP = APP(n,b,6), and ANP = ANP(n,b,4) by

ADN(U: b, 5)¢ + ANN(U: b, 5)18 = (—V"% 1)T ’ Ig(vX(I))('7 1+ ?7('))7
ADD(% b, 5)¢ + AND(U» b, 5)/8 = (I>(’ b())a

which are called the Dirichlet-to-Neumann (DN) map, the Neumann-to-Neumann (NN) map,
the Dirichlet-to-Dirichlet (DD) map, and the Neumann-to-Dirichlet (ND) map, respectively.
For simplicity, we write AN = A°N(0,0,9), AYY = AYN(0,0,0), AR® = APP(0,0,0), and AFP =
ANP(0,0,96).

oy D
Proposition 3.1 AjY = % tanh(d|D|), AFJ® = % tanh(d|D|), and —AFY = AYP = m.

Proof. In the case (1,b) = 0, the solution of (3.1) can be written explicitly in terms of Fourier
multipliers as
cosh(6|D|zp+1)

(I’(',xn-i-l) = cosh(6|D|) o

so that we easily obtain the desired expressions. O

§sinh (6] D[(1 — zp41))
| D| cosh(d|D|)

B,

Proposition 3.2 The operators A°N and AN° are symmetric in L?, and the adjoint operator of
AN in L? is equal to —APP. That is, for any ¢, € H' and any B, € L? it holds that

(ADN¢7¢) = ((b:ADNw)a (ANDﬁva) = (ﬁv ANDPY): (ANN/87¢) = _(/BvADDw)'
Proof. Set ® := (¢, 3)" and ¥ := (¢, v)". By Green’s formula we have
0= / (Vx - I§Vx®)¥ — &(Vx - [;VxT))dX
Q

_/ (V- I3V x®)U — B(N - 2V 5 0))dS
oN

— (ADN¢+ANNﬁ,w) _ (¢,ADN¢+ANN’)/)
+ (B, AP + A™Pq) — (AP + AP, ),

10
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where N is the unit outward normal to the boundary 0. By setting (3,7) = 0, (¢,%) = 0, and
(¢,7v) = 0 in the above equality, we obtain the desired identities, respectively. O

Similarly, as a simple application of Green’s formula we have the following lemma.

Lemma 3.3 For any ¢ € H' and 3 € L?, it holds that (A°N¢, ¢) = HIgVX(PH%Q(Q) with ® =
(¢,0)" and that (A", B) = |5V x V|7, with ¥ = (0, 6)".

In a derivation of the linearized equations for (1.15), we need an explicit formula of the
Fréchet derivatives of the operators APY and A™Y with respect to . The Fréchet derivative of
APY was given by D. Lannes [11] and we can generalize the formula as follows.

Theorem 3.4 The Fréchet derivatives of A°N(n,b,6) and ANN(n,b,8) with respect to n have the

form
Dy AN (1,0, 0)[1]¢ + Dy A (1,0, 8)[17]8 = —6° N> (n, b, 8)(Z) — V - (vi)),
where
(3.2) Z=01+ 52‘V77’2)71 (ADN(n,b, 8)¢ + A"N(n,0,6)3 4+ Vn - v¢)a
' v=V¢—352ZVn.

Proof. First, we will give an intuitive derivation of the formula. We take ¢, 1, 5 € C§°(R") and
set @ := (¢, 8)" and ¥ := (¢,0)", namely, ® and ¥ are the solutions of the following boundary
value problems.

Vx - IgVx® =0 in €, Vx - IgVx¥ =0 in Q,
(3.3) d=¢ on T, U =1 on T,
(Vb,-1)T - I2Vx® =3 on X, (Vb,-1)T - I2Vx¥ =0 on X.

These solutions depend not only on X but also on 7, so that we also denote these solutions by
¢ =¢(X)=P(X;n) and ¥V = ¥ (X) = ¥(X;n). Here, we note that

(3.4) (DA (1., )l ) = (A0 + i b,6) )|

By Green’s formula and Proposition 3.2, we see that

(3.5) / I;Vx® - [;VxPdX = / (N - I3Vx®)WdX
Q oN
— (ADNQb—f—ANNﬂ,T)Z)) + (,B,ADDT,Z))
= (A"9, ),
so that

(A”™(n + i), b,0)6,¢)

1+n(z)+hi(z)
- / ( / L5V x (X3 + hif) - [V xW(X; 7 + hﬁ)dxnﬂ) da.
R™ \Jb(z)

We expand formally the solutions ®(X;n + k1) and U(X;n + h1) as

(3.6) { ®(X; 0+ hij) = B(X;7) + @1(X)h + O(h%),

U(X;n+ hij) = U(X;n) + V1 (X)h + O(h?).

11
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Then,
d
(3.7) E(ADN(U -+ h1, b, 5)¢,¢)‘h 0 / (LSVX‘I’l IV XU+ 5V x® - LSVX\I/l)dX
= Q

+/ (IsVx® - IsVx¥) |07 d
= J1 4+ Jo.

It follows from the boundary condition on the water surface and the expansion (3.6) that

¢(x) = @(x, 1+ n(x) + hi(x);n + hi)
= ®(x, 1+ n(2);n) + h{(Onr1®) (2, 1+ n(2);n)i(z) + P1(z, 1 +n(x))} + O(h%),

which implies that ®;|p = —(9,+19P)|r7. Similarly, we have ¥|r = —(9,+1¥)|r7. On the other
hand, by taking the trace of the expansion (3.6) on the bottom ¥ and using the definition of
the DD map APP we get

AP (1 + hi, b, 8)tp = APP (1, b, 6)¢) + h¥s s + O(h?),

which together with Proposition 3.2 implies that ¥y |y, = D,A"P[5)]yp = —(D, A"N[17])*+). There-
fore, by Green’s formula we see that

Jp = —/Q(cbl(vx-lgvxqf) + (Vx - I§Vx®)¥)dX
+ /m(qq(zv IV xT) + (N - I§Vx®)U;)dS
—— [ (@ ®Ie (a7 0) + (0 + K™ 8) (01 W)l e — (DA ),
On the other hand, in view of the relations (VQ)|r = V(Q|r) — (0n+1Q)|rVn we get

B~ [ (V6: 96— 0 ®kn- V6 = 0,1V Vo
+672(1 + 4 V)?) (On1 %011 ®)|r) 7 da.
These together with the relations

(Brs1®) [ = 62(1 + 62 Vnf2) " (AP + A3 + Vi - V) = 822,
(On+1¥)|r = 52(1 + 52]V?7\2)*1(ADN¢ + Vn - V)

yield that

(DA il6 + DA™ i)B.0) = [ (Vo Vi = P2 4+ V- V)i da
Rn
= —(8*A"N(Z) + V - (v]), ¥),
where we used the symmetric property of AN stated in Proposition 3.2. Since the above equality
holds for any ¢ € C§°(R"™), we obtain the desired formula.
Next, we will justify the above formal argument. Note that the expansion (3.6) has no sense

because the domains of definition of the left and right hand sides are different. Therefore, we
need to give a good definition of ®1(X) and ¥;(X) in order to obtain the formula (3.7). To this

12
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end, we use a diffeomorphism X = Z(Y;7) from a simple domain g := R" x (0,1) to the water
region Q = {X € R""!; b(z) < 7,41 < 1 +n(x)} defined by

{ Tj=1Y;j (1<j<n),
Tnt1 = b(Y) + ynt1 (1 + n(y) — b(y)).

For any function f = f(X;n) defined in Q, we put f(Y;7n) := f (E(Y; ) n) which is a function
in the fixed domain €, so that the Fréchet derivative of this function f(Y';n) with respect to 7,
has a sense. For simplicity, we write fn n f [7]. Then, we see that

14+n(z)+hi(x)
/ ( / F(Xsn+ hﬁ)dxnﬂ)dx
" \Jb(z)

14+n(z)+hi(x) _ )
=/ (/() e (X;77+h?7);77+h77)dﬂ:n+1>dﬂ:
n b(x

1+n(z)+hij(z) _ .
:/ (/b f(: (X5n+ hﬁ);n)dmnH)dx

(z)

1+n(z)+hi(z)
+h/ (/ fn(E1(X;n+hﬁ))dxn+1)dx—|—0(h2).
R" b(z)

This together with the simple identity

14+n(x)+hi(z) . §
/b() FETHX;n + hi);n)dan

implies that
L+n(z)+hi(z)
(/ f(Xsn + ha)dan 4y |de
h=0

5
I ( /1+77 ( (‘1<X;n>)+1+nz)ﬂc> - f(g—ux;n)m))dw)dx,

Here, by integration by parts we have

() 7
/ () —b@)’ ( (i)
y 45 1 N 77 ) b(gj))2 n s 1)y n

1+"(””) 0(x) (2np1 — b(z))
(@) L+mn(z) — b(w)

14+n(z)+hi(x)
/ ( / F(Xin+ hﬁ)dwn+1) d
Rn

/ fla, 1+ n(x )ﬁ(w)dx+/f1(X dx
R™ Q

(@) f (2,1 +n(x)in) — /b (On1f)(X;5n)dzn 1.

Therefore, we obtain

(3.8)

S

h=0
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where

i(2) (241 = b(2))
1+ n(x) —b(x)
Now, for the functions ® = ®(X;7) and ¥ = U(X;n) defined by (3.3) we define &; and ¥; as in

(3.9) and apply the formula (3.8) to the function f(X;n) = [;Vx®(X;n) - IsVxV(X;n). Then,
by a straightforward calculation we see that

(3.9) AX) = FHEH X)) - (Ons1f)(X5m).

[H(X) =LVx®(X) - IsVxU(X;n) + LVx®(X;n) - IVx ¥ (X),

so that we recover the formula (3.7). Moreover, in view of the relations (i)(-, 1;m) = ¢, U(-, 1) =
¢, and W(-,0;n) = APP(n,b,8)b, we have &, (-,1) = 0, ¥, (-,1) = 0, and ¥, (-,0) = D, A°"[ij]¢).
Therefore, it follows from (3.9) that ®1|p = —(0p+1P) |17, Vilr = —(On419)|r7, and Y|y =
D, APP[]1p, and that the previous formal argument is justified. O

Theorem 3.5 The Fréchet derivatives of A°~(n,b,d) and ANN(n,b,d) with respect to b have the

form ) ) §
DbADN(nv ba 5) [bkb + DbANN(nv ba 5) [b]/B = —ANN(% ba 5) (v : (wb))7
where
(3.10) W = (1+52\Vb\2)*1(—ﬁ—|—Vb-V(ADqu—i-ANDﬁ)),
’ = V(APP¢ + ANP3) — 52W Vb,

Proof. We will only give an intuitive derivation of the formula. The formal calculation
can be justified as in the proof of the previous theorem. We take ¢,,5 € C§°(R"™) and let
® and ¥ be the solutions of the boundary value problems (3.3). Since we are considering a
variation of the maps with respect to b, we denote the solutions by ® = ®(X) = &(X;b) and
U = ¥(X)=U(X;b) and expand formally them as

(3.11) { O(X;b+ hb) = (X;b) + 1(X)h + O(h?),

U(X;b+ hb) = U(X;b) 4+ U1 (X)h + O(h?).

Then, in place of (3.7) we have

.12
(3.12) dh h=0

d .
— (A" (n,b + hb, 5)¢ﬂ/))‘ = / (IsVx®1 - IVxV + I5Vx® - [;Vx ¥ )dX
Q
—/ (IsVx® - I,Vx W) | bda
=:J1 + Jo.

By taking the trace of the expansion (3.11) on the water surface I' and using the boundary
condition, we get ®1|r = ¥;|r = 0. By taking the trace of (3.11) on the bottom ¥ and using
the definition of the map APP, we see that

(A°P(n, b+ hb, 6)y) (x)
= U(z,b(z) + hb(x); b+ hb)
= (AP (1,b,6)9) () + h{(Ons1¥)(z, b(2); b)b(x) + Uy (2, b(x))} + O(h?),

14



KSTS/RR-09/002
July 29, 2009

which together with Proposition 3.2 implies that ¥y|x = —(DpANN[b])*¢) — (941 ¥)|sb. There-
fore,

le/ (®1(N - I§Vx V) + (N - I}Vx®)¥;)dS
o0

—(DpA™N[B]B, ) — - B(On4+17)|sbda.

On the other hand, we have

/ {(V(@s) - V(¥s) = (00+19)[s VD V(¥[s) = (9p419)[2VD - V(D[5)
+ 6721+ 6%|Vb|*) (0n41 V011 @) |5 b da.
In view of the relations ®|y = APP¢ + ANP3, Uly, = APPe), and

{ (Onr1®)]s = 62(1 + 62|VH|2) "1 (=B + Vb - V(APP¢ + ANPB)) = 621,
(On19)ls = 0°(1+ 6% VO?) 71 (Vb - V(APPY)),

we see that

(DpA”N[B] ¢ + Dy AN [B] 3, 1))
= _/R(V(ADD¢+AND/8). (ADD¢) (Vb v(ADDw)))de

= —(N(V - (wd)), ¥),

where we used Proposition 3.2. Since the above equality holds for any ¢ € C§°(R"), we obtain
the desired formula. O

Theorem 3.6 The Fréchet derivatives of A°°(n,b,6) and ANP(n,b, ) with respect to n have the
form

DyA”® (0, b,0)[i7]¢ + Dy A (0, b, 8)[17]3 = —6° A (n, b, 6)(Z7),
where Z is given by (3.2).

Proof. We take ¢, 3,7 € C*(R") and set ® := (¢,3)" and ¥ := (0,~)". Then, in place of
(3.5) we have

(3.13) (A8, ) = / I5Vx® - I;VxWdX.
Q

We expand formally the solutions ®(X;n + h#7) and ¥(X;n + h7) as (3.6). Then, as in the
previous theorems we see that

(Dy A*P[0)B,7) = /R (@1|p Ay + (AN + ANNB) W4 |p + @1y + BV ]y)da

+/ (IsVx® - IsVx¥)|rnde.

Here, we have ®1|r = —(9n11®)[r7], Yilr = (911 ¥)|r, Pals = DyAPPlil¢ + Dy AP (5] 5, and
Uy |y, = (D, ANP[1])*y, so that we obtain

(DyA”P[i] ¢ + Dy A [1] 8, )
/n (( n+1q))‘FANN’)/ + (ADN¢ + ANNﬁ)( n—&—l\p)’F — (L;VX(I’ LSVX\I/)‘F)’I?dw
= —8*(A"(Z1), 7).

Since the above equality holds for any v € C§°(R"™), we obtain the desired formula. O

15



KSTS/RR-09/002
July 29, 2009

Theorem 3.7 The Fréchet derivatives of A°P(n,b,d) and ANP(n,b, ) with respect to b have the
form

DyA™ (0, b, 6)[b] + DoA™ (0, b, 6)[D]8 = 6* W — A (n, b, 6) (V - (wb)),
where W and w are given by (3.10).

Proof. We take ¢, 3,7 € C§°(R") and set ¢ := (¢, 8)" and ¥ ::V(O,'y)h. Then, we have (3.13).
We expand formally the solutions ®(X;b + hb) and V(X;b + hbd) as (3.11). Then, as in the
previous theorems we see that

(DAP(EB.) = [ (B1Ieh™y + (8% + N0 Wl + Bl + 0 |s)do
Rn
- / (I;Vx® - IsVx¥)|sbdz.
Here, we have ®1|r = WUy|p = 0, 1]z = —(9011P)[sb + DyA°P[b]¢ + DyAYP[B]5, and Wi |s =
—(On+1Y)|2b + (DpANP[b])*, so that we obtain
(DpA°P[b]¢ + Dy AP [b]8, )
— [ (@ur®)sy + O W)l + (Vx5 x)|5)bda
Rn
= (Wb — AY°(V - (wb)), 7).
Since the above equality holds for any v € C§°(R"™), we obtain the desired formula. O

In reducing the full nonlinear equations (1.15) to a quasi-linear system of equations, we need
also explicit formulas of second-order Fréchet derivatives of the maps APY and AN, which are
given in the following theorems.

Theorem 3.8 The second-order Fréchet derivatives of AP~ (n,b,d) and ANN(n,b,0) with respect
to n have the form

DAY (1,b,6) [, 7i2)¢ + DA (1, b, 6) i1, 772] 8
= 02 { AP (1, b,0) (1 + 6%V *) " (A¢)inne)
— V- (14 8*|Vn[?) " A Vn) + A(Zinii) }
+ 0 AP (0, b, 6) (1 + 8*[Vnl*) ™! (112AN (0, b, 6)(Zin ) + 1 AN (n, b, 6)(Zita)
+ ZVn - V(i) — iz Z An))
=V (14 8Vn) (14N (0,0,6)(Zin) + A (n, b, 6)(Zij2)
+ ZVn - V(i) — mieZAn)Vn) },

where Z is given by (3.2).

Proof. It follows from Theorem 3.4 that

(3.14) Dy AN ] 4 Dy AN 1] 8
= =02 AN ((1 + 6% Vn[?) T (AN + ANB + V- Vo)in)
—V - {(Vo— (14 6*Vn*) " HANg + ANB + Vi - V) V)i } .

16
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Taking the Fréchet derivative of (3.14) with respect to n once again, we obtain

D2APN[ijy, 7i2]p + D2AN 1y, 772] B
= =07 Dy A°N[i72) (Z77)
— §PAPNL (=267 (1 + 6%V *) 1 Z(Vn - Vi)
+ (14 6*[Vnl*) "1 (Dy AN i) ¢ + Dy ANN[ii2] 8 + Vi - V) )i }
— V- {(261(1 + 83 Vn>) " Z(Vn - Vi) Vi
— 82(1 + 8*[Vn|*) " Dy AN [ifo) ¢ + Dy ANiio] B + Vila - V)V — 62 Z Vil )i}

Here, we use again Theorem 3.4 in the above expression. Then, a straightforward calculation
gives the desired identity. O

Theorem 3.9 The second-order Fréchet derivatives of AP~ (n,b,d) and ANN(n,b, ) with respect
ton and b have the form

Dy DyAP™ (1, b, 8) 17, bl + Dy DpA™™ (1,0, ) (17, b] 8
= AN (1, b,0)V - {b(V (AP (n,b,6)(Z1))
— 8%(1 + 8*|Vb*) "1 (Vb - VAPP (1, b,6)(Z7)) Vb) }
+ 62APN (1, b, 8) (7(1 + 62|V 2) TLANN (1, b, 6)V - (wb))
— 8V - (7(1 + 82 |Vn|?) (AN (n, b,8)V - (wb)) V),

where Z and w are given by (3.2) and (3.10), respectively.

Proof. Taking the Fréchet derivative of (3.14) with respect to b, we obtain

Dy, DyAPN [, B¢ + D, Dy A [, B3
= —0* Dy AN [B](Zi7) — 82 AN (1 + 8| Vn|*) ~H (D AN [B] + Dy ANN[B]3)i71 )
— V(=61 + 62| Vn|?) " (DyAN[b] ¢ + Dy ANN[B]3) V)i }-

Here, we use Theorem 3.5 in the above expression. Then, a straightforward calculation gives
the desired identity. O

4 Some elliptic estimates

In the next section we will give operator norms of the operators APN, AN, APP and AYP in
Sobolev spaces. Especially, we will anlayze carefully the dependence on the small parameter §
to obtain uniform estimates with respect to d. Since these operators depend on the unknown
function 7, we also have to take care the dependence on regularity of 7.

In order to give such estimates, we need appropriate estimates of the solution ® of the
boundary value problem (3.1). In this section we prepare elliptic estimates of the solution with
particular care on the dependence of § and the regularity of . To this end, it would be convenient
to transform the problem (3.1) on the water region €2 into a problem on a simple domain
Qo := R™ x (0,1) by using an appropriate diffeomorphism © = (01,...,0,,0,.1) : Qy — Q,
which is conformal in the tangential and the normal directions on the boundary in some sense.
As in [6], we define such a diffeomorphism as follows. We take functions 6 = (01,... ,60,,0,41)
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satisfying the conditions
(9]'(33,0) == 9j($, 1) == O,
On416;(x,0) = =0;b(x), Ont10j(z,1) = —0m(xz) for 1<j5<mn,

On+1(2,0) =b(x), Oni1(z,1) =n(z),
8n+19n+1(337 O) = an+1‘9n+1(xa 1) =0,

and define the diffeomorphism © by

(4.1)

(4.2) 0;(X) =z;+6%0;(X) for 1<j<n,
' On+1(X) = Tpg1 + On 1 (X).

We put @ := ® 0 © and

(4.3) P = det(g—?{) (151(§—§>_11§<(2—2>_1>T151>.

The matrix P has the property

(4.4) P(g;,()):(; (1’> P(x,l):(; (1’>

which means that the diffeomorphism © is conformal in the tangential and the normal directions
on the boundary, so that the Neumann boundary condition on the bottom is transformed into
again the Neumann condition with a very simple normal vector N = (0, ... ,0,—1)?. Therefore,
the boundary value problem (3.1) is transformed into

Vx - IsPI;Vx®=0 in 9,
(4.5) d=¢ on Ty,
—6720, 1% = on X,

where I'g and Y are upper and lower boundaries of £25. Moreover, it holds that

(4 6) { ADN(T/: b, 5)¢ + ANN(U: b, 5)/8 = (272(871-1—1&))('7 1)7
' ADD(UJ% 5)¢+AND(nvb7 5)/8 = Q)(,O)

We will impose the following conditions on the water surface and the bottom.

Assumption 4.1

(A1) There exists a Cl-diffeomorphism © : Qo — ) satisfying (4.1), (4.2), and the conditions
det(22(X)) > ¢ > 0 and |[Vx0(X)| < M for X € Qq.

(A2) |[VxO(-,zp41)llg <M for 0 < zppq < 1

(A3) [|J9H2V x| 120y < M.

(A4) HVX(D(’V],I))H[ﬁa B])('?xn-‘rl)Hsl + ”JSlJrl/QvX(D(n,b)H[ﬁa B])HLQ(QO) < M”(ﬁ76)||81+1 for 0 <
ZTnt1 < 1 and s; € R, and 6 depends linearly on (7, b).

The construction of a diffeomorphism © satisfying the above conditions was given in [6].
More precisely, we have the following proposition.

18
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Proposition 4.1 Let r > n/2, ¢, M1 > 0 and suppose that n,b € H'*" satisfy the conditions

[7ll14r + [1bl[14r < My,
1+n(x)—0blz)>c for zeR™

Then, there exists a constant § = 01(My, c1,7) > 0 such that for any § € (0,01] we can construct
a diffeomorphism © satisfying the conditions in Assumption 4.1 (Al). Moreover, for any s € R
and k € N we have

175V x 01 L2(00) < Crlllnlls41/2 + 10lls41/2);

(4.7) O 100 ns1)ls < Colllmllsrs + [bllssn),

sup ||
ngn-&-l <1

where Cp = Ci(c1) > 0 and Cy = Cy(c1,k) > 0. In the case where n and b depend also on the
time t, for any l € N we have

175V x0H0(8) | 12020y < Cr (100000 o 2 + [1010(E)|s1/2)
(4.8) sup  [[08,1000(, 2ni1, B)lls < Co (1000 |k + 100B(E) |-

0<zp+1<1

We proceed to give elliptic estimates for (4.5) in Sobolev spaces. Although a standard theory
for elliptic equations could provide an estimate of the solution, such an estimate depends strongly
on the parameter ¢ and it does not give a uniform bound of the solution with respect to small §.
Therefore, we will perform an estimation of the solution with particular care on the dependence
of the parameter & and on regularity of . The following six lemmas were slight modifications
of those given in [6].

Lemma 4.2 Under Assumption 4.1 (A1), there exists a constant C = C(M,c) > 1 independent
of 6 such that C'_1||15VX<I>HL2(Q) < sVx®| 1200 < CllIsVx P 12(q), where @ = ® 0 ©.

Lemma 4.3 Under Assumption 4.1 (A1), there exists a constant C = C(M,c) > 1 independent
of 6 such that for any ¢ € H' we have C~||(A3¥)/2¢||? < (APNg, ¢) < C||(AZN)/2¢|%.

Lemma 4.4 Let r > n/2. There exists a constant C = C(r) > 0 independent of 6 such that we
have [[(AN)"?, alu|| < C||Vall,||u]| and [|[(AZ¥)"/?, alull- < C[[Vall, |ull..

Lemma 4.5 For any s € R, we have ||(AQY)Y/?¢]|s < min{HquHs,5_1/2||¢H8+1/2} and [|[Vo||s <

V21 +0)I(AF) 2] s12-

Lemma 4.6 For any s € R and r > n/2, there exists a constant C' = C(s,r) > 0 independent
of & such that we have

1CAS) 2 (@) s < C (Il 1(AT) 2 lls + llsll (AT 2|,
+ AT 26l [l + 1(AT) 2SI [l 5)-

Lemma 4.7 For any s € R and r > n/2, there exists a constant C' = C(s,r) > 0 independent
of 6 such that we have

1ASY) 27, 41Vl < C IVl I(AT) 205 + IVl (ATY) 2Bl r41).

Lemma 4.8 For any function ® defined on Qq, we have ||(A3N)/2®(-,0)|| < HL;VXéHLg(QO).
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Proof. We take ¢ € H? arbitrarily and define ¥ by (-, z,41) = COSh(il)g((;&fD”“))w which is
a solution of the boundary value problem

Vx -I2Vx¥ =0 in Q,
8n+1\IJ:0 on FO)

U =1 on Xj.
Then, it holds that —(5‘28n+1\il(-, 0) = A3Yy. By Green’s formula, we see that
08°8(,0),9)] = (80,00 45"} =| [ &(V- 139 xb)as
= |/Q IiVx® - I;VxPdX|
0
< (AT 2 15V x| 2 (00) | (AF) T2 15V X Tl 122

= 15V x (A3 2 @) | 2 0 141

which gives |[AQN®(-,0)|| < HIévx((A](D]N)l/Qé)||L2(QO). If we replace (ABY)Y/2® by & in this
inequality, then we obtain the desired estimate. O

As a preliminary step, we will consider the following boundary value problem.

Vx - IsPIsVx® =Vx - IsF+ f in
(4.9) d=0 on Ty,
—0720p1® = B+ (AF)/2y o X,

where the matrix P is given by (4.3).

Lemma 4.9 Under Assumption 4.1 (A1), there exists a constant C = C(M,c) > 0 independent
of 0 such that the solution ® of (4.9) with F,4+1(-,0) = 0 satisfies

15V x|l 2(20) < CUIElL2(0) + 1T Fll 200y + 181 + 111

Proof. Taking the inner product of the first equation in (4.9) with ® and using Green’s formula
and the boundary conditions, we see that

C IV x®|| 120 g/ PIsVx® - I3V x®dX
Qo

_/ (F.L;vxci—fci)dXJr/ (6 + (A7) &(-,0)dz
Qo R”

< ”FHL2(QO)HIJVXQ:’HH(QO) + HJflme(Qo)HJ(i’HB(QO)
+ BII2 (-, 0)[| + I (AFY)22(-, 0)]].

H?I"& we easily g~;et H‘i’(':l‘nﬂ)n = | ff”*i(anﬂff)(-,Z)dZH < 5HLSVX&)HL2(QO) and HJ(i)HLQ(QO) <
121 22(00) + IVl L2(029) < (6 + D[ IsV x| 12(0)- Therefore, by applying Lemma 4.8 to the last
term in the above estimate we obtain the desired one. O

Lemma 4.10 Let s > n/2+1. Under Assumption 4.1 (A1) and (A2) with ¢ = s, there exists a
constant C = C(M, ¢, s) > 0 independent of 6 such that the solution ® of (4.9) with Fj,11(-,0) =0
satisfies

17215V x @l 22(0) < CUIT Fllz2(00) + 11777 Fll2 (620 + 11811 + 17]ls)-
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Proof. It is easy to see that J°® satisfies

Vx - IPIVxJ*® =V - I5(JF — [J*, PlIsVx®) + J*f in  Qq,
J5® =0 on Iy,
—0720, 1 TP = J° B + (AQN) /275y on X,

and that N - [J®, P]I;Vx® = 0 on 0 thanks to (4.4). Therefore, by Lemma 4.9 we obtain

1751V x @[ 12(00) < C (1T Fll 200 + I17%5 PV X P20y
+ 177 Fllz2(ao) + S1BILs + [17s)-

The second term in the right hand side can be evaluated by a commutator estimate ||[J*, a]u|| <
C||Val|s=1]|u|/s=1, an interpolation inequality ||u||s—1 < €||lu|| + C¢||u] for € > 0, and Lemma 4.9,
so that we obtain the desired estimate. O

Lemma 4.11 Let s > n/2. Under Assumption 4.1 (A1) and (A2) with ¢ = s+ 1, there exists a
constant C = C(M, ¢, s) > 0 independent of § such that the solution ® of (4.9) with F,1(-,0) = 0
satisfies

17° (A2 15V x @] 12 @)

< C ()| J5(AGY)Y2F || g2y + 11757 (A2 £l 1200
+ 1815 + ATy lls + 11| 20y + 177 Fll 200y + 1711
Proof. It is easy to see that (A3N)'/2® satisfies
Vx - I5PI;V x (AgY)/29 i
=V - Is(AQ)Y2F — [(AG)Y2, PIIsV x®) + (AG)Y2f in Qo,

(A%N)I/Q(i) =0 on Iy,
—0720, 11 (AGY)1/2® = (ARY)'/2 (53 + (AQY)'/27) on %,

and that N - [(ASN)Y/2, P]I;Vx® = 0 on 9 thanks to (4.4). Therefore, by Lemma 4.10 we
obtain

175 (AG) 2 IV x | 12 (g) < C (175 (AF) V2 F || 1200y + 175 1(AGY) Y2, P15V x @] 12(0)
+ [ THAT) 2 £l 2 o) + 1Bl + (AT 2]5).

Here, an interpolation inequality and Lemma 4.5 imply that [lulls < €]|[Vul[s_1/2 + Cellu| <
2¢l|(AN) /21| s + Cc|ul|. Thanks to this and Lemma 4.4, the second term in the right hand side
in the above estimate can be evaluated as

[T [(AG)Y2, PUV x @l 12(00) < €ll 5 (AF) 2LV x @l 12(0) + Cell IV x Pl 12(020)-
These estimates together with Lemma 4.9 give the desired one. O

Lemma 4.12 For any s € R, the solution ® of (4.9) with F11(-,0) = Fpy1(,1) = v = 0
satisfies

6720012 (- Dlls < T (AF) 2 PIsV x|l 12(00) + 17°(A8) 2 Fll p2(20) + 19 Fll2(020) + 18ls-
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Proof. We take ¢ € H arbitrarily and define U by U(-, 1) = %@}?ﬁl)w which is a
solution of the boundary value problem

Vx -I3VxT =0 in Q,
U =1 on I,
8n+1\11 =0 on 207

so that we have H(A%N)*l/QLgVX\‘I}HLz(QO) = ||¢|| and H\TIHLQ(QO) < |l#||. By Green’s formula, we
see that

/ JPIsV x® - I,V x Ud X
Qo

= —/ (J5(Vx - 15F+f))\ifdx+/ (N - J*I;PI;V x ®)¥dS
Qo Qo

= / (J°F - IVx ¥ — (J°)P)dX + (62T 01 (-, 1),90) + (7B, AG").
Qo
Therefore, by Propositions 3.1 and 3.2 we obtain
|(672‘]san+1&)('7 ]-)7 ?/))‘
= | [ A5 PLT D~ B (45 VLV + (D)X + (A0
Qo
< (I17°(AS) 2 PIsV x® | 12y + 75 (AG) 2 Fll 20y + 17° Fll 200y + 18116) 1],
which gives the desired estimate. O

Lemma 4.13 Let s > n/2. Under Assumption 4.1 (A1) and (A2) with ¢ = s+ 1, there exists a
constant C = C(M,c,s) > 0 independent of § such that the solution ® of (4.9) with f =0 and
Fri1(-0) = Fup1(1) = 7 = 0 satisfies

5201 ®( Dlls < C(IT5(AF) |l 2(20) + 1 F | £2(00) + 18s)-
Proof. By Lemma 4.6 we have
175(AG) 2P L5V x @ 2(0) < C (17 (AT L5V x @]l 12(p) + 1T° L5V x @ 1201 -
This and Lemmas 4.10-4.12 give the desired estimate. O

Now, we give estimates of the solution of the boundary value problem (4.5).

Proposition 4.14 Under Assumption 4.1 (A1), there exists a constant C = C(M,c) > 0 inde-
pendent of 6 such that the solution ® of (4.5) satisfies || IsV x ®||2(,) < C([[(AZN) 20| +58])) -

Proof. We put &, ::~(¢,O)h, Py 1= (0,8)", @) := ®100, and Dy 1= $300. Then, the solution
can be decomposed as ® = ®1+®;. By Lemma 4.9 we have || 15V x ®2[[12(q,) < C6[|F]|. It follows
from Lemmas 4.2, 3.3, and 4.3 that HI(;VXCi)ﬂ\Lz(QO) < OIsVx @1 p2q) = C(APY, P2 <

C||(AZN)/24||. Therefore, we obtain the desired estimate. O

Proposition 4.15 Let s > n/2+ 1. Under Assumption 4.1 (A1) and (A2) with q = s, there
exists a constant C = C(M,c,s) > 0 independent of 0 such that the solution ® of (4.5) satisfies

(4.10) 17° IV x| 12(0) < C(IIARY)28]ls + 6]18115).
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Proof. Set @, := (J%¢,0)" and d, := &, 00. Then, we have

Vx - Ingfgvx(ﬁé —®,)=—-Vy - Is[J°,PlIsVx® in Qo,
(qu) _ q)s) =0 on F(),
—0720p 41 (J® — D) = J°fB on Y.

Therefore, by Lemma 4.9 we obtain

(4.11) 115V x (5@ — @,)| 1209y < C(I[J*, PV x @I £2(00) + 018lls)
< €| T IsVx @ 12(00) + Ce (115 Vx Pl 2(6) + 0185

On the other hand, it follows from Proposition 4.14 that HIgVXi)sHLz(QO) < CJ[(AZN)Y2¢]s.
These estimates together with Proposition 4.14 yield the desired one. O

Proposition 4.16 Let s > n/2+1. Under Assumption 4.1 (A1) and (A2) with ¢ = s+1, there
exists a constant C = C(M, ¢, s) > 0 independent of 0 such that the solution ® of (4.5) satisfies

175 (AG) 2 15V x | 1200y < CIAT BIls + (AT 20l + [18]]s)-
Proof. Set ®; := ((A%N)I/qu, O)h and ®; := ®; 0 ©. Then, we have

Vx - LPLVx ((ARN)Y20 — @1) = —Vx - L{(AJN)Y2, P]I5Vx® in  Q,
(A2 — &) =0 on T\,
—67 20,41 (AR Y20 — &1) = (ABM)1/23 on Y.

Therefore, by Lemmas 4.10 and 4.4 we obtain
17215V x (AR)2® — @1) [ 12(09) < C(I1T*[(ATY) 2, PUsV x| 1200 + 161]5)
< C(I7° LV x®| 12(00) + 16]ls)-

On the other hand, it follows from Proposition 4.15 that ||J*I5V x <i>1HL2(QO) < C||AGY#||s. These
estimates together with Proposition 4.15 yield the desired one. O

We proceed to give a L®-estimate of Vx® in order to obtain a correct order of § and the
estimate under a weaker hypothesis on the water surface and the bottom. As was shown in [6],
the matrix P has the form

p_ ( (1 + On+16n11)Ey + 6Py 0p12 )
épl, (14 0n110n+1) "1 + 6%paa

where P11, P9, and pog are n X n, 1 xn, and 1 x 1 matrixes whose elements are rational functions
of Vx0 and their denominators are positive definite under Assumption 4.1 (A1). Moreover, p;,
can be written in the form p;, = p{, +6%p,5, where each element of p,, is also rational functions
of Vx# and

(4.12) Py = —(1+ Ong10n+1) " (Ong1 (01, - ,00)" + (1 + 9pg10n41) VOni1).
We note that it follows from (4.4) that

(413) p12(xa0) :p12($71) =0, p22($70) :p22($71) =0.
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Using these notations we can rewrite the first equation in (4.5) as

On1((672(1 + Ong10pt1) " + p22) Ons1 @)
= =V (14 00110011) Bn + 6°P11) V®) = V - (P1200119) — Onp1(p1a - V).

Integrating this with respect to z,,41 and using (4.1), (4.13), and a boundary condition in (4.5),
we see that

(4.14) (14 Opg1Ons1) ™" + 0%p22) 01 @

Tn+1 ~
= -6’3 -6 / V- (((1+ 0ns10p41) En + 0°P11) VO) w41
0
Tn+1 - -
— & /0 V- (P120n41®)dap 41 — 6%pysy - V.

We also have

1
(4.15) Vd =V V01 Pdan1.

Tn+1

Corollary 4.17 Let s > n/2+1. Under Assumption 4.1 (A1) and (A2) with q = s, there exists
a constant C = C(M,c,s) > 0 independent of 0 such that the solution ® of (4.5) with ¢ = 0
satisfies

172 0n1® | 12(2) + 1757 V| 12(0g) < CO*(|B]l-

Proof. It follows from Proposition 4.15 that HJ“”@HH@HLQ(QO) < 62||8||s- This and (4.15) show
that HJS_IVéHLQ(QO) < ||J88n+1é||L2(QO) < 62||8|s- The proof is complete. O

Corollary 4.18 Let s > n/2+1. Under Assumption 4.1 (A1) and (A2) with q = s, there exists
a constant C = C(M,c,s) > 0 independent of 6 such that the solution ® of (4.5) with =0
satisfies

175V | 2(0p) < CIIAGY) 265,
17571 041 @ r2(0g) < CO?[I(ATY)' 29

Proof. The first estimate comes directly from Proposition 4.15. It follows from (4.14) that
17571011 ®| 12 () < CO*(|T5V x®||2(0y)- This and Proposition 4.15 give the second one. The
proof is complete. O

Proposition 4.19 Let r > n/2. Under Assumption 4.1 (A1), (A2) with ¢ =1+ 1, there exists
a constant C = C(M,c,r) > 0 independent of 6 such that the solution ® of (4.5) satisfies

IVl (20) < C>IVSIr + SII(AG) 2 llr1 + 62[1Bllr11),
10n1 @]l (20 < C*([1(ATY) 271 + [1Bllr+1)-

Proof. Note that the assumptions imply the uniform boundedness of Pii, p22, Py, and
their first derivatives with respect to x. It follows from (4.15) and the Sobolev inequality that
IV e (ag) < C(IIVOlr + 0|15V x || £2(q) ) » Which together with Proposition 4.15 implies
the first estimate of the proposition. Similarly, it follows from (4.14) that H8n+1<i>|] Lo () <
CE(||Bllr + |77 IV x @ L2 (0g) + VRl 1o (020) ), Which together with the first estimate, Propo-
sition 4.15, and Lemma 4.5 gives the second one. The proof is complete. O
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Corollary 4.20 Let s > (n + 3)/2. Under Assumption 4.1 (A1), (A2), and (A3) with ¢ =
s —1/2, there ezists a constant C' = C(M,c,s) > 0 independent of 6 such that the solution ® of
(4.5) satisfies (4.10).

Proof. The proof is the same as that of Proposition 4.15, except that the first term in the
right hand side of (4.11) is evaluated as

IL7°, PIsV x @[ 12(00) < C(IIVPllzoe (o) 175 IV x P 2(0) + 1 Pll2(020) 5V x @] Lo (20))
< €HJSLSVX(I’HL2(QO) + CG(HIJVX(I)HLQ(QO) + HL;VX(I)HLoo(QO)).

Here, the last term can be evaluated by Proposition 4.19 and Lemma 4.5. The proof is complete.
O

The solution ® of the boundary value problem (4.5) depends on (7, b) through the matrix
coefficient P. Here, we will give estimates of Fréchet derivatives of the solution ® with respect

to (n,b).

Proposition 4.21 Let s >n/2+1 and m € N. Under Assumption 4.1 (A1)~(A4) with g = s,
there exists a constant C = C(M,c,s,m) > 0 independent of 6 such that the solution ® of (4.5)
satisfies

1T 15V x (D @i, - )| 22020) < Cllinllsazz -~ liimlls+1/2 (1A 2 @lls + 815s)-

Similar estimate holds for the Fréchet derivatives with respect to b.

Proof. We only show the estimate in the case m = 1, and the general case can be proved
in the same way. For simplicity, we write ®, = D, ®[] and P,, = D, P[s]. Taking the Fréchet
derivative of (4.5), we obtain

Vx - IsPI;Vx®, = —Vx - IsP,I;Vx® in Q,
®, =0 on Iy,
—0720p41®, =0 on Y.

Therefore, by Lemmas 4.10 and 4.5 and Propositions 4.15 and 4.19, we see that

17515V x @yl 12(00) < CIT PylsV x| 2(0)
< C(I1Byl o (20) 17° 15V x I L2 (2) + 1T Pyl £2(020) 115V x | Lo (029 )
< Cliills12 (I1(AT) 7?05 + 8118115

which gives the desired estimate. O

Corollary 4.22 Let s > n/2+1 and m € N. Under Assumption 4.1 (A1)-(A4) with ¢ = s,
there exists a constant C = C(M,c,s,m) > 0 independent of 6 such that the solution ® of (4.5)
with ¢ = 0 satisfies

17201 (D] @[, - - iim] )l L2000y + 175 V(DT @01, - - 5im])| £2(0)
< C8|illss1/2 - mllss1/2118]ls-

Similar estimate holds for the Fréchet derivatives with respect to b.
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Proof. The estimate of the first term comes directly from Proposition 4.21. On the other
hand, it follows from (4.15) that VDpie = — fxln+1 VO 41D} ®dzy, 41, which together with the
estimate of the first term gives the second one. The proof is complete. O

Corollary 4.23 Let s > n/2 and m € N. Under Assumption 4.1 (A1)~(A4) with ¢ = s + 1,
there exists a constant C = C(M,c,s,m) > 0 independent of 6 such that the solution ® of (4.5)
with 6 = 0 satisfies
17201 (D @[, - - i) | 22(000) + 1° 7V (D@, - i) 22 )
< OO i lagsya - imlls 32l (AG*) 2l s41.

Similar estimate holds for the Fréchet derivatives with respect to b.

Proof. We only show the estimate in the case m = 1. For simplicity, we write (i)n = Dn@[ﬁ].
By taking the Fréchet derivative of (4.14), we see that

17° 004184 12(20) < CF (1T V x Byl 2 (020) + 177V x (Dy )] 2 (020) |V x @ o< ()
IV x Dyl | os (0) |7V x @l 202 )
< C8[lill g3/l (AF) 251,

where we used Propositions 4.15, 4.19, and 4.21 and Lemma 4.5. On the other hand, it follows
E 1 < AP -

from (415) that V@n = — f$n+1 Vanﬂéndxnﬂ, so that ||JS IV@UHLQ(QO) < HJ887L+1(I>77||L2(QO)'

These estimates imply the desired one. O

5 Estimates of the operators
The following four propositions on the DN map APN = APN(n,b,d) were given in [6].

Proposition 5.1 Let s > n/2 + 1. Under Assumption 4.1 (Al) and (A2) with ¢ = s + 1,
there exists a constant C = C(M,c,s) > 0 independent of § such that we have ||A°Ng|ls <
C|ARNB||s + [[(AZ)26||s). Particularly, it holds that ||APN¢||s < C6~ ||| s1-

Proposition 5.2 Let s > n/2+ 2. In addition to Assumption 4.1 (A1) and (A2) with q¢ = s,
we assume that ||(n,0)|s+1 < M. Then, there ezists a constant C = C(M, ¢, s) > 0 independent
of 0 such that we have [|[APNg||s < 05*1/2H(A%N)l/quHsH/Q.

Proposition 5.3 Let s > n/2. Under Assumption 4.1 (A1), (A2), and (A3) with ¢ = s+ 5/2,
there exists a constant C = C(M,c,s) > 0 independent of 6 such that we have

1A+ V- (1 + 1= 1) Vo)l < C8([(AT)? 545 + IVs)-

Proposition 5.4 It holds that [(A°N¢, )| < \/(APN@, )/ (APN, ).

Proposition 5.5 Under Assumption 4.1 (A1), there exists a constant C = C(M,c) > 0 inde-
pendent of & such that we have ||A°N¢||—1 < C||V|.

Proof. Set ® := (¢,0)" and ® := ®0O. Then, P satisfies (4.5) with § = 0 and 628,41 P(-,1) =
APN¢. Therefore, it follows from Lemmas 4.12 and 4.5 that

[A"N o)1 < HJfl(A%N)I/ZPLSVX@:’HB(QO) < ”PIJVX&)HH(QO) <C|vall,

where we also used Lemmas 4.2, 3.3, and 4.3. The proof is complete. O
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Here, we will give commutator estimates for the DN map APY.

Proposition 5.6 Letr > n/2. Under Assumption 4.1 (A1) and (A2) with ¢ = r+1, there exists
a constant C = C(M,c,r) > 0 independent of § such that we have ||[V,A°N]¢p||_1 < C||V||.
Proof. Set @ := (¢,0)", ®; := (9;¢,0)", & := ® 0O, and ®; := ; 0 ©. Then, it holds that

Vx - IsPIsVx (9% — &) = =Vx - [;(0,;P);Vx® in  Q,
(51) (8Zq) — (I>z) =0, 5_28n+1(8iq) — q)z) = [81, ADN]qb on I,

—0720,11(0;® — ®;) =0 on Y.
Therefore, it follows from Lemmas 4.12 and 4.5 that
105, ANl -1 < [T HAF)PPIV x (00 — @4) 1200 + 1T (AGN)* (@i P) I,V x @] 120
< C(IsVx(0:® — @) r200) + 11 Vx @ 12(00))-
On the other hand, by Lemma 4.9 we have |15V x (0;® — @i)HLz(QO) < CH(aiP)IévxéHLQ(QO) <

C’||I5VX<i>HL2(QO). Hence, we obtain ||[0;, A°N]¢[|—1 < C||I5VX§>||L2(QO) < C||V¢||, where we
also used Lemmas 4.2, 3.3, and 4.3. The proof is complete. O

Proposition 5.7 Let r > n/2. Under Assumption 4.1 (A1) and (A2) with ¢ = r + 1, there
exists a constant C = C(M,c,r) > 0 independent of 6 such that we have ||[APN,alo||—1 <
ClVallr+2llll-

Proof. Set ® := (¢,0)", A:= (a,0)", &, := (ap,0)", P :=P0O, A:=A0O, and &, := $,00.
Then, it holds that

Vx - IsPI;Vx(®, — AD) = —2PI;Vx A - 5V x® in  Qo,
(@, — A®) =0, 6 20,11(Py — AD) = [A®Y, a]p — pA®Ya on Ty,
—620,11(®, — AD) =0 on Xj.

Therefore, it follows from Lemmas 4.12 and 4.5 that
1A a6 — GAPal| < [(ARN) 2 PL;V x (86 — AD) | j2(0) + 2PIV XA~ IV x® 12(0
< C(|[JIsVx(Ra — A®)|| r2(0) + VX A IV x®| 120 )-
Here, by Lemma 4.9 we have || IV x(®, — Aé)HLQ(QO) < C|IsVxA- IgVX@HLz(QO). Moreover,
it holds also that
Vx - IPIVxJ(®, — Ad) i i
=—Vx -I~5[J, PlIsVx(®, — AD) —2JPIsVxA-IsVx® in o,
J(®, — A®) =0 on I,
—6720,11J(®, — AD) =0 on X,

so that Lemma 4.9 gives
1715V x (D0 — A®)| L2 () < C (I, PIsVx (P40 — AD)||2(00) + IPLIV X A - I5V x| 2(0))
< C(I115V x (B0 — AB) | p2(00) + 115V x A+ 15V x B 12(0,))-
Hence, we obtain
IAPY, alg| < [6Aal| + ClII;V x A - 15V x|l 20y
< C(llpIIANally + || T5V x All oo (o) 1 5V x | L2 (620))
< ClIVallr2llll1,
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where we used Propositions 5.1 and 4.19 and Lemmas 4.2, 3.3, 4.3, and 4.5. Since the adjoint
operator of [APN,a] in L? is equal to —[APY,a], the above estimate together with the standard
duality argument shows the desired one. O

The following three propositions on the DN map APY were given in [6].

Proposition 5.8 Let s > n/2 + 1. Under Assumption 4.1 (Al) and (A2) with ¢ = s + 1,
there exists a constant C' = C(M,c,s) > 0 independent of 6 such that we have [|[J®, A°N]p| <
ClI(AG) ¢

Proposition 5.9 Let r > n/2. Under Assumption 4.1 (Al), there exists a constant C =
C(M,c,r) > 0 independent of 0 such that we have |([0y, A°N]p, @)| < C||(ne, be)||r+1 (AN, @).

Proposition 5.10 Let r > n/2. Under Assumption 4.1 (Al) and [|(n,b)||;+2 < M, there
exists a constant C = C(M,c,r) > 0 independent of 6 such that we have |(A°N¢p,v - V)| <

Cllvllr4+1 (Ao, ¢).

We proceed to give estimates for the other operators.

Proposition 5.11 Let s > n/2. Under Assumption 4.1 (A1) and (A2) with ¢ = s+ 1, there
exists a constant C = C(M,c,s) > 0 independent of 6 such that we have |ANNB||s < C||B]|s-

Proof. Set ® := (0,3)" and ® := ®oO. Then,  satisfies (4.5) with ¢ = 0 and 628,41 P(-,1) =
AYN3. Therefore, Lemma 4.13 gives the desired estimate. O

Lemma 5.12 For any function ® defined on Qy, we have || ®(-,0)| < H(AIET)D)1/215VXé||L2(QO)+
[AG° (-, ).

Proof. We take v € H arbitrarily and define ¥ by W(-,z,,1) = %‘Sinh(iﬂ(%ﬁ?“))'y, which
is a solution of the boundary value problem

Vx -IBBVxT =0 in Q,
U =0 on Ty,
—0720,11 ¥V =7 on %o,

so that we have ||(A13D)_1/215VX@HL2(QO) = ||v||. By Green’s formula, we see that

(B(,0),7) + (B(-, 1), A7) = /8 BN RS = [V @3V
0 0

= / IsVx® - 5V x UdX.
Qo

This together with Proposition 3.2 implies that
D(-,0),7)| < [APD(, gl 0 sV x @ 2ol ") " Ls XU L2(Q0)
(D(,0),7)] < [[AGPR(, D] + (AT 215V x || I(AS) 215V x|
= (AR (-, 1) + (AT 215V x @] 2 (00)) 1]

This gives the desired estimate. O

Proposition 5.13 Let s > (n + 5)/2. Under Assumption 4.1 (A1)—(A3) with ¢ = s — 1,
there exists a constant C = C(M,¢,s) > 0 independent of 6 such that we have ||VAPPp|s—1 <
ClIVlls—1 and [A°P]ls < C[|olls-
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Proof. Set ® := (¢,0)" and ® := ®0©. Then, ® satisfies (4.5) with § = 0 and ®(-,0) = AP .
Therefore, by Lemma 5.12 and Proposition 3.1, we see that
10,APP G|l s—1 < (1757 (AT 2 15V x 0, | 2 0) + [|AGPDibl|s—1
< 2012 IR IV x 0] 1) + 10i6 a1

Here, we also set ®; := (9;¢,0)" and ®; := ®;00. Then, (5.1) holds. Therefore, by Lemma 4.10
we see that

175732 15V x (8@ — @3) | 12(q2)

< O30 P) 15V x || 120

< C(1 757320, P 200\ 115V x @ || oo (2) + 105 Pl oo (o) |15 215V x @ 12020 )

S C||v¢H873/27
where we used Propositions 4.15 and 4.19 and Lemma 4.5. Moreover, we also obtain

V2T BRIV x @y L2y < COV2((AGN) 200 s—s/2 < Cl0:6]|s-1-

These estimates give the first estimate. Similar argument gives the second one. O

Proposition 5.14 Let s > n/2 + 2. Under Assumption 4.1 (Al) and (A2) with ¢ = s,
there exists a constant C = C(M,c,s) > 0 independent of § such that we have |[A"PS]ls <

C min{6?||Bls, o[ Blls—1}-
Proof. Set ® := (0,)" and ® := ® 0©. Then, ® satisfies (4.5) with ¢ = 0 and &(-,0) = ANP3.
Therefore, by Lemma 5.12 and Propositions 3.1 and 4.15, we see that

1A Blls < 12 (A2 L5V x @]l 1209 < SIIT* L5V x| 2(00) < C216]ls-

On the other hand, it follows from Lemma 5.12 and Propositions 3.1, 4.14, and 4.16, we see that
AP B]|5 < [[T5(AFP) 215V x @[ 2(q)
< C(II77HDIATP) P 15V x D[ 120 + [I(AT”) 2 15V x| 2(q))
< Co([| T HAF) 2LV x @ 12 (0g) + 1V x| L2(0))
< Co|Blls-1,

where we used the relation |D|?AFP = §2ARN. These two estimates give the desired one. O

The next two propositions are mathematically rigorous versions of the formal expansion
(2.7).

Proposition 5.15 Let s > n/2 — 1. Under Assumption 4.1 (Al) and (A2) with ¢ = s + 2,
there exists a constant C = C(M,c,s) > 0 independent of § such that we have |[ANNG + (|5 <
C&|1Bls+2-

Proof. Set @ := (0,3)" and ® := ® 0 ©. Then, ® satisfies (4.14) and ANNG = 6§28, ®(-, 1),
so that we have

1
(5.2) ANNG=—-p3-V- / (14 0n110n41) VO 4+ P120n 1P + 6° PLiV®) dwn g1,
0

where we used (4.1) and (4.13). This and Corollary 4.17 give the desired estimate. O
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Proposition 5.16 Let s > n/2—2. Under Assumption 4.1 (A1) and (A2) with g = s+4, there
exists a constant C = C(M,c,s) > 0 independent of 6 such that we have

|48+ 848V (41 - BT+ 5 (1 +7— 02V, < C5*8lsa

Proof. Set ® := (0,4)" and ® := ® 0 ©. It follows from (4.14) that

(5.3) Oni1® + 6%(1 + 9y 10n11) 0
= —02(1 + Ons1011) {P220p41® + pyy - VO

Tn+1 ~ ~ ~
+V- / (1 + 0p110n41) VP + P1o0ni1® + 2 P11 V) dwyia },
0

which implies that ||J*+2 (8n+1(i) +62(1+ 8n+19n+1)ﬁ) HLQ(QO) < C(SQHJSJF?’V)(‘i’H[g(QO). In view
of the relation

5 Tnt1 .
(5.4) ® + 0% (n41 + Opi1 — 1 — )3 = / (On1® 4+ 6°(1 + 9ng10n11)8) dwng,
1

we also obtain HJ‘”lV(i’—i—éQ(aan +0n41—1=1)8) |l 12(00) < 052”JS+3vXé”L2(QO). Therefore,
by Corollary 4.17 we obtain

(5.5) |75V x (4 6% (241 + O — 1 — 1) B) l22(00) < C6 1Bl s44-
On the other hand, by (4.1) and (4.12) we see that

1
/0 {(1 + an+19n+1)v((1 TN = Tpy1 — 9n+1)ﬂ) —pla(1+ 8n+19n+1)5}d$n+1

1
= /0 an+1{($n+1 + 0 1)V (1 +1)B) — %(ﬂfnﬂ +0,41)*V B+ (61, .. 79n)Tﬁ}d$n+1
= (1+ 7= B)(V0)B+ (1 4+~ )*VB.

Therefore, we can rewrite (5.2) as

1
(5.6) NG = =B =02V - (L+n = B)(Vn)B + 5(1+7 - b)2V)

1
— 52V . / (ﬁ128n+1¢> + PHV‘I’)d.%'n_H
0

1
-V / {14 0n0410011) V(D + 6* (241 + g1 — 1 = 1))
0

+ PV20nt1 (€ + 6% (2nt1 + Ongr — 1 — 1) B) fdap 1.
This together with Corollary 4.17 and (5.5) give the desired estimate. O

Next, we will give estimates of Fréchet derivatives. The following two propositions on the
DN map A°N = A°N(n,b,0) were given in [6].

Proposition 5.17 Let s > n/2 and m € N. Under Assumption 4.1 (A1), (A2), and (A4) with
q = s+ 1, there exists a constant C = C(M,c,s,m) > 0 independent of  such that we have

1D AN [ -+ ] Blls < Cliinllsxaya - iml|s4a/2ll (AT 251

Similar estimate holds for the Fréchet derivative of APN with respect to b.
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Proposition 5.18 Let s > (n+1)/2 and m € N. Under Assumption 4.1 (A1), (A2), and (A4)
with ¢ = s + 1/2, there exists a constant C = C(M,¢c,s,m) > 0 independent of § such that we
have

1Dy AN i, il @l < OO 2 lillsar -+ |1 [ (AG) 2512

Similar estimate holds for the Fréchet derivative of APN with respect to b.

In the next proposition we will modify the estimate in Proposition 5.17, especially, we improve
the norm of (71,...,7,) and the hypothesis on the regularity of the water surface and the
bottom.

Proposition 5.19 Let s > n/2 4+ 2 and m € N. Under Assumption 4.1 (A1)—(A4) with ¢ =
s+1/2 and ||n|[s41 + [|blls43/2 < M, there exists a constant C' = C(M,c,s,m) > 0 independent
of 6 such that we have

1D AP, i) lls < Cllinallss ==~ N |11 CATY) 2 Bl

Similar estimate holds for the Fréchet derivative of APN with respect to b.

Proof. For simplicity, we only show the estimate in the case m = 1. It is sufficient to evalu-
ate || Dy APN[1]¢||s—1 and ||V (D, APN[1]¢)||s—1. By Proposition 5.17 we have || Dy A°N[7]]$]ls—1 <
C’||77HS+1/2||(A%N)1/2||s. Let T}Z be a translation operator with respect to the j-th spatial vari-
able, that is, (T,{u)(x) = u(x1,..., 251,25 + h,xj11,... ,2,). Then, it is easy to see that
T APN(n, b, 6) = APN(T)n, T}b,8)T} and that

8jADN¢) = ADNaj¢ + DnADN [3]77]¢ + DbADN[ajb]gb.
Therefore, we see that

8J’(DnADN[77]¢) = Dn(ajADNéb) [77]
= Dy (Dy A" [05m]@) 7] + Dy DpA"™[17, 06 + Dy A [17]0;¢.

Here, by Proposition 5.17 we have || D, Dy A°~[1}, 0;b]¢||s—1 < C“ﬁ|’s+1/2uajb“8+1/2”(A%N)l/2¢”5
and || DyAPN[i7]0;0||s—1 < C&* (|1l s41/210;(ARN)/24)|5. Tt follows from Theorem 3.4 that

Dy A”N[9m]¢p = =67 APN ((1 4 8*[Vn|*) " (APNg + Vi - V) (95m))
— V- {(Ve =81+ 8|Vn>) " (ANg + V- Vo) Vi) (9;m) },
so that
Dy (Dy AN [9m]6) [17]
= =8 Dy AN (1 + 6% Vnl*) T (APNg + Vi - V) (95m)
— 82APN{(1 4 82| V|*)"H(APNG + Vi - V) (9;7)
+ (1+ 6%|Vn[*) Dy ANl 6 + Vi - V) (95m)
—26°(1+ 6*|Vn*) > (V- Vi) (AN + V- V) (9;m) }
—V-{(Vo = &1+ V)" (ANp + Vi - Vo) V) (9;7)
— 82 (1+ 6°|Vn*) "1 (Dy ANl ¢ + Vi - V) (9m) Vi
— 62(1+ 67| Vn*)"H(APNg + Vi - V) (9;m) Vi
+ 260 (1 4 82[Vn*) "2 (Vn - Vi) (AN ¢ + Vi - V) (9;m) V.
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Therefore, by Propositions 5.18, 5.1, and 5.2 and Lemma 4.5 we see that
1Dy (DyA”N[05m)9) [i7)]]s -1 < C{lIlls+1 (S AN |5 + [[Vlls) + 01| Dy AP [17] 8] }
< Ollills+1 /[ (AFY) 2Bl g1/2-

so that we obtain || V(D,A°N[7]¢)|ls—1 < Cllills+1ll(AS¥)/2¢]|s+1, where we used Propositions
5.17 and 5.1 and Lemma 4.5. Hence, we obtain the desired estimate. O

We proceed to give estimates of the Fréchet derivatives of the NN map AN = A™N(n, b, 6).

Proposition 5.20 Let s > (n+ 1)/2 and m € N. Under Assumption 4.1 (Al)—(A4) with
q = s+ 1, there exists a constant C = C(M,c,s,m) > 0 independent of  such that we have

1Dy AN [ - 1] Blls < OOVl -+ i o111l 12

Similar estimate holds for the Fréchet derivative of AN with respect to b.

Proof. We only show the estimate in the case m = 1, and the general case can be proved
in the same way. Set ¢ := (0,8)" and ® := ® 0 ©. Then, ® satisfies (4.5) with ¢ = 0
and §720,41®(-,1) = ANB. For simplicity, we write AV B = DyAY |8, @, = Dy®[1j], and
P, = D, P[n]. Taking the Fréchet derivative of (4.5) with respect to 1, we obtain

Vx - PV x®, = —Vx - ;P ;Vx® in Q,
=0, 620,11, =AN3 on T,

—67 20419, =0 on Xj.
Therefore, by Lemmas 4.13 and 4.5 we obtain
(5.7) 1Bl < (1T (A5 Py LV x® 20 + [Py 15V x B 2 )
< C5 AP IV x || 20 -

Here, as in the proof of Proposition 4.21, we have HJ‘SH/QPUL;VX&)HLQ(QO) < O6|[0lsx1 1Bl s41/2-
These estimates give the desired one. O

As a corollary of this proposition, we can obtain the estimate for the NN map A™ in
Proposition 5.11 under a weaker hypothesis on the water surface and the bottom.

Corollary 5.21 Let s > (n + 3)/2. In addition to Assumption 4.1 (A1)-(A4) with ¢ = s, we
assume that ||(n,b)||s+1 < M. Then, there exists a constant C = C(M,c,s) > 0 independent of
d such that we have ||[ANNB|ls < C||B]|s-

Proof. It is sufficient to evaluate [[AY3||;_1 and |[VA™™3|s_;. By Proposition 5.11 we have
|ANNB|s—1 < C||B]|s—1- Let T} be a translation operator with respect to the j-th spatial variable.
Then, it is easy to see that T} ANN(n, b,0) = ANN(T}/n, T} b,6)T; and that

(5.8) 0N B = N0; 8+ Dy N [0m]5 + Dy A [0;0]5.
Hence, by Propositions 5.11 and 5.20 we get

VA Blls—1 < C(IIVBlls—1 + 1(V, VO)s[1Blls-1/2) < ClIBlls-

Therefore, we obtain the desired estimate. O
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Proposition 5.22 Let s > n/2 and m € N. Under Assumption 4.1 (A1)-(A4) with g =s+1,
there exists a constant C = C(M,c,s,m) > 0 independent of § such that we have

1D N s -t Blls < Collinllsrayz - limllsta /2l Bl s41-
Similar estimate holds for the Fréchet derivative of AN with respect to b.

Proof. For simplicity, we only show the estimate in the case m = 1 and use the same notation
as in the proof of Proposition 5.20. It follows from (5.7) and Lemma 4.5 that

1A Blls < ClIT*H Py L5V x @]l 220
< C(I17* Pyll 2 o) 1 5V x| oo 20) + | Bolloe o) 175 15V x| 12 ) -

This together with Propositions 4.15 and 4.19 gives the desired estimate. O

Proposition 5.23 Lets > n/2—1 andm € N. Under Assumption 4.1 (A1)—(A4) with ¢ = s+2,
there exists a constant C = C(M,c,s,m) > 0 independent of 6 such that we have

1D AN -] Blls < OOl llsasy2 - liimll 45721l Blls+2-
Similar estimate holds for the Fréchet derivative of AN with respect to b.

Proof. For simplicity, we only show the estimate in the case m = 1 and use the same notation
as in the proof of Proposition 5.20. By taking the Fréchet derivative of (5.2), we see that

Dy AN BNl < C (1T V x Byl L2 (o) + IV x (Dy817) | () 1757 V@l 1220 )
< C8 il 5457211 Bl 42,

where we used Corollaries 4.17 and 4.22. The proof is complete. O

In the next proposition we will modify the estimate in the above proposition, especially, we
improve the norm of (7,... ,7,) and the hypothesis on the regularity of the water surface and
the bottom.

Proposition 5.24 Lets > n/2+2 andm € N. Under Assumption 4.1 (A1)—(A4) with ¢ = s+1
and [[n||ls+2 + [|b]ls45/2 < M, there exists a constant C = C(M,c,s,m) > 0 independent of o
such that we have

1D AN, - iimBlls < CO*[linllst2 -~ Fimlls+2lBlls+2-
Similar estimate holds for the Fréchet derivative of ANN with respect to b.

Proof. For simplicity, we only show the estimate in the case m = 1. It is sufficient to evalu-
ate || Dy ANN[0]B||s—1 and ||V (D, ANN[7]3)||s—1. By Proposition 5.23 we have || D, A™[7]5]]s—1 <
C? |11l s15/2]1B8]ls41- In view of (5.8), we see that
0 (DA™ [11)8) = Dy (0;4° B) 1]
= Dy (DyA™[05m]B) [17] + Dy DpA™ [17, 9;0]3 + Dy A" (1] 0;3.
Here, by Proposition 5.23 we have || Dy, DyANN[i}, 8;0]8|s—1 < C8?|[1il|543/2/10;b]ls13/2/1 8]l s+1 and
| Dy ANN[17]0; 8| s—1 < C8*[[1]|5+3/21105 8| s41. It follows from Theorem 3.4 that
Dy A™N0m)8 = —6* AP ((1 + 6%|Vn|*) =1 (9;m) A™ )
+ 8V (14 0% Vnl?) ~H(9m) (A B) V),
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so that
Dy, (DUANN [83‘77]5) [71]
= —02 Dy AN (1 + 6% V)~ (9m) A B)
= AP (1 + % [Vn) T (@A™ + (95m) Dy A [7] 6)
= 20%(1+ 8*|Vn|*) 72 (Vi - Vi) (9 A5}
+ 82V (14 0%V ) (8 A B + (85m) Dy A [17)8) Vi
—20%(1+ 6*|Vn|*) =2 (Vi - Vi) (8m) (AN B) Vi
+ (14 0% Vnl*) " (9;m) (A B) Vi
Therefore, by Propositions 5.17, 5.1, and 5.22, Lemma 4.5, and Corollary 5.21 we see that

1Dy (Dy A [05m] B) [illls—1 < C (8% 17|42l A Blls1 + 8| Dy A [ Bl )
< C&[liflls+2018lls+1,

so that we get || V(D ANN[7]8)]|s—1 < C62[7]|s+2]|B]|s+2- Hence, we obtain the desired estimate.
a

As a corollary of this proposition, we can obtain the estimate for the NN map A™ in
Proposition 5.15 under a weaker hypothesis on the water surface and the bottom.

Corollary 5.25 Let s > n/2+ 3. In addition to Assumption 4.1 (A1)—(A4) with ¢ = s+ 1 we
assume that ||(n,b)||s+2 < M. Then, there exists a constant C = C(M,c,s) > 0 independent of
§ such that we have |[ANN3 + B|s < C62||B]|s42-

Proof. It is sufficient to evaluate |A™S + B|s—1 and |[V(A™3 + B)|s—1. By Proposition 5.15
we have ||ANNB+ B|s—1 < C62||8||s+1. Moreover, by (5.8) and Propositions 5.15 and 5.24 we get

10;(AB + B)lls—1 < A0 8+ 08|51 + 1Dy A [05m] Bl|s—1 + ([ DoA™ [0;0] 5|1
< 8 (10381151 + 107, 03b) |1 18l s41)-

Therefore, we obtain the desired estimate. O

We end this section by giving expansions of Fréchet derivatives of the maps APY and AN
with estimates of error terms.

Proposition 5.26 Let s > n/2 — 1. Under Assumption 4.1 (A1)—(A4) with ¢ = s + 3, there
exists a constant C = C(M,c,s) > 0 independent of 6 such that we have

1Dy A7) + DyAN Bl + V - (1 = B)V)lls < O, 5) 47/l (AFY) /2|3

Proof. We only show the estimate for D; A°™. The estimate for D,A°™ can be proved in the
same way. Set ® := (¢,0)" and ® := ® 0 ©. Then, we have (4.5) with 3 = 0 and, in place of
(5.2),

AN+ V- ((14+n—-b)Ve)

1 1
=V / {(1 + 8n+10n+1)v 8n+1(1)(', Z)dZ — p12an+1‘I’ — 52P11V<I>}dxn+1.
0

Tn+1
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For simplicity, we write én = Dné[f/]. Taking the Fréchet derivative of the above equation with
respect to 1, we obtain

Dy AN 6 + V- (7Y 0) ||l < C ([ 7*F20n11 @yl 22(020) + 5211 VR, | 12(0))
+ Cliillst2 (172 Ons1 @l r2(09) + 21T V| £2(00))
< C([7l| 5721 (AT 2| 45,

where we used Corollaries 4.18 and 4.23. The proof is complete. O

Proposition 5.27 Let s > n/2 — 1. Under Assumption 4.1 (A1)—(A4) with ¢ = s + 4, there
exists a constant C = C(M,c,s) > 0 independent of 6 such that we have
| Dy AN[7]8 + DpANBIB + 82V - (147 = b)(Vi)B + (77 — b)(V)B + (141 = b) (71 — V) |5
< O3 B) /218l
Proof. We only show the estimate for D; A™. The estimate for DA™ can be proved in the
same way. We set ® := (0, 8)", & ;= ® 00, and &, := D, ®[5j]. Taking the Fréchet derivative of
(5.6) with respect to 1, we obtain
1D A7) 3 + 62V - (14 = D) (Vi) B+ (V)8 + (1+n = )iV ) s
< OBV x Pyl r2(ag) + 117V x (@ + 8% (D1 [7] = 7)) |l 20
+ Cllills2 (87 Vx @l 12(00) + [/ VX (@ + 6% (@nt1 + Onsr — 1= 1)) [l 22(0))-
Here, taking the Fréchet derivative of (5.3) and (5.4) with respect to 7, we see that

||JS+1VX (i)77 + 62(D77¢9n+1[77] - 77)5) HLQ(QO)
< CE (|73 V x @yl 2000y + iTlls+4l T3V x @] L2(0))-

By the above estimates, (5.5), and Corollaries 4.17 and 4.22, we obtain the desired estimate.
a

6 Reduction to a quasi-linear system

In this section we reduce full nonlinear equations (1.15) to a quasi-linear system of equations.
Suppose that (1, ¢) is a solution of (1.15). In view of Theorem 3.4, we define Z and v by

{ Z = (148 |Vn) (A (1,0,6)¢ — e~ A™N(1,0,6)B; + Vi - Vo),

(6.1) v =V 522V,

By the same way as in [6], we differentiate the second equation in (1.15) with respect to z; and
obtain
Dipe + O +v - (VO — 622V 0m) — 82 Zd;(A°Np — e 1 ANNB,) = 0.

Differentiating this with respect to x; and xj, we see that

Dijkdr + Oijkm +v - {V0ijud — 6°(ZV 0k + (06 Z)V Oin + (9; Z)V Oin + (0, Z)VI;jm) }
+ (05v) - { Vit — 6*(ZNV Oim + (O Z)VOm) }
+ (Okv) - {V0ij¢ — 6*(ZNV0yyn + (0;Z)VOm) } + (9j,v) - (VO — 62 ZV O;m)
— 0*{(0; Z2)Oki (AN — e TANNBL) + (01 2) 015 (AN — AN, )
+ (038 2)0:(ANp — e ANNB,) + Z0y(ANg — e ANNB, )} = 0.
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Here, by the definition (6.1) of Z and v we have APN¢ — e 'ANN3, = Z — v - V1. Therefore,

8k:z’(ADN¢ o e—lANNﬂT)
= OkiZ — v - VOkin — (Ogiv) - Vn — (Opv) - VOin — (Oiv) - VOn,
so that
(8z]k¢ — 52Zﬁijkn)t +v- V(@quﬁ - 52Zﬁijk77) (1 + (52Zt + (521} . VZ)GZ-jkn

= 02((0;2) (0 Z) + (Ok2)(0i;2) + (0:2)(03.2)) + 15",

where -
5" = —(05v) - (VOhip — 6° ZV Ojim)
- (ak’l)) . (V&Z]qﬁ — (52ZV8Z']'77) - (6jkv) . (V8,¢ — 52ZV8{I])
— 82{(8;2)((Ohiv) - Vi + (9pv) - Vgn)
+ (8}€Z)((8”U) . V77 + (@U) . V(‘)jn) + (8]kZ)(azv) . Vn}.

Now, we write v = (1,b) and denote by ADN and A}N the n-th Fréchet derivative of the DN map
APY and NN map A™N with respect to u, respectively. Then, it holds that

8z]k(ADN¢ o E_IANNﬁT)

= A”N0iu¢ — e P AN OB 4+ NYN[Osjkuld — e AYN[Djul B

+ ADN[a'U] k¢ + ATV[0ju]Opid + A" [Ou0;6
-1 (Al @]u 3kﬂ7- ANN [8jku]8ZﬂT + Al\lIN [3]mu]ajﬂ7)
+ AD [0iu, Opule + AN [Ojxu, Ojulp + AS™ [Oiu, Oju)d
e (NS0, Out] By + NS (00w, Oyul Br + NSN O, julBr) + f17F,

where N

PN = —e N (AYN[00) 051 By + NYN[05u)0ki By + A [05u] i 87)

+ ADN[&ju]@kqb + ADN[ jku]a¢ + ADN[E);W- ] j¢
+ ADN[8 u, OjulOpd + A [0ju, Opu)0id + A" (O u, O;u]0;¢
-1 (ANN 8 u, 8 iU 6kﬁ7— AEN [Bju, 8ku] iﬁr AEN [8ku, 8,u]6]ﬁT)
ADN[a u, O;u, Opulp — e LAY [Dhu, Dju, Ol By

Here, by Theorem 3.4 we obtain

APNG i+ ARNDpuld — e L ANN[D5ul By = APN Dy — 02 Z8ijim) — V - (vdijrn) + f2F,
8_1A111N[6iju]6kﬁ7— = —6_152ADN((ANNakﬁT)aij77) + f@]lc’
where

Uk DbADN[az]kb](b_EilDbANN[ ’L]k‘b]ﬁ’r?
éﬂ’“ = e LR (1 + 0 Vnl?) TV 2 (5m) (AN Ok B;))
+e 716V - (14 6°[Vn?) 1 (0in) (ANOk B) V) + & Dy ANN[03b] 04 B

By Theorems 3.4, 3.5, 3.8, and 3.9, we see that

ARN[Bu)Bij ¢ + A3 [0, Opu]d — e~ ASN[Biju, Oyl By = fiIF,
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where
Ik — D, DyAPN[9gn, Di;bld — € Dy Dy AN B, 350] B,
bADN[E)Z-jb, alb](f) — 71D AN [8”[) akb]ﬂT + ADN [8ku](8w¢ — 5228”7’])
+52ADN((1 + 8% Vn) 1 (0m) (0m) A¢) + 67V - ((935m) ZV Ikn)
— 0*V - (1 + 6*[Vnl*) " (9n) (8;m) (Ad) V)
+ SEAPY (1 + 02 Vn|?) "N (0ym) (AP (Z0kn) + ZNn - Vakn — (Bm)V - (ZV)) }
— &V (14 8%Vn2) 1 (0m) (APN(Z0kn) + ZVn - Vogn — (Okn)V - (ZVn))Vn}
— PPN (1 + 82|Vnf%) " (i) (D AN [Bib] — = Dy AN [9,b]5;)
+ 82V - ((1+ 82| Vnf2) ™ (@) (Dy AN (9] — e~ Dy [9,b)5,)
Therefore, it holds that
(6.2) Diji(APNp — e LANNBL) = APN(0y.0 — 52zaijk77) —v - Vi1
- Lijkﬁ +e Z]kﬂT + fzﬂc’

)
Vn)

where L7* is a linear operator depending on (n,b,8,e7!/3;) defined by
Lk = e 7162 APY (A0 B;) ;577 + (ANN8; 87) Dy + (AN 8, ) Ot

and ” ik
P = 17T = e (N0 B + OigiBr) — (V- 0)Digan
+ fZ]]C zylc ékz _ kzg fZ]]C f]kz fkfu'
Hence, introducing new functions ¢;;x and ik by
(6.3) Gijk = Ok, Vijk = Oijud — 02 Z0yjm,
we obtain the following quasi-linear system of equations
(6.4) OrCijk + v - Vi — AP0 + L”kk =~ . 10,18 + 75,
Othij + v - Vbiji + alijr = € g" + £,

where a, féj k, and géj * are given by
(6.5) a=1+02Z+60-VZ

and g g
f = 17+ P {0,2)00(Z — 71 B;) + (05(Z — €7 Br)) e Dl
+(6kZ)6( _57157') ( ( _57157'))571&']'57—
(6ZZ)8]( — € 157’) ( ( — € lﬁT))E_lajkﬁT}a

g5" = 7162 ((9;8,) (OhiB-) + (015-)(D538-) + (9::) (03.5-)).

Remark 6.1 The functions Z and v in (6.1) are related to the velocity Potential ® by §2Z =
(Ont1®)|r@) and v = (V®)|rq), so that the function a in (6.5) can be written in terms of the
pressure p in (2.17) as

—(1+ &8*|Vn>) " (Ont1p — 67V - VD) |1

Thus, the generalized Rayleigh—Taylor sign condition ensures the positivity of this function a.
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We proceed to give some estimates of the coefficients v and a, and the remainder terms
fi=(f7%) and fo = (f57%). In the following we will use the notation d¢ = (9;¢), 92¢ = (9i;¢),
Pd = (0ijx9), ¢ — 6200 = (03¢ — 62Z0;jm), and

E = [|n]ls4s + [ Vllsra + | (ATN)V2(0%¢ — 62 Z8%n) | s,
and let 09 := 01(M7y,c1,s + 1) be the constant occurring Proposition 4.1.
Lemma 6.1 Let s >n/2+ 3, Mi,c; > 0 and suppose that

(6.6) 1lls+2 + IVOllsrr < My, [Iblls+5 + [|Brllss < M,
' 1+n(z)—bz)>c1 for ze€R™

Then, there ezists a constant C = C(Mj,c1,s) > 0 such that for any é € (0,92] and € € (0,1]
satisfying e 7162 < My we have

If1lls < C(E+1+06%Z]s42).

Proof. By Proposition 4.1, for any ¢ € (0,d2] we can construct a diffeomorphism © satisfying
the Assumption 4.1 (A1)—(A4) with ¢ = s+1 and a constant M independent of . Therefore, we
can directly evaluate f5 and fg by Propositions 5.1, 5.17, and 5.24, Lemma 4.5, and Corollary
5.21, so that

1(f5: fo)lls < CInlls+s + 1Vlls1 + 1)
We can rewrite f; symbolically as
fr = —e 1 (BAYN[0u]0? B + 3NN [Ou, Ou]0B; + AN [Ou, Ou, OulB;)
+ 3ALN[0%u]D¢ + 3ALN [Ou, duldo + ASN [Du, Du, Dulg,
so that we have
Ofs = —e 1 (BAYN[0u)0 B + BAYN[0%u] 02 B, + 6ATY [Ou, Ou)0? B + 6ASN[0%u, Ou]0B,
+ 4NN [Ou, Ou, Ou]OB; + 3NSN[0%u, Ou, Ou]B; + AN [Ou, Ou, du, Ou]B; )
+ 3ALN[0%u]0? ¢ + 3AN [03u)O¢ + 3ASN [0, Ou)dg
+ O(3A3N[Ou, Ou)d¢ + A3¥[Ou, du, Oule).
Therefore, by Propositions 5.19 and 5.24 and Lemma 4.5 we obtain

[falls < [[falls—x + [V falls—1 < C|Inllsts + [[VOls42 +1).

Concerning f7, by Proposition 5.19 and Lemma 4.5 we see that

IAT™ [Oru] (D3¢ — 62 Z8im) s

< Ol[(AG) 2 (9159 — 62 Z0ym) 51

< C([(AGN) 2V (0550 — 8% Z0im) s + |V (9i56 — 6> Z0im)s)

< C([(AF)V2(VDy6 — 822V 0m)lls + ° (VY 2)dignllst1 + [V lsra + 6% Z0imlls11)-
Here, it holds that

PN (VZ2)nlls+1 < CEIVZ ) ssllBignlls—1 + IV Z[ls—110imlls+1)
< O8%([1Zls+2 + 1 ZIs Il s+3)-
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Similarly, we have 6% Z0;;n||st1 < C8(||Z]ls+1 + | Z||s|Inlls+3). Moreover, by the definition

(6.1) of Z, Propositions 5.1 and 5.11, Lemma 4.5, and Corollary 5.25, we have ||Z — 713, <

C(||[V®||s+1 + 1), which yields also that §2||Z]|s < C(|[V¢||s+1 + 1). Hence, we obtain
IAT[0kul (93¢ — 8*Zin)|ls < C(E + 1+ 6| Z]|s42)-

The other terms in f7 can be evaluated by Propositions 5.2, 5.17, and 5.24 and Lemma 4.5. For
example, by Proposition 5.2 and Lemma 4.5 we have

SHAPY (1 + 0% Vnl) T (Dygm) AN (Z0jm) ) s
< C&) @y A (Z0kn)ls+1 < O (103|541 | AN (Z0jm) |51 + AN (Z0yn) [l 5+1)
< C8(Inlls+sl1 Z0knlls + 1 Z20knlls+2) < C(Inllsts + 81 Z]ls+2),
and by Proposition 5.17 we have
| DA 348611 < DoAY [OkEIV 6l + | DAY VLBl
+ [ Du DoAY [V, b || + | DoAY [0x] S5
< C([[nlls+3 + IVOlst2)-

Hence, we obtain || f7|ls < C(E + 1+ 62| Z||s12). These estimates together with Corollary 5.25
give the desired one. O

Proposition 6.2 Let s > (n+7)/2, Mi,c1 > 0 and suppose the conditions in (6.6). Then,
there exists a constant C = C(My, c1,s) > 0 such that for any § € (0,62] and € € (0,1] satisfying
e~162 < M, we have

{ 12 — 2B, lluvs + SIAT)VA(Z — €72, [0 < C(E + 1),
lollosz + | (ABY) /2012 < CE.

Proof. Note that we have the diffeomorphism O satisfying the Assumption 4.1 (A1)-(A4) with
q = s+ 1 and the estimate ||Z — e718;[|s + 0?[|Z|s < C(||V¢|ls+1 + 1). In order to evaluate
higher derivatives of Z —e~13;, we will derive an expression of a derivative of Z. Differentiating
the identity (1 + 6%|Vn|?)Z = APN¢ — e LANNB, + Vn - Vo and using (6.2) and the definition
(6.1) of v, we see that
(1+ 82|V *)ijeZ = (A + V- V) (O — 82 Z0yjan) — L7y + &7 003,
— 52 (QZ(V@‘?? . Vajkn +VOjn - Vogn+ Voin - Vaijn)
+(9:2)0;|Vn|* + (0;2)0ki|V|? + (96 2) 05| Vnf?
+(0k 2)0i|Vnl* + (0 2) 05|V + (933 2) 0k Vnl?)
+VOin-VOpp+Voin- Voo + Vopn - VOi;p
+ Vaﬂm -VOip+ VOgn - V(‘)jqb + Vaijn - VOio
+ 0% (V- VZ)on + 17

Therefore, by Propositions 5.1 and 5.11, Lemmas 4.5, 4.6, and 6.1, and an interpolation inequal-
ity we obtain

(Z — &' B)lls—1 + 61 (AT 20i0(Z — 7' B2)[ls1
C(E+1+ (A2 Z a1 + 62| fills—1/2)
C(E+1+8|(AG) 2 Z 11 + 0°(1Z]|s45/2)
(H(ADN)UQ( e B)lst2 + 1Z — 7' Brllsy2) + C(E + 1)

Haz]k
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for any € > 0. This gives the desired estimates for Z — e713,, so that we also have 62| Z||s;2 +
82(|(ABN)Y2Z|| 40 < C(E+1). Since v = Vé—362ZVn), we easily obtain |[v]|s42 < CE. Moreover,
by Lemma 4.6 it holds that
I(ASY)20P0lls < [|(AG)2(9%¢ — 62 20%n) |5
+ 0 (A2 (02 2) () s + 2I(AF¥) 2 ((92)(@*m)ls)
< E+C8([(AT) 2 Zls+2 + 1 Zlls42 + 1 Z s Inlls+3)

Therefore, we obtain the desired estimate for v. O

Proposition 6.3 Let s > (n+7)/2, Mi,c1 > 0 and suppose the conditions in (6.6). Then,
there exists a constant C = C(My, c1,s) > 0 such that for any § € (0,062] and € € (0,1] satisfying
e~ 162 < M, we have

Ifills <CE+1),  [(AT) 2 falls < Ce™16(E +1).

Proof. The estimate for f; is a direct consequence of Lemma 6.1 and Proposition 6.2. It follows
from Lemmas 4.5 and 4.6 and Proposition 6.2 that [|(A3)/2 f3]|s < CE. This and Proposition
6.2 give the desired estimate for fo. O

Proposition 6.4 Let s > (n+ 7)/2 and Mi,c; > 0. In addition to the conditions in (6.6)
we assume that ||Brr|lse1 < My and ||(ne, ¢¢)|ls < Mye=t. Then, there exists a constant C' =
C(Mjy,c1,8) > 0 such that for any 6 € (0,6] and € € (0,1] satisfying e =162 < My the function
a defined by (6.5) satisfies

la— 1ot € C™ fla— o < C(e™ (B + 1)+ [ 60)s2).

Proof. In view of Proposition 6.2 we have ||[v||s + 62||Z]|s < C, ||v]|ss2 < CE, and 62| Z||s42 <
C(E + 1). Differentiating the identity (1 + 62|Vn|?)Z = APN¢ — e L ANNG, + V1 - Vo we have
(6.7) (1+6%|Vn*) Zs = =26°(Vn - V) Z + ANy — e 2NN B,

+ AP ) — e AT [l B + Vi - Yy + Vi - V.
Therefore, by Propositions 5.1, 5.11, 5.19, and 5.23 and Lemma 4.5, we see that 62| Z;s—1 <

Ce™! and that 62| Z||ss1 < 2(|VZ4||s + || Z:ls) < C(e_l(E+ 1)+ || (ne, ¢)||s+2)- Since a—1 =
8%v - VZ + 6% Z;, we obtain the desired estimates. O

The next proposition ensures the positivity of the function a, namely, the generalized
Rayleigh—Taylor sign condition. We let d3 = 61(Mj,c1,7 + 4) be the constant occurring in
Proposition 4.1.

Proposition 6.5 Let r > n/2, My, c; > 0 and suppose that

1Brllvvos2 + [1Brr llr+a + | Brrr sz + [1(0,0) 45 + [[VOlrys < My,
— 2
(68) lne(t) = e Br(t/) lrrosa + IV (0e(t) — 5(2) "B (t/2)?) lr4s < M,
netllr5/2 + IV dutllrin < Mre™2, 1+n(@,t) = b(z,t) > cr.

Then, there exists a constant C = C(My,cq,7) > 0 such that for any 6 € (0,03] and € € (0,1]
satisfying e 7162 < M the function a defined by (6.5) satisfies

6oy | 16O+ (A= FIT0PIB(e) + 00O t/e)) - < Ole+ 1872~ al),
‘ llac(t) — €302 Brrr(t/e)|l, < Ce™t  for 0<t<e,
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where a\©) is the function defined by (2.21). Particularly, if we assume additionally Assumptions
2.1 and 2.2, then there exist small constants €y,v9 > 0 such that we have

/2 <alx,t) <Ce',  ay(a,t) <Ce!
as long as 0 < € < g and |6%/c — o] < 0.

Proof. Note that under our hypothesis we have the diffeomorphism O satisfying the Assumption
4.1 (A1)-(A4) with ¢ = 7 + 4 and that we have 9Fb = ¢ %93 and

(6.10) In(t) = 1O (t/e)llrro2 + IV (6() — 9O (t/€)) llr13 < Cle +16% /e — o)),
' [7eE)|lrs9/2 + IVPe(t) Iz < Ce™t for  0<t<e,

where (7, ¢(©) is the approximate solution defined by (2.20). By the definition of a, we have
a; = 6*(Zy +v-VZ;+v,-VZ). By the same way as in the proof of the previous proposition, we
easily get 62| Z||,+1 + [[v]lr+1 < C and 82||Z¢||r41 + ||ve]lr+1 < Ce™ L. Differentiating the identity
(14 82|Vn2)Z = APNg — e LANNB. + Vn - Vo we have

(1+0*|Vnl*)(Zy — € Brrr)

= —46%(Vn - Vi) Zy — 26° (V) - Vi + Vi) Z — £ 20%|V| Brrr
+ ANy — e 3 (AN Bror + Brer) + AP [uge] ¢ — &7 AT [ug] B
+ 2A0N[ug) ¢ — 262 AN [g) Brr 4+ AN [y, ug]p — €7 AR [ug, g By
+Vn-Vou +Vny - Vo +2Vn, - Vo,

which together with Propositions 5.1, 5.17, and 5.23 implies that 62||Zy — ¢ 73872l < Ce™L.
Therefore, we obtain the second estimate in (6.9). To show the first one, we first note that
1Z — e 18|, < C and || Z; — e 28,1l < Cet. In view of (6.7), we can rewrite Z; as Z; =

Zt(o) + Zt(l), where
022" = 820, { =V - (1 + 1~ b)Ve) + V- Vo

2 2 52 1 2
+ —(1= V) + =V - (147 = (T8, + 5L+ -2V ) }
% i o 62 52
= (5) a-awas + Z(vo- Zava) - vs,

62\ ? 1
#(5) v (@m0 50 02vs,)
+ 52{—v : ((1 +n— b)V(@ - %521)3) + (e — bt)w)

1 &
V(= be) - Vo + V- (00— 500 ) =225,V Vg — )

and
2V =~V (2, — e Brr) — 205 (V- V) (Z — 71 B;)
+{ANg + V- (L +n—b)Vey) } + {AN el + V- (e — b)) V) }
- 572{ANN/8T’T + 5’7’7’ + 52V . ((1 + n—- b)(vn)ﬂTT + %(1 + n— b)2vﬁ7"r) }
— e M) By + 07V - (1 + 71— b)(Vne) B
+ (e — b)) (V) Br + (L+1—b) (e — b))V r) }.
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Here, by hypothesis we have ||n; — by[|,+4 < M; and ||V(¢; — 362b7)|/,44 < M;. By Propositions
5.3, 5.16, 5.26, and 5.27, we also have HZt(l)Hr < C. On the other hand, we can rewrite 6%v-VZ
as

52

£

52 52

§v-VZ = = (w = ?ﬁTvn) VB, + 62 (v N(Z—e18) - Lz -8y ng).

Therefore, we can obtain [la—(1 + (2)2(1 — 83Vn|?)Brr + a(o))Hr < 062, where

52 52 52 1
o0 =22 (Vo = =4, V) - VB, + =V - ((L+0=b)(V0)Brr + 5 (1410 —b)2V5r, ).

In view of this, (2.21), and (6.10), we easily get [|a(?) —a ||, < C(e + |6%/e — o). These show
the second estimate in (6.9). The last assertion of the proposition follows directly from (6.9)
and the Sobolev inequality. The proof is complete. O

7 Proof of the main theorems

In this section we first consider a linear system of equations and give an energy estimate for
the solution. Then, applying the estimate to the quasi-linear system of equations (6.4) we will
derive a uniform estimate of the solution (7, ¢) with respect to small § and e.

Now, we will consider the following system of linear equations

(7.1) OuGiji +v - Viijk — Ay + L% = e L0001 + 7%, Gijie = Oy,
Otbije +v - Vb + alir = e 1gd" + f37%,

where a, v = (vy,...,v,)7, f1 = (flijk)7 fo = (féjk) are given functions of x and ¢t and may
depend on § and e, whereas ¢g; and go = (g5 k) are given functions of x and 7 = t/e, AN =
APN(n,b,6) is the DN map, and L¥* are linear operators defined by

where p = (p1,... ,ppn) are given functions of x and ¢ and may depend on § and €. The above
system in the case where p = 0 and (g1, g2) = 0 was already investigated in [6].

Remark 7.1 It follows from Proposition 5.1 that ||L¥*n||y < CO71||p|lss1llnlls+3, so that we
can regard L%y in (7.1) as a lower order term and put it into the right-hand side if we fix the
parameter . However, in order to derive a uniform estimate of the solution with respect to small
§ we have to use the estimate | L7*n||s < C||p|ls12l7lls+4, so that L¥*pn cannot be regarded as
a lower order term. Note that the norm ||9]|s+4 in the last estimate is optimal because AP
converges a second order linear operator as § goes to zero. This is the reason why we have to
treat L%y as one of the principal term.

Proposition 7.1 Let r > n/2. In addition to Assumption 4.1 (A1) and (A2) with ¢ = r + 1,
we assume that

(7.2) 107 0) Iz < My (s be) 1 < Me™ [ollpgr < M, [plly4s < M,
‘ M~ <a(a,t) < Me™',  az,t) < Me™', Va2 < Me™".
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Then, there exists a constant C = C(M,c,7) > 0 independent of 6 and e such that for any
smooth solution (n,¢, ) of (7.1) we have

IS + (AT 2o 0))1? < CeCt/E{Hn(O)Hi + [1(AR)/24(0)”

2

t/e
i (/0 (lgr (T)lla + |!(A%N)1/292(T)H)d7)
+ [ (ARDIP + I BIP) + 052 0 ).

Proof. First, we will consider the case where (g1,92) = 0 and n|;—9 = 0, so that we also have
Clt=o = 0. Let (n,¢, ) be a smooth solution of (7.1) and define an energy function E(t) by

E(t) = (ag(t),¢(t) + (A”(2), ¥ (1))
Then, it holds that

(73) SB(0) = (0, €) + 2(aC, G) + ([0 AP ) + 24, 33)

= (a:¢,¢) + ((V - (av))¢, ¢) + 2(al, f1) — 2(ag, Ln)
+ ([ata ADN]wa ¢) - 2(ADN'¢7 v - Vw) + 2<ADNw’ f2)
Here, by the definition we have

(a¢,Ln) = Z {(adyjkn, A°™ (pr0ijn)) + (adyjkn, AP~ (p:i0jkn)) + (adyjkn, AP~ (p;Okin)) } -
ijk=1
By Proposition 3.2 and integration by parts, we see that
2(adyjkn, AP~ (ppdijn)) = —(95m, (Oxa) A°N (pk0ijn) + alO), A°](prdijn)
+ aA” ((Okpr) 0ijm) + [a, AN (pkOien) + [A°N, pr] (adijrn))
so that

2| (adyjn, A (pr0ijn)) | < \/(ADN((aka)aijn)7 (8ka)dijn) \/(ADN(pkaijn)apkaijn)
+ [[adinl1 1[0k, AT (P0ijn)l| -1
+ \/(ADN(G@']"O% adijn) \/(ADN((akpk)aijn)a (D) 0i5m)
+ 103l (@, A (prBijem)ll-1 + 1A, pe](adijun) [l -1)
< C(IVallry2 + llall oo @e)) P llr+3lnl3,
where we used Propositions 5.4, 5.6, and 5.7 and Lemmas 4.3 and 4.5. The other terms in the
right-hand side of (7.3) can be evaluated by Propositions 5.9, 5.10, and 5.4 and Lemma 4.3, so

that we obtain

d _ -
T P® < Ce B + C e IA@N + @) + el (AT (D)%),
which together with Gronwall’s inequality and the relations ||¢(¢)]|? + ||(AZY)Y/24(t)]|? < CE(t)

and E(0) < C[[(A3)/2(0)|? gives

(7.4) SO + (AT 20> < Ce(’”a{H(/\’?>N)1/2¢(())|!2

+/ U A D + @) + s||(A%N)1/2f2<i)\2)df}-
0
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Next, we will consider the general case. Let (1, (, 1) be a smooth solution of (7.1) and define
(n'®,¢®) and (7,C) by

t/e _
0 (x,t) = 1(x,0) + / gi(@,r)dr, (= 0@, mi=n-0O, Ti=¢-¢O.

Then, it holds that

— — o ik = _
OCiji +v - Vi — Ay "’.i”kn =F1" Cijr = O,
- )
Oijr +v - Vibije + aCjp = 5

and 7j|;—¢ = 0, where ?lek = flijk—vvg(;z — L%p0) and ?éj’“ = 5_1g;jk+f§jk—agg),2. Therefore,
applying the estimate obtained in the previous case we obtain

IS + 1A 2 ()] < Cec“*f{||(1\]<°)N)1/21,!)((J)\2
t ing — ~. ~. — ~. ~
+/O TR @ + Im @) +€||(A%N)1/2fz(t)!\2)dt}-
It is easy to see that [[C(t)]| < [IC(1)]| + [(0)lls + Jy'* lgr () ]}sdr and

e (IF O + ImD17) + el (AT 2 Fa ()|
< 0{6_1(Hf1(t)|!2 + IO + [ (O)I1F) + <l (52 fa(6) |

ret </0t/6(||gl<r>u4 + gy 292“)”)“)2}'

To summarize the above estimates, we obtain the desired one. O
Let (n,¢) be the solution of (1.15) and (1.16) and set
E() = I35 + VD) 1342 + (AT /(9P (t) — 6> Z0%n(1))]3,

where Z is determined by (6.1). Suppose that the solution (n, ¢) satisfies

(7.5) { E1) < N1, [1®)llsra + [V6(0) o1 < No,

1+n(z,t) —b(x,t) > co/2 for z€eR", 0<t<e, 0<6 <0y,

where positive constants Ny, Na, and dy will be determined later. Then, by Proposition 4.1
there exists a constant d; = 01 (Mo, Na, o, s) independent of N; such that for any § € (0,0;] we
can construct a diffeomorphism O satisfying the Assumption 4.1 (A1)—(A4) with r = s+ 1 and
a constant M independent of § and N; but depending on Na. Set §p := min{d1, d2, d3}, where
09,03 > 0 are the constants occurring in Propositions 6.2—6.5. In the following we simply write
the constants depending only on (My, N1, co, s) and (My, N2, co, s) by Cy and Cy, respectively.
It follows from (1.15) that

{ n—e B = (Z — e B;) + V|’ Z — Vi - Vo,

(7.6) L (@82 =y LV 1 (N2 22 1 827 + e 18 (Z — e 1By).
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By Proposition 5.1, Lemma 4.5, and Corollary 5.25 we obtain ||Z — e~ 13, |s < Ca, so that
{ Ine(t) — €71 Br(t/) s + l6e(t) — 5(2) B (t/)*[ls < C,
Ine(@)ls + llge ()l < Cae™".

Moreover, it holds that

{ Nt = APV + AN [ug]p — e 2ANN B, — e LAY [u] By,
bu = 6*Zny —n — (Vo — 622ZVn) - (Ve — 62 ZVny),

which together with the previous estimates, Propositions 5.1, 5.19, 5.11, and 5.20, and Lemma
4.5 easily yields that [|n(t)|[s—1 + [|¢e(t)||s—1 < Cae™2 Therefore, by Propositions 6.4 and
6.5 there exist small constants 9,79 > 0 such that the function a defined by (6.5) satisfies
IVa(t)|ls—2 < Coe™t, ¢/2 < a(x,t) < Cye™! and ay(z,t) < Coe™! as long as 0 < € < g9 and
|62/e — 0| < vo. Tt is easy to see that ||(v(t),p(t))|ls < C2, where p = e 152AN(V3;). Hence,
we have checked all the conditions in Proposition 7.1.

Now, introducing new variables ¢ = ((;;x) and ¢ = (1;51) by (6.3), we obtain the quasi-linear
system of equations (6.4). Applying the operator J*® to the equations in (6.4), we have

77) 0T+ v - V(I Qg = AN (") igi + LI (J*n) = &1 0450 (J° ) + 7"
O (J*V)iji + v - V(I V)i + a(J*Q)ijie = e (T g2) 7% + £,
where
F% = g2 fF — [7%,0] - Vi + [T5, AP Wi — [T°, AN)(pkdign + pidjen + pjOwin)
— AN ([T, pr)Ogm + [, pilOjen + [J°, p5]0kin)
8 = 00 70— [T 0] Vs — [J°, aliji
Here, it follows from Propositions 5.1 and 5.8 and Lemmas 4.5 and 4.7 that

1A @)1 < C2(E@) + lo@)ls + Ip®) sz + [f1(O1ls),
1A 2 fa(@)]| < Co (&) + lo(®) 51 + [ Va(@)lls + (AT 2 fa(0)]ls).

By Propositions 6.2-6.4, we can evaluate the right-hand sides of the above estimates except the
term ||p||st2. Since p = e 162ANN(V3;), we have

Ojepi = £ 167 (AN0y1. 8- + YN [04u)0i; By + AYN[0ju] Ok Br
+ AYY [8jku]8¢ﬂf + ASY [8ju, 8ku]8iﬂ7-),

so that by Propositions 5.11 and 5.20 we can also evaluate ||p|/s+2 and obtain that
e AP+l (A2 fa®)|* < Ca(e7E (1) +1).
Therefore, applying the basic energy estimate in Proposition 7.1 to (7.7), we obtain

Cy [t o
IO + 1) o1 < Cot 2 [ 6@%F tor 0<t<e

It is easy to see that

Vo) ls+2 < V) llss1 + IV (0°6(t) — 62 Z0°n(t))l|s—1 + 62120 n(t)lls
< Co(1+ (AT 2 () ls—1y2 + IC@D)1Ls)-
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By the above two estimates, we have &(t)? < Cy+ % fg &(t)2dt for 0 < t < ¢, so that Gronwall’s
inequality gives

(7.8) Et)<Cy for 0<t<e.

On the other hand, in view of (7.6) and Proposition 6.2 we have

. 2
lne(t) — €71 Br(t/)lss2 + [162(t) — 5(2)Br(t/e)*[ls42 < Ch.
Let (79, $(9)) be the approximate solution defined by (2.20). Then, we see that

(7.9) In(t) — O (t/e)lls2 + 6(t) — 6O (t/e) 1542
< [ @ = e Bo@/o e + 61(e) = Z0r(E e st

0
SQ(H—E %2—0> §C1<€+ o

— =0
€

) for 0<t<e.

Particularly, we obtain
(7.10) (I s+2 + IVoOllstr < max (10 ()ls2 + [V (7)l|s1) + Ca(e +16°/ — o)

for 0 <t < e. Moreover, we see that

(7.11) 1+ n(x,t) —b(z,t) =14+ no(z) — bo(x) —I—/O (mi(z,t) — 7' B (2, t/e))dE

> 0= [ l®) ~ 6/
>cg—Cit>cg—Cie for 0<t<e.
In view of (7.8), (7.10), and (7.11), we define the constants Ny, Na, €o, and vy by
Ny =2 mas (1 ()llssz + V6O ()lerr), Ny o= Co,
g0 := (2C1) " min{cy, No}, 70 := (2C1) "' No.

Then, we see that the estimates in (7.5) holds. Therefore, by (7.9) we obtain the error estimate.
The proof of Theorem 2.1 is complete.

We proceed to prove Theorem 2.2. By Theorem 2.1 we have

117 (@) ls+3 + V67 (e) ls+2 < Co,
1412 (z,e) —bi(x) > co/2 for zeR"

and
(7.12) In%<(€) = @ (W) [ls12 + IV (e) = VO (1) |s41 < Cole + [6%/c — o).

Since b(z,t) = by(z) for t > ¢, the results in [6] imply that the solution (7%¢, ¢*¢) obtained in
Theorem 2.1 can be extended to a time interval [0,7] independent of § € (0,dp] and e € (0, o]
and satisfies

(7.13) {w#@—m@ml+ww%ww%mlgc&
I () lssz + IVP=(D) e <C  for e<t<T,
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where (7°,uf) € C([-T,T); H*2) is a unique solution of the shallow water equations

i+ V- ((L+7° = b)u’) =0,
ui + (uf - V)uf + V=0

under the initial conditions n° = n%°(-, ), u = V¢>°(-,¢) at t = ¢, and satisfies
1" (@), w" (@) lls2 + 10 (1), ug @) ls42 <€ for =T <t <T.

Particularly, we have

(7.14) 177 (€) = 17 (O)lls+1 + [[u"(e) — w(0)[|s41 < Ce.

Now, let (n°,u°) be the unique solution to the initial value problem for the shallow water
equations (2.13) and (2.14). Since 79 (1) = 1°(0) and V¢ (1) = u°(0), (7.12) implies that

17° () = n°(0)ls+2 + llu*(e) = u®(0)ls+1 < Cole + |67 /e — o),
which together with (7.14) yields that
19°(0) = 7°(0)ls+1 + u"(0) — w°(0) [ls41 < Ce + |67 /e — o).

Since (n°,u®) and (n°, u") satisfy the same shallow water equations and their initial data satisfy
the above estimate, we obtain

17 () = n°(@)l[s1 + [0 () = (@) [s1 < Cle + 8%/ —0])  for —T<t<T,
which together with (7.13) yields the desired estimate. The proof of Theorem 2.2 is complete.
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