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1 Introduction

In this paper we are concerned with the initial value problem for water waves in arbitrary space
dimensions. The water wave is a model system for irrotational flow of an incompressible ideal
fluid with a free surface under the gravitational field. The analysis of this problem is very
hard because of the nonlinearity of the equations together with the presence of a unknown free
surface. In order to understand various phenomena of water waves, one has approximated the
equations by simple ones and analyzed the approximated equations. The simplest approximation
is the linear one around the trivial flow by assuming that the amplitude of the free surface and
the motion of the fluid are infinitesimal. However, this approximation could not explain the
existence of solitary waves nor the breaking of the waves. In order to explain such phenomena
we have to include nonlinear effects of the waves in the approximation. The shallow water
equations are one of such approximations and derived from the water wave by assuming that
the water depth is sufficiently small compared to the wave length. The aim of this paper is to
give a mathematically rigorous justification of the shallow water approximation for water waves
in Sobolev spaces.

By rewriting the equations in an appropriate non-dimensional form, we have two non-
dimensional parameters δ and ε the ratio of the water depth h to the wave length λ and the
ratio of the amplitude of the free surface a to the water depth h, respectively, in the equations.
The shallow water equations are derived from the water wave in the limit δ → +0 by keeping
ε � 1. In the case of a flat bottom, they are of the same form as the compressible Euler equation
for a barotropic gas and the solution generally has a singularity in finite time even if the initial
data are sufficiently smooth. Therefore, this approximation is used to explain the breaking of
the waves. The derivation of the shallow water equations goes back to G. B. Airy [1]. Then,
K. O. Friedrichs [4] derived systematically the equations from the water wave by using an ex-
pansion of the solution with respect to δ2, which is called the Friedrichs expansion. See also H.
Lamb [12] and J. J. Stoker [19]. A mathematically rigorous justification of the shallow water
approximation for two-dimensional water waves was given by L. V. Ovsjannikov [15, 16] under
the periodic boundary condition with respect to the horizontally spatial variable, and then by
T. Kano and T. Nishida [8]. In order to guarantee the existence of solutions for water waves,
they used an abstract Cauchy-Kowalevski theorem in a scaled Banach space so that analyticity
of the initial data was required. A mathematical justification of the Friedrichs expansion was
investigated by T. Kano and T. Nishida [9] and the justification in the three-dimensional case
by T. Kano [7]. It is natural to ask if the approximation is valid in Sobolev spaces. However,
this question was not resolved.

1

KSTS/RR-06/009
October 3, 2006



On the other hand, the Korteweg-de Vris (KdV) equation is also derived from the two-
dimensional water wave in the limit ε = δ2 → +0. It is well known that the solution of the KdV
equation exists globally in time and the equation has solitary wave solutions. The derivation of
the KdV equation goes back to D. J. Korteweg and G. de Vries [11]. Historically, the theory of
long waves in shallow water gave rise to a paradox, because both the shallow water equations
and the KdV equation are derived from water waves in the limit δ → 0 and the behavior of the
solutions are completely different. We refer to F. Ursell [20] on this paradox. A mathematically
rigorous justification of the KdV equation for the water wave was investigated by T. Kano
and T. Nishida [10] in a class of analytic functions. Concerning this KdV approximation, a
justification in Sobolev spaces was given by W. Craig [2] under a restriction that the wave is
almost one-directional. Then, G. Schneider and C. E. Wayne [17] gave a justification without
assuming one-directional motion of the wave. In the case with the surface tension on the free
surface, G. Schneider and C. E. Wayne [18] and the author [5] gave justifications. An important
part of the analysis in [2, 5] is to approximate a non-local operator, such as the Dirichlet-
to-Neumann map for Laplace’s equation and the Dirichlet-to-Dirichlet map for the Cauchy-
Riemann equations, in terms of Fourier multipliers by expanding it with respect to a function
which represents the surface elevation and to give a precise estimate for the remainder part.
However, in the shallow water scaling we cannot obtain a good estimate for the remainder part
so that we have to use another method in order to give a justification of the shallow water
approximation.

In connection with the well-posedness of the initial value problem for water waves, the
solvability in Sobolev spaces was given by several authors. In his pioneering work [14], V. I.
Nalimov investigated the initial value problem in the case where the motion of the fluid is two-
dimensional and the fluid has infinite depth. He showed that if the initial data are sufficiently
small in a Sobolev space, that is, if the initial surface is almost flat and the initial movement of
the fluid is sufficiently small, then there exists a unique solution of the problem locally in time
in a Sobolev space. H. Yosihara [23] extended this result to the case of presence of an almost
flat bottom. S. Wu [21] studied the problem in exactly the same situation as Nalimov’s and gave
the existence theorem locally in time without assuming the initial data to be small. It is known
that the well-posedness of the problem may be broken unless a generalized Rayleight-Taylor sign
condition −∂p/∂N ≥ c0 > 0 on the free surface is satisfied, where N is the unit outward normal
to the free surface. She showed surprising fact that this condition always holds for any smooth
nonself-intersecting interface. In the above results, the proofs were based on the energy method.
They first derived quasi-linear equations of the form

utt + a|D|u = f,

where the function a is positively definite, and then defined a corresponding energy function by
E = ‖ut‖2+(a|D|1/2u, |D|1/2u)+‖u‖2. In the derivation of the above equation, an approximation
of a non-local operator in terms of Fourier multipliers plays an important role. However, the
extension of such approximation to the three-dimensional case was difficult. Instead, S. Wu [22]
derived quasi-linear equations of the form

utt + aΛu = f,

where Λ is the Dirichlet-to-Neumann map for Laplace’s equation and analyzed precisely the non-
local operator Λ. She defined a corresponding energy function by E = ‖ut‖2 + (aΛu, u) + ‖u‖2.
(Strictly speaking, she used a slightly different energy function.) As a result, she succeeded to
give an existence theory in Sobolev spaces for three-dimensional water waves of infinite depth.
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Note that in two-dimensional case a principal part of Λ is equal to |D| and that all of the three
authors mentioned above used the Lagrangian coordinates. D. Lannes [13] studied the initial
value problem for water waves of finite depth in arbitrary space dimensions. One of interesting
features of his paper is that he did not use the Lagrangian coordinates but the Euler coordinates
although the surface tension on the free surface was neglected. Another interesting feature is
that he obtained a good expression of the Fréchet derivative of the operator Λ with respect to a
function which represents the surface elevation. As a result, he derived linearized equations of
the form {

ηt + ∇ · (vη)− Λφ = f1,

φt + v · ∇φ+ aη = f2,

where the function a is positively definite, defined a corresponding energy function by E =
(aη, η)+ (Λφ, φ) + ‖φ‖2, and gave an existence theory in Sobolev spaces. This energy function
is very natural, because the water wave problem has a conserved energy defined by

H =
∫

Ω(t)

1
2
|∇XΦ(X)|2dX +

∫
Rn

g

2
|η(x)|2dx =

1
2
(Λφ, φ) +

g

2
‖η‖2.

See section 2 for the notation. We mention that the water wave problem has a Hamiltonian
structure whose Hamiltonian is H and the canonical variables are η and φ. The Hamiltonian
formulation of water waves goes back to V. E. Zakharov [24] in the case of infinite depth. We
refer to W. Craig, P. Guyenne, D. P. Nicholls, and C. Sulem [3] for an analysis of the Hamiltonian
in long wave approximations. In calculation of the time evolution of the energy function E, we
need to estimate commutators of the map Λ and differential operators. S. Wu [22] obtained
precise commutator estimates by using the theory of singular integral operators and Clifford
analysis, whereas D. Lannes [13] used the theory of pseudo-differential operators and obtained
commutator estimates by imposing much differentiability on the coefficients. This is one of the
reasons why a Nash-Moser implicit function theorem was used to obtain the solution of the
nonlinear equations in [13]. A relation between the generalized Rayleight-Taylor sign condition
and the bottom topography was also analyzed in [13]. Under the shallow water scaling, such
techniques in [22, 13] in estimating commutators do not give nice uniform estimates with respect
to small δ. In this paper, to obtain the uniform estimates, we only use the standard technique
in estimating the solution of a boundary value problem for elliptic differential equations, so
that the proof may become much simpler and elementary than the previous ones. We adopt
the formulation of the problem used in [13]. However, thanks of a precise energy estimate for
linearized equations it is not necessary to use the Nash-Moser implicit function theorem to obtain
the solution of the nonlinear equations.

The contents of this paper are as follows. In section 2 we formulate the problem, rewrite it in
a non-dimensional form, transform it into an equivalent problem on the free surface, and give one
of our main results, which asserts the existence of the solution with uniform bounds in a Sobolev
space. In section 3 we formally derive the shallow water equations from the water wave and give
another main result, which justifies rigorously the shallow water approximation. In section 4 we
analyze the Dirichlet-to-Neumann map for Laplace’s equation. In the analysis, we transform a
boundary value problem for Laplace’s equation in the fluid domain Ω(t) to a problem on the
simple fixed domain Ω0 = Rn × (0, 1) by using a suitable diffeomorphism Θ : Ω0 → Ω(t). In
sections 5 and 6 we derive estimates in a Sobolev space for the Dirichlet-to-Neumann map and
its Fréchet derivatives with respect to the function which represents the surface elevation. In
section 7, according to D. Lannes [13] we first linearize the full equations and derive an energy
estimate for the linearized problem. In section 8 we reduce the full nonlinear equations to a
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quasi-linear equations. Finally, in section 9, by applying the energy estimates established in
section 7 to the quasi-linear equations derived in section 8 we prove main theorems.

Notation. For a real number s, we denote by Hs the Sobolev space of order s on Rn equipped
with the inner product (u, v)s = (2π)−n

∫
Rn(1+|ξ|)2sû(ξ)v̂(ξ)dξ, where û is the Fourier transform

of u, that is, û(ξ) =
∫
Rn u(x)e−ix·ξdx. We put ‖u‖s =

√
(u, u)s, (u, v) = (u, v)0, and ‖u‖ = ‖u‖0.

For 1 ≤ p ≤ ∞, we denote by | · |p the norm of the Lebesgue space Lp = Lp(Rn). The norm
of a Banach space X is denoted by ‖ · ‖X . For 0 < T < ∞, a non-negative integer j, and a
Banach space X , we denote by Cj([0, T ];X) the Banach space of all functions of Cj -class on
the interval [0, T ] with the value in X . We put ∂j = ∂/∂xj, ∂ij = ∂i∂j, and ∂ijk = ∂i∂j∂k. A
pseudo-differential operator P (D), D = (D1, . . . , Dn) and Dj = −i∂j , with a symbol P (ξ) is
defined by P (D)u(x) = (2π)−n

∫
Rn P (ξ)û(ξ)eix·ξdξ. We put J = 1 + |D|, so that ‖u‖s = ‖Jsu‖.

For operators A and B, we denote by [A,B] = AB − BA the commutator. Throughout this
paper, we denote inessential constants by the same symbol C.

2 Formulation of the problem

Let x = (x1, x2, . . . , xn) be the horizontally spatial variables and xn+1 the vertically spatial
variable. We denote by X = (x, xn+1) = (x1, . . . , xn, xn+1) the whole spatial variables. We will
consider a water wave in (n+ 1)-dimensional space and assume that the domain Ω(t) occupied
by the fluid at time t ≥ 0, the free surface Γ(t), and the bottom Σ are of the forms

Ω(t) =
{
X = (x, xn+1) ∈ Rn+1 ; b(x) < xn+1 < h+ η(x, t)

}
,

Γ(t) =
{
X = (x, xn+1) ∈ Rn+1 ; xn+1 = h+ η(x, t)

}
,

Σ =
{
X = (x, xn+1) ∈ Rn+1 ; xn+1 = b(x)

}
,

where h is the mean depth of the fluid. The functions b and η represent the bottom topography
and the surface elevation, respectively. In this paper b is a given function, while η is the unknown.
In fact, our main interest is the behavior of the free surface.

We assume that the fluid is incompressible and inviscid, and that the flow is irrotational.
Then, the fluid motion is described by the velocity potential Φ = Φ(X, t) satisfying the equation

	XΦ = 0 in Ω(t), t > 0,(2.1)

where 	X is the Laplacian with respect to X , that is, 	X = 	 + ∂2
n+1 and 	 = ∂2

1 + · · ·+ ∂2
n.

The boundary conditions on the free surface are given by{
ηt + ∇Φ · ∇η − ∂n+1Φ = 0,
Φt + 1

2 |∇XΦ|2 + gη = 0 on Γ(t), t > 0,
(2.2)

where ∇ = (∂1, . . . , ∂n) and ∇X = (∂1, . . . , ∂n, ∂n+1) are the gradients with respect to x =
(x1, . . . , xn) and to X = (x, xn+1), respectively, and g is the gravitational constant. The first
equation is the kinematical condition and the second one is known as Bernoulli’s law. The
boundary condition on the bottom is given by

N · ∇XΦ = 0 on Σ, t > 0,(2.3)

where N is the normal vector to the bottom Σ. Finally, we impose the initial conditions

η(x, 0) = η0(x), Φ(X, 0) = Φ0(X).(2.4)
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It should be assumed that the initial data satisfy the compatibility conditions, that is, 	XΦ0 = 0
in Ω(0) and N · ∇XΦ0 = 0 on Σ.

We proceed to rewrite the equations (2.1)–(2.4) in an appropriate non-dimensional form. Let
λ be the typical wave length and h the mean depth. We introduce a non-dimensional parameter
δ by δ = h/λ and rescale the independent and dependent variables by

x = λx̃, xn+1 = hx̃n+1, t =
λ√
gh

t̃, Φ = λ
√
ghΦ̃, η = hη̃, b = hb̃.(2.5)

Putting these into (2.1)–(2.4) and dropping the tilde sign in the notation we obtain

δ2	Φ + ∂2
n+1Φ = 0 in Ω(t), t > 0,(2.6)

{
δ2

(
ηt + ∇Φ · ∇η)− ∂n+1Φ = 0,

δ2
(
Φt + 1

2 |∇Φ|2 + η
)
+ 1

2(∂n+1Φ)2 = 0 on Γ(t), t > 0,
(2.7)

∂n+1Φ − δ2∇b · ∇Φ = 0 on Σ, t > 0,(2.8)

η(x, 0) = ηδ
0(x), Φ(X, 0) = Φδ

0(X),(2.9)

where
Ω(t) =

{
X = (x, xn+1) ∈ Rn+1 ; b(x) < xn+1 < 1 + η(x, t)

}
,

Γ(t) =
{
X = (x, xn+1) ∈ Rn+1 ; xn+1 = 1 + η(x, t)

}
,

Σ =
{
X = (x, xn+1) ∈ Rn+1 ; xn+1 = b(x)

}
.

Since we are interested in asymptotic behavior of the solution when δ → +0, we always assume
0 < δ ≤ 1 in the following.

As in the usual way, we transform equivalently the initial value problem (2.6)–(2.9) to a
problem on the free surface. To this end, we introduce new unknown function φ by

φ(x, t) = Φ(x, 1 + η(x, t), t),(2.10)

which is the trace of the velocity potential on the free surface. Then, we see that{
φt = Φt|Γ(t) + ∂n+1Φ|Γ(t)ηt,

∇φ = ∇Φ|Γ(t) + ∂n+1Φ|Γ(t)∇η.
(2.11)

We introduce the Dirichlet-to-Neumann map Λ = Λ(η, b, δ) for Laplace’s equation in the follow-
ing way. Under suitable assumptions on η and b, for any function ϕ on the free surface in some
class there exits a unique solution Φ of the boundary value problem⎧⎨⎩

δ2	Φ + ∂2
n+1Φ = 0 in Ω(t),

Φ = ϕ on Γ(t),
∂n+1Φ − δ2∇b · ∇Φ = 0 on Σ.

Using the solution Φ we define a linear operator Λ = Λ(η, b, δ) by

Λ(η, b, δ)ϕ= (δ−2∂n+1Φ −∇η · ∇Φ)
∣∣
Γ(t)

.
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It is very important to study precisely the operator Λ in the analysis of the initial value problem
for water waves. By this definition, (2.6), (2.8), and (2.10), we have

Λ(η, b, δ)φ= (δ−2∂n+1Φ −∇η · ∇Φ)
∣∣
Γ(t)

.(2.12)

This and the second equation in (2.11) imply that{
∂n+1Φ|Γ(t) = δ2(1 + δ2|∇η|2)−1(Λφ + ∇η · ∇φ),
∇Φ|Γ(t) = ∇φ− δ2(1 + δ2|∇η|2)−1(Λφ+ ∇η · ∇φ)∇η.(2.13)

It follows from the first equation in (2.7) and (2.12) that ηt − Λφ = 0, so that by the first
equation in (2.11) we get

Φt|Γ(t) = φt − δ2(1 + δ2|∇η|2)−1(Λφ + ∇η · ∇φ)Λφ.

Putting this and (2.13) into the second equation in (2.7) we obtain{
ηt − Λ(η, b, δ)φ= 0,

φt + η + 1
2 |∇φ|2 − 1

2δ
2(1 + δ2|∇η|2)−1

(
Λ(η, b, δ)φ+ ∇η · ∇φ)2 = 0 for t > 0,

(2.14)

η = ηδ
0, φ = φδ

0 at t = 0,(2.15)

where φδ
0 = Φδ

0(·, 1 + ηδ
0(·)). This is the initial value problem that we are going to investigate

in this paper. The following theorem is one of the main results in this paper and asserts the
existence of the solution with uniform bounds on a time interval independent of small δ > 0 for
the above initial value problem.

Theorem 2.1. Let M0, c0 > 0 and s > n/2 + 1. There exist a time T > 0 and constants
C0, δ0 > 0 such that for any δ ∈ (0, δ0], ηδ

0 ∈ Hs+3+1/2, φδ
0 ∈ Hs+4, and b ∈ Hs+4+1/2 satisfying{

‖ηδ
0‖s+3+1/2 + ‖φδ

0‖s+4 + ‖b‖s+4+1/2 ≤M0,

1 + ηδ
0(x) − b(x) ≥ c0 for x ∈ Rn,

the initial value problem (2.14) and (2.15) has a unique solution (η, φ) = (ηδ, φδ) on the time
interval [0, T ] satisfying{

‖(ηδ(t), φδ(t))‖s+3 + ‖(ηδ
t (t), φδ

t(t))‖s+2 ≤ C0,

1 + ηδ(x, t)− b(x) ≥ c0/2 for x ∈ Rn, 0 ≤ t ≤ T.

3 The shallow water approximation

In this section we study formally asymptotic behavior of the solution (ηδ, φδ) to the initial value
problem (2.14) and (2.15) when δ → +0 and derive the shallow water equation, whose solution
approximates (ηδ, φδ) in a suitable sense. Then, we will give a theorem which ensures a rigorous
approximation of the water wave by the shallow water equations.

It follows from the second equation in (2.14) that

φt + η +
1
2
|∇φ|2 = O(δ2).
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By (2.6) and (2.8),

(∂n+1Φ)(x, xn+1, t) = (∂n+1Φ)(x, b(x), t)+
∫ xn+1

b(x)
(∂2

n+1Φ)(x, y, t)dy(3.1)

= δ2∇b(x) · ∇Φ(x, b(x), t)− δ2
∫ xn+1

b(x)

(	Φ)(x, y, t)dy,

which implies that (∂n+1Φ)(X, t) = O(δ2). Therefore,

∇Φ(x, xn+1, t) = ∇Φ(x, 1 + η(x, t), t) +
∫ xn+1

1+η(x,t)
(∇∂n+1Φ)(x, y, t)dy

= ∇Φ(x, 1 + η(x, t), t) +O(δ2).

Moreover, by the definition (2.10) it holds that

∇φ(x, t) = ∇Φ(x, 1 + η(x, t), t)+ ∇η(x)(∂n+1Φ)(x, 1 + η(x), t)
= ∇Φ(x, 1 + η(x, t), t)+ O(δ2)
= ∇Φ(X, t) + O(δ2).

Similarly, we have
	φ(x, t) = 	Φ(X, t) + O(δ2).

These relation and (3.1) imply that

(∂n+1Φ)(x, 1 + η(x, t), t) = δ2∇b(x) · ∇φ(x, t)− δ2

∫ 1+η(x,t)

b(x)

	φ(x, t)dy + O(δ4)

= −δ2(1 + η(x, t))	φ(x, t) + δ2∇ · (b(x)∇φ(x, t)
)
+ O(δ4).

Hence, by the definition of the Dirichlet-to-Neumann map Λ we have

(Λφ)(x, t) = −∇ · ((1 + η(x, t)− b(x))∇φ(x, t)
)
+ O(δ2).(3.2)

This and the first equation in (2.14) imply that

ηt + ∇ · ((1 + η − b)∇φ)
= O(δ2).

To summarize, we have derived the partial differential equations{
ηt + ∇ · ((1 + η − b)∇φ)

= O(δ2),
φt + η + 1

2 |∇φ|2 = O(δ2),

which approximate the equations in (2.14) up to order δ2. Letting δ → 0 in the above equations
we finally obtain the shallow water equations{

η0
t + ∇ · ((1 + η0 − b)∇φ0

)
= 0,

φ0
t + η0 + 1

2 |∇φ0|2 = 0.
(3.3)

Here, we remark that if we put u0 := ∇φ0 and take the gradient of the second equation in (3.3),
then we obtain {

η0
t + ∇ · ((1 + η0 − b)u0

)
= 0,

u0
t + (u0 · ∇)u0 + ∇η0 = 0.

The following theorem is another main result in this paper and gives a mathematically rigorous
justification of the shallow water equations for water waves.
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Theorem 3.1. In addition to hypothesis of Theorem 2.1 we assume that as δ → +0 the initial
data (ηδ

0, φ
δ
0) converge to (η0

0, φ
0
0) in Hs+3. Then, as δ → +0 the solution obtained in Theorem

2.1 satisfies
(ηδ, φδ) → (η0, φ0) weakly* in L∞(0, T ;Hs+3),

strongly in C([0, T ];Hs+3−ε)

for each ε > 0, where (η0, φ0) is a unique solution of the shallow water equations (3.3) with
initial conditions (η0, φ0)|t=0 = (η0

0, φ
0
0).

Moreover, if we also assume that ‖ηδ
0 − η0

0‖s + ‖φδ
0 −φ0

0‖s+1 = O(δ2), then for any δ ∈ (0, δ0]
and t ∈ [0, T ] we have

‖ηδ(t)− η0(t)‖s + ‖φδ(t) − φ0(t)‖s+1 ≤ Cδ2

with a constant C independent of δ and t.

4 The Dirichlet-to-Neumann map Λ

Throughout this and following two sections the time t is arbitrarily fixed, so that Ω(t), Γ(t),
and η(x, t) are simply denoted by Ω, Γ, and η(x), respectively. We consider the boundary value
problem ⎧⎨⎩

δ2	Φ + ∂2
n+1Φ = 0 in Ω,

Φ = φ on Γ,
∂n+1Φ − δ2∇b · ∇Φ = 0 on Σ.

Introducing a (n+ 1) × (n+ 1) matrix Iδ by

Iδ =
(
En 0
0 δ−1

)
,

where En is the n × n unit matrix, we can rewrite the above boundary value problem and the
Dirichlet-to-Neumann map as ⎧⎨⎩

∇X · I2
δ∇XΦ = 0 in Ω,

Φ = φ on Γ,
N · I2

δ∇XΦ = 0 on Σ.
(4.1)

and
Λ(η, b, δ)φ= (−∇η, 1) · I2

δ∇XΦ(x, 1 + η(x)),

respectively.

Definition 4.1. The unique solution Φ of the boundary value problem (4.1) is denoted by φ�.

Lemma 4.1. The Dirichlet-to-Neumann map Λ = Λ(η, b, δ) is self-adjoint in L2, that is, for
any φ, ψ ∈ H1 it holds that

(Λφ, ψ) = (φ,Λψ).

Proof. Set Φ := φ� and Ψ := ψ�. By Green’s formula we have

0 =
∫

Ω

(
(∇X · I2

δ∇XΦ)Ψ − Φ(∇X · I2
δ∇XΨ)

)
dX

=
∫

Γ

(
(N · I2

δ∇XΦ)Ψ − Φ(N · I2
δ∇XΨ)

)
dS,
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where N is the unit outward normal to the boundary ∂Ω. In the above calculation we used
the boundary condition on the bottom Σ. Since Φ = φ, Ψ = ψ,

√
1 + |∇η|2N · I2

δ∇XΦ = Λφ,√
1 + |∇η|2N · I2

δ∇XΨ = Λψ, and dS =
√

1 + |∇η|2dx on Γ, we obtain the desired identity.
�

Lemma 4.2. For any φ ∈ H1, it holds that (Λφ, φ) = ‖Iδ∇XΦ‖2
L2(Ω), where Φ = φ�.

Proof. By Green’s formula we see that

0 =
∫

Ω
(∇X · I2

δ∇XΦ)ΦdX =
∫

∂Ω
(N · I2

δ∇XΦ)ΦdS −
∫

Ω
|Iδ∇XΦ|2dX.

This together with the boundary conditions yields the desired identity. �

By using an appropriate diffeomorphism Θ = (Θ1, . . . ,Θn,Θn+1) : Ω0 = Rn × [0, 1] → Ω,
we transform the boundary value problem (4.1) to a problem on the simple domain Ω0. We take
functions θ = (θ1, . . . , θn, θn+1) satisfying the conditions⎧⎪⎪⎨⎪⎪⎩

θj(x, 0) = θj(x, 1) = 0,
∂n+1θj(x, 0) = −∂jb(x), ∂n+1θj(x, 1) = −∂jη(x) for 1 ≤ j ≤ n,

θn+1(x, 0) = b(x), θn+1(x, 1) = η(x),
∂n+1θn+1(x, 0) = ∂n+1θn+1(x, 1) = 0,

(4.2)

and define the diffeomorphism Θ by{
Θj(X) = xj + δ2θj(X) for 1 ≤ j ≤ n,

Θn+1(X) = xn+1 + θn+1(X).
(4.3)

It is easy to see that

∂Θ
∂X

=

⎛⎝ En + δ2
∂(θ1, . . . , θn)
∂(x1, . . . , xn)

(∇θn+1)T

δ2∂n+1(θ1, . . . , θn) 1 + ∂n+1θn+1

⎞⎠(4.4)

and that ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Θ(x, 0) =
(
x, b(x)

)
, Θ(x, 1) =

(
x, 1 + η(x)

)
,

∂Θ
∂X

(x, 0) =
(

En (∇b(x))T

−δ2∇b(x) 1

)
,

∂Θ
∂X

(x, 1) =
(

En (∇η(x))T

−δ2∇η(x) 1

)
.

We put Φ̃ := Φ ◦Θ and

P := det
(
∂Θ
∂X

)
I−1
δ

((
∂Θ
∂X

)−1)T

I2
δ

(
∂Θ
∂X

)−1

I−1
δ(4.5)

= det
(
∂Θ
∂X

)((
Iδ
∂Θ
∂X

I−1
δ

)(
Iδ
∂Θ
∂X

I−1
δ

)T
)−1

.

Then, the boundary value problem (4.1) is transformed into⎧⎨⎩
∇X · IδPIδ∇X Φ̃ = 0 in 0 < xn+1 < 1,
Φ̃ = φ on xn+1 = 1,
∂n+1Φ̃ = 0 on xn+1 = 0.

(4.6)
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Here, we have

Iδ
∂Θ
∂X

I−1
δ =

⎛⎝ En + δ2
∂(θ1, . . . , θn)
∂(x1, . . . , xn)

δ(∇θn+1)T

δ∂n+1(θ1, . . . , θn) 1 + ∂n+1θn+1

⎞⎠ .(4.7)

On the upper boundary xn+1 = 1, we have det
(

∂Θ
∂X

)
= 1 + δ2|∇η|2 so that

P = (1 + δ2|∇η|2)
((

En δ(∇η)T

−δ∇η 1

)(
En −δ(∇η)T

δ∇η 1

))−1

= (1 + δ2|∇η|2)
(
En + δ2(∇η)T∇η 0

0 1 + δ2|∇η|2
)−1

.

Similar identity holds for the lower boundary xn+1 = 0. Therefore, we see that

P (x, 0) =
( ∗ 0

0 1

)
, P (x, 1) =

( ∗ 0
0 1

)
.(4.8)

Particularly, it holds that

en+1 · IδPIδ∇X Φ̃ = en+1 · I2
δ∇XΦ̃ = δ−2∂n+1Φ̃ on xn+1 = 0, 1.(4.9)

We also have the relation

Iδ∇Φ̃ =

⎛⎝ En + δ2
∂(θ1, . . . , θn)
∂(x1, . . . , xn)

δ(∇θn+1)T

δ∂n+1(θ1, . . . , θn) 1 + ∂n+1θn+1

⎞⎠ Iδ(∇Φ) ◦Θ.(4.10)

Assumption 4.1. Let r > n/2.

(A1) There exists a C1-diffeomorphism Θ : Ω0 → Ω satisfying (4.2), (4.3), and the conditions
det

(
∂Θ
∂X (X)

) ≥ c > 0 and |∇Xθ(X)| ≤M for X ∈ Ω0.

(A2) ‖∇Xθ(·, xn+1)‖r+1 ≤M for 0 ≤ xn+1 ≤ 1.

(A3) ‖∇Xθ(·, xn+1)‖r+2 ≤M for 0 ≤ xn+1 ≤ 1.

The construction of a diffeomorphism Θ satisfying the above conditions will be given later.
By (4.10) we can easily obtain the following lemma.

Lemma 4.3. Under Assumption 4.1 (A1), there exists a constant C = C(M, c) ≥ 1 such that

C−1‖Iδ∇XΦ‖L2(Ω) ≤ ‖Iδ∇XΦ̃‖L2(Ω0) ≤ C‖Iδ∇XΦ‖L2(Ω).

Lemma 4.4. Under Assumption 4.1 (A1), there exists a constant C = C(M, c) ≥ 1 such that
for any φ ∈ H1 we have

C−1‖Λ1/2
0 φ‖2 ≤ (Λφ, φ) ≤ C‖Λ1/2

0 φ‖2,

where Λ0 = Λ(0, 0, δ) = 1
δ |D| tanh(δ|D|).
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Proof. We set Φ := φ� and Φ̃ := Φ ◦ Θ, and decompose Φ̃ = Φ̃1 + Φ̃2, where Φ̃1 and Φ̃2 are
solutions of the boundary value problems⎧⎨⎩

∇X · I2
δ∇X Φ̃1 = 0 in 0 < xn+1 < 1,

Φ̃1 = φ on xn+1 = 1,
∂n+1Φ̃1 = 0 on xn+1 = 0

and ⎧⎨⎩
∇X · I2

δ∇X Φ̃2 = ∇X · Iδ(I1 − P )Iδ∇X Φ̃ in 0 < xn+1 < 1,
Φ̃2 = 0 on xn+1 = 1,
∂n+1Φ̃2 = 0 on xn+1 = 0,

respectively. Then, it holds that

Λφ = δ−2∂n+1Φ̃(·, 1) = δ−2∂n+1Φ̃1(·, 1) + δ−2∂n+1Φ̃2(·, 1) = Λ0φ+ δ−2∂n+1Φ̃2(·, 1)

and, by Lemma 4.2, that

(Λφ, φ) = ‖Iδ∇XΦ‖2
L2(Ω), ‖Λ1/2

0 φ‖2 = (Λ0φ, φ) = ‖Iδ∇XΦ̃1‖2
L2(Ω0)

.

By Green’s formula we see that(
δ−2∂n+1Φ̃2(·, 1), φ

)
=

(
δ−2∂n+1Φ̃2(·, 1), Φ̃1(·, 1)

)
=

∫
Ω0

Iδ∇X Φ̃2 · Iδ∇X Φ̃1dX +
∫

Ω0

(∇X · I2
δ∇X Φ̃2)Φ̃1dX

=
∫

Ω0

Iδ∇X Φ̃2 · Iδ∇X Φ̃1dX +
∫

Ω0

(∇X · Iδ(I1 − P )Iδ∇XΦ̃
)
Φ̃1dX

=
∫

Ω0

Iδ∇X Φ̃2 · Iδ∇X Φ̃1dX −
∫

Ω0

(I1 − P )Iδ∇XΦ̃ · Iδ∇XΦ̃1dX,

where we used (4.8). Therefore,∣∣(δ−2∂n+1Φ̃2(·, 1), φ
)∣∣ ≤ C(‖Iδ∇XΦ̃2‖L2(Ω0) + ‖Iδ∇X Φ̃‖L2(Ω0))‖Iδ∇X Φ̃1‖L2(Ω0).

Similarly, by the equations for Φ̃2 we see that

‖Iδ∇X Φ̃2‖2
L2(Ω0)

= −
∫

Ω0

(∇X · I2
δ∇XΦ̃2)Φ̃2dX = −

∫
Ω0

(∇X · Iδ(I1 − P )Iδ∇XΦ̃)Φ̃2dX

=
∫

Ω0

(I1 − P )Iδ∇X Φ̃ · Iδ∇XΦ̃2dX ≤ C‖Iδ∇XΦ̃‖L2(Ω0)‖Iδ∇XΦ̃2‖L2(Ω0),

so that
‖Iδ∇X Φ̃2‖L2(Ω0) ≤ C‖Iδ∇XΦ̃‖L2(Ω0) ≤ C‖Iδ∇XΦ‖L2(Ω),

where we used Lemma 4.3. Summarizing the above estimates we obtain∣∣(Λφ, φ)− (Λ0φ, φ)
∣∣ ≤ C‖Iδ∇XΦ‖L2(Ω)‖Iδ∇X Φ̃1‖L2(Ω0) ≤ C

√
(Λφ, φ)

√
(Λ0φ, φ),

which easily yields the desired inequalities. �

Now, let us construct the diffeomorphism Θ satisfying the conditions in Assumption 4.1.
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Lemma 4.5. Let r > n/2, c1,M1 > 0 and suppose that η, b ∈ H1+r satisfy the conditions{
‖η‖1+r + ‖b‖1+r ≤M1,

1 + η(x)− b(x) ≥ c1 for x ∈ Rn.

Then, there exists a constant δ1 = δ1(M1, c1, r) > 0 such that for any δ ∈ (0, δ1] we can construct
a diffeomorphism Θ satisfying the conditions in Assumption 4.1 (A1). Moreover, for any s > 0
and k ∈ N we have ⎧⎨⎩ ‖Js∇Xθ‖L2(Ω0) ≤ C1(‖η‖s+1/2 + ‖b‖s+1/2),

sup
0<xn+1<1

‖∂k
n+1θ(·, xn+1)‖s ≤ C2(‖η‖s+k + ‖b‖s+k),(4.11)

where C1 = C1(c1) > 0 and C2 = C2(c1, k) > 0. In the case where η depends also on the time t,
for any l ∈ N we have⎧⎨⎩ ‖Js∇X∂

l
tθ(t)‖L2(Ω0) ≤ C1‖∂l

tη(t)‖s+1/2,

sup
0<xn+1<1

‖∂k
n+1∂

l
tθ(·, xn+1, t)‖s ≤ C2‖∂l

tη(t)‖s+k.
(4.12)

Proof. Without loss of generality we can assume that 0 < c1 < 1. Since 1
2

(
1 + 1

1−c1

)
> 1, we

can take ϕ ∈ C∞(R) satisfying the conditions

ϕ(xn+1) =
{

0 for xn+1 ≤ 0,
1 for xn+1 ≥ 1

and 0 ≤ ϕ′(xn+1) ≤ 1
2

(
1 +

1
1 − c1

)
.

Then, it is easy to check that 1+
(
η(x)−b(x))ϕ′(xn+1) ≥ c1/2 holds for any X = (x, xn+1) ∈ Ω0.

Define the functions θj , 1 ≤ j ≤ n+ 1, by the relations⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ̂j(ξ, xn+1) = ϕ(xn+1)e−|ξ|(1−xn+1)iξj(1 − xn+1)η̂(ξ)

− (
1− ϕ(xn+1)

)
e−|ξ|xn+1iξjxn+1b̂(ξ) for 1 ≤ j ≤ n,

θ̂n+1(ξ, xn+1) = ϕ(xn+1)e−ε|ξ|(1−xn+1)
(
1 + ε|ξ|(1 − xn+1)

)
η̂(ξ)

+
(
1 − ϕ(xn+1)

)
e−ε|ξ|xn+1

(
1 + ε|ξ|xn+1

)
b̂(ξ),

where ε > 0 will be determined later. Obviously, (4.2) is satisfied. It is easy to see that

|∂k
n+1θ̂(ξ, xn+1)|2 ≤ C|ξ|2(1 + |ξ|)2(k−1)

(|η̂(ξ)|2 + |b̂(ξ)|2),∫ 1

0
|̂∇Xθ(ξ, xn+1)|2dxn+1 ≤ C|ξ|(|η̂(ξ)|2 + |b̂(ξ)|2),

which yield (4.11). In the same way as above, we can show (4.12). It remains to show the
estimates in Assumption 4.1 (A1). The latter estimate in (A1) comes from (4.11) and the
Sobolev inequality. In view of the relation

θ̂n+1(ξ, xn+1) − ϕ(xn+1)η̂(ξ) −
(
1 − ϕ(xn+1)

)
b̂(ξ)

= ε
{
ϕ(xn+1)e−ε|ξ|(1−xn+1)|ξ|(1 − xn+1)η̂(ξ) +

(
1 − ϕ(xn+1)

)
e−ε|ξ|xn+1 |ξ|xn+1b̂(ξ)

}
+ϕ(xn+1)(e−ε|ξ|(1−xn+1) − 1)η̂(ξ) +

(
1− ϕ(xn+1)

)
(e−ε|ξ|xn+1 − 1)b̂(ξ),

we obtain

|∂n+1θn+1(x, xn+1)−
(
η(x)− b(x)

)
ϕ′(xn+1)| ≤ εC

∫
Rn

|ξ|(|η̂(ξ)| + |b̂(ξ)|)dξ
≤ εC

(‖η‖1+r + ‖b‖1+r

) ≤ εCM1.
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Therefore, if we take ε > 0 so small that εCM1 ≤ c1/4, then

1 + ∂n+1θn+1(x, xn+1) ≥ 1 +
(
η(x)− b(x)

)
ϕ′(xn+1)

−|∂n+1θn+1(x, xn+1)−
(
η(x)− b(x)

)
ϕ′(xn+1)|

≥ c1
2

− c1
4

=
c1
4
.

On the other hand, it follows from (4.4) that

det
(
∂Θ
∂X

)
= 1 + ∂n+1θn+1 + δ2J1,(4.13)

where J1 is a polynomial of ∇Xθ with coefficients which are polynomials of δ2. Hence, we have

det
(
∂Θ
∂X

(X)
)
≥ c1

4
− δ2C.

Therefore, if we take δ1 > 0 so small that δ2C ≤ c1/8, then we obtain the former estimate in
(A1). Particularly, we see that Θ : Ω0 → Ω is a C1-diffeomorphism. �

5 Estimates of the Dirichlet-to-Neumann map

Lemma 5.1. Let r > n/2. There exists a constant C = C(r) > 0 such that we have

‖[Λ1/2
0 , a]u‖ ≤ C‖∇a‖r‖u‖.

Proof. Put v := [Λ1/2
0 , a]u. Then, we have

v̂(ξ) =
1

(2π)n

∫
Rn

(√
δ−1|ξ| tanh(δ|ξ|) −

√
δ−1|η| tanh(δ|η|))â(ξ − η)û(η)dη.

It is easy to see that |√α tanhα −√
β tanhβ| ≤ C|α − β| for α, β ≥ 0, so that∣∣√δ−1|ξ| tanh(δ|ξ|)−

√
δ−1|η| tanh(δ|η|)∣∣ ≤ C|ξ − η|,(5.1)

and that
|v̂(ξ)| ≤ C

∫
Rn

|ξ − η||â(ξ − η)||û(η)|dη.

This and Hausdorff-Young’s inequality give the desired estimate. �

Lemma 5.2. For any real s, we have{
‖∇φ‖s ≤

√
2(1 + δ)‖Λ1/2

0 φ‖s+1/2,

‖Λ1/2
0 φ‖s ≤ min{‖∇φ‖s, δ

−1/2‖φ‖s+1/2}.

Proof. By the inequalities (1 +
√
α)−1α ≤ √

α tanhα ≤ min{α,√α} for α ≥ 0, it holds that(
1 +

√
δ|ξ|)−1|ξ| ≤

√
δ−1|ξ| tanh(δ|ξ|) ≤ min{|ξ|, δ−1/2|ξ|1/2} for ξ ∈ Rn, δ > 0,

which yields the desired estimates. �
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Lemma 5.3. Under Assumption 4.1 (A1) and (A2), there exists a constant C = C(M, c, r) > 0
such that we have

‖Λφ‖ ≤ C
(‖Λ0φ‖+ ‖Λ1/2

0 φ‖).
Proof. Set Φ := φ� and Φ̃ := Φ ◦Θ. We take ψ ∈ H0 arbitrarily and define Ψ̃ by Ψ̃(·, xn+1) =
e−δ|D|(1−xn+1)ψ. By Green’s formula, we see that

(Λφ, ψ) =
∫

Ω0

PIδ∇X Φ̃ · Iδ∇XΨ̃dX =
∫

Ω0

Λ1/2
0 PIδ∇XΦ̃ · IδΛ−1/2

0 ∇XΨ̃dX.(5.2)

In view of the relations

|D|Λ−1/2
0 Ψ̃(·, xn+1) = δ−1∂n+1Λ

−1/2
0 Ψ̃(·, xn+1) =

√
δ|D|

tanh(δ|D|)e
−δ|D|(1−xn+1)ψ,

we have ∫
Ω0

|IδΛ−1/2
0 ∇XΨ̃|2dX ≤ C‖ψ‖2.

This and (5.2) imply that

‖Λφ‖2 ≤ C

∫
Ω0

|Λ1/2
0 PIδ∇XΦ̃|2dX(5.3)

≤ C

(∫
Ω0

|PIδ∇XΛ1/2
0 Φ̃|2dX +

∫
Ω0

|[Λ1/2
0 , P ]Iδ∇X Φ̃|2dX

)
.

Set Φ1 := (Λ1/2
0 φ)� and Φ̃1 := Φ1 ◦ Θ. Then, it holds that⎧⎪⎨⎪⎩

∇X · IδPIδ∇X(Λ1/2
0 Φ̃ − Φ̃1) = −∇X · Iδ[Λ1/2

0 , P ]Iδ∇X Φ̃,
(Λ1/2

0 Φ̃ − Φ̃1)(·, 1) = 0,
en+1 · I2

δ∇(Λ1/2
0 Φ̃ − Φ̃1)(·, 0) = 0.

Therefore, by Green’s formula we see that∫
Ω0

PIδ∇X(Λ1/2
0 Φ̃ − Φ̃1) · Iδ∇X(Λ1/2

0 Φ̃ − Φ̃1)dX

= −
∫

Ω0

(∇X · IδPIδ∇X(Λ1/2
0 Φ̃ − Φ̃1)

)
(Λ1/2

0 Φ̃ − Φ̃1)dX

=
∫

Ω0

(∇X · Iδ[Λ1/2
0 , P ]Iδ∇X Φ̃

)
(Λ1/2

0 Φ̃ − Φ̃1)dX

= −
∫

Ω0

[Λ1/2
0 , P ]Iδ∇X Φ̃ · Iδ∇X(Λ1/2

0 Φ̃ − Φ̃1)dX,

where we used (4.8). This implies that∫
Ω0

∣∣Iδ∇X(Λ1/2
0 Φ̃ − Φ̃1)

∣∣2dX ≤ C

∫
Ω0

∣∣[Λ1/2
0 , P ]Iδ∇XΦ̃

∣∣2dX.
Hence, by (5.3) we obtain

‖Λφ‖2 ≤ C

(∫
Ω0

|Iδ∇XΦ̃1|2dX +
∫

Ω0

|[Λ1/2
0 , P ]Iδ∇X Φ̃|2dX

)
.
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Here, by Lemma 5.1 and the hypothesis on P we have ‖[Λ1/2
0 , P ]u‖ ≤ C‖u‖, so that

‖Λφ‖2 ≤ C

(∫
Ω0

|Iδ∇XΦ̃1|2dX +
∫

Ω0

|Iδ∇XΦ̃|2dX
)

≤ C
(
(ΛΛ1/2

0 φ,Λ1/2
0 φ) + (Λφ, φ)

)
≤ C

(‖Λ0φ‖2 + ‖Λ1/2
0 φ‖2

)
,

where we used Lemmas 4.2–4.4. This shows the desired estimate. �

Lemma 5.4. Let s > n/2 + 1. Under Assumption 4.1 (A1) and

sup
0≤xn+1≤1

‖∇Xθ(·, xn+1)‖s+1 ≤M,

there exists a constant C = C(M, c, s) > 0 such that we have

‖[Js,Λ]φ‖ ≤ C‖Λ1/2
0 φ‖s.

Proof. Set Φ := φ�, Φs := (Jsφ)�, Φ̃ := Φ ◦ Θ, and Φ̃s := Φs ◦ Θ. Then, we have⎧⎨⎩
∇X · IδPIδ∇X(JsΦ̃− Φ̃s) = −∇X · Iδ[Js, P ]Iδ∇X Φ̃,
(JsΦ̃ − Φ̃s)(·, 1) = 0,
en+1 · I2

δ∇X(JsΦ̃ − Φ̃s)(·, 0) = 0.
(5.4)

and
[Js,Λ]φ = en+1 · I2

δ∇X(JsΦ̃ − Φ̃s)(·, 1).

We take ψ ∈ H0 arbitrarily and define Ψ̃ by Ψ̃(·, xn+1) = e−δ|D|(1−xn+1)ψ. Taking the inner
product of the equation in (5.4) and Ψ̃ in L2(Ω0) and using Green’s formula, we see that

([Js,Λ]φ, ψ) =
∫

Ω0

[Js, P ]Iδ∇XΦ̃ · Iδ∇XΨ̃dX +
∫

Ω0

PIδ∇X(JsΦ̃ − Φ̃s) · Iδ∇XΨ̃dX.

In view of ‖J−1Iδ∇XΨ̃‖2
L2(Ω0)

≤ C‖ψ‖2, we obtain

‖[Js,Λ]φ‖ ≤ C
(‖J [Js, P ]Iδ∇XΦ̃‖L2(Ω0) + ‖JPIδ∇X(JsΦ̃ − Φ̃s)‖L2(Ω0)

)
(5.5)

≤ C
(‖JsIδ∇X Φ̃‖L2(Ω0) + ‖JIδ∇X(JsΦ̃ − Φ̃s)‖L2(Ω0)

)
≤ C

(‖Iδ∇X Φ̃s‖L2(Ω0) + ‖JIδ∇X(JsΦ̃ − Φ̃s)‖L2(Ω0)

)
.

In the above calculation we used a commutator estimate ‖[Js, a]u‖1 ≤ C‖a‖s+1‖u‖s.
On the other hand, taking the inner product of the equation in (5.4) and J2(JsΦ̃ − Φ̃s) in

L2(Ω0) and using Green’s formula we obtain∫
Ω0

PJIδ∇X(JsΦ̃ − Φ̃s) · JIδ∇X(JsΦ̃ − Φ̃s)dX

= −
∫

Ω0

[J, P ]Iδ∇X(JsΦ̃ − Φ̃s) · JIδ∇X(JsΦ̃ − Φ̃s)dX

−
∫

Ω0

J[Js, P ]Iδ∇XΦ̃ · JIδ∇X(JsΦ̃ − Φ̃s)dX,
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which implies that

‖JIδ∇X(JsΦ̃ − Φ̃s)‖L2(Ω0) ≤ C
(‖Iδ∇X(JsΦ̃ − Φ̃s)‖L2(Ω0) + ‖JsIδ∇X Φ̃‖L2(Ω0)

)
≤ C

(‖Iδ∇X(JsΦ̃ − Φ̃s)‖L2(Ω0) + ‖Iδ∇X Φ̃s‖L2(Ω0)

)
.

Here, by the interpolation inequality for any ε > 0 we have

‖Iδ∇X(JsΦ̃ − Φ̃s)‖L2(Ω0)

≤ ε‖JIδ∇X(JsΦ̃ − Φ̃s)‖L2(Ω0) + Cε‖J−sIδ∇X(JsΦ̃ − Φ̃s)‖L2(Ω0)

≤ ε‖JIδ∇X(JsΦ̃ − Φ̃s)‖L2(Ω0) + Cε

(‖Iδ∇XΦ̃‖L2(Ω0) + ‖Iδ∇XΦ̃s‖L2(Ω0)

)
.

Therefore,

‖JIδ∇X(JsΦ̃ − Φ̃s)‖L2(Ω0) ≤ C
(‖Iδ∇X Φ̃‖L2(Ω0) + ‖Iδ∇X Φ̃s‖L2(Ω0)

)
,

which together with (5.5) implies that

‖[Js,Λ]φ‖ ≤ C
(‖Iδ∇XΦ̃‖L2(Ω0) + ‖Iδ∇XΦ̃s‖L2(Ω0)

)
.

This and Lemmas 4.2–4.4 show the desired estimate. �

In view of ‖Λφ‖s ≤ ‖ΛJsφ‖ + ‖[Js,Λ]φ‖ and Lemmas 5.3–5.4, we can obtain the following
lemma.

Lemma 5.5. Under the hypothesis of Lemma 5.4, we have

‖Λφ‖s ≤ C(‖Λ0φ‖s + ‖Λ1/2
0 φ‖s),

where C = C(M, c, s) > 0. Particularly, it holds that ‖Λφ‖s ≤ Cδ−1‖φ‖s+1.

Lemma 5.6. Let s ≥ 0 and set Φ := φ� and Φ̃ := Φ ◦ Θ. Under Assumption 4.1 (A1), (A2),
and

‖Js∇Xθ‖L2(Ω0) + sup
0≤xn+1≤1

‖∇Xθ(·, xn+1)‖s−1/2 ≤M,

there exists a constant C = C(M, c, r, s)> 0 such that we have{
‖JsIδ∇XΦ̃‖L2(Ω0) ≤ C

(‖Λ1/2
0 φ‖s + ‖Iδ∇X Φ̃‖L∞(Ω0)

)
,

‖Jr+1Iδ∇X Φ̃‖L2(Ω0) ≤ C‖Λ1/2
0 φ‖r+1.

Proof. Set Φs := (Jsφ)� and Φ̃s := Φs ◦ Θ. Then, we have (5.4). Taking the inner product of
(5.4) with JsΦ̃ − Φ̃s in L2(Ω0) and using Green’s formula, we see that∫

Ω0

PIδ∇X(JsΦ̃ − Φ̃s) · Iδ∇X(JsΦ̃ − Φ̃s)dX = −
∫

Ω0

[Js, P ]Iδ∇XΦ̃ · Iδ∇X(JsΦ̃ − Φ̃s)dX,

which implies that

‖Iδ∇X(JsΦ̃ − Φ̃s)‖L2(Ω0)(5.6)

≤ C‖[Js, P ]Iδ∇X Φ̃‖L2(Ω0)

≤ C
(‖JsP‖L2(Ω0)‖Iδ∇X Φ̃‖L∞(Ω0) + ‖∇P‖L∞(Ω0)‖Js−1Iδ∇X Φ̃‖L2(Ω0)

)
,
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where we used the well-known commutator estimate ‖[Js, a]u‖ ≤ C(|∇a|∞‖Js−1u‖+‖Jsa‖|u|∞).
Note that Assumption 4.1 (A2) and the Sobolev inequality imply that ‖∇∇Xθ‖L∞(Ω0) ≤ C.
Hence, it holds that ‖JsP‖L2(Ω0) + ‖∇P‖L∞(Ω0) ≤ C, so that

‖JsIδ∇XΦ̃‖L2(Ω0) ≤ ‖Iδ∇X Φ̃s‖L2(Ω0) + ‖Iδ∇X(JsΦ̃ − Φ̃s)‖L2(Ω0)

≤ ‖Iδ∇X Φ̃s‖L2(Ω0) +C
(‖Iδ∇X Φ̃‖L∞(Ω0) + ‖Js−1Iδ∇X Φ̃‖L2(Ω0)

)
.

This and the interpolation inequality yields that

‖JsIδ∇XΦ̃‖L2(Ω0) ≤ C
(‖Iδ∇X Φ̃s‖L2(Ω0) + ‖Iδ∇XΦ̃‖L∞(Ω0) + ‖Iδ∇XΦ̃‖L2(Ω0)

)
.(5.7)

It follows from Lemmas 4.2–4.4 that ‖Iδ∇X Φ̃s‖L2(Ω0) and ‖Iδ∇XΦ̃‖L2(Ω0) are equivalent to

‖Λ1/2
0 φ‖s and ‖Λ1/2

0 φ‖, respectively, so that we obtain the first estimate of the lemma.
Set Φr+1 := (Jr+1φ)� and Φ̃r+1 := Φr+1 ◦ Θ. Since ‖Jr+1P (·, xn+1)‖ ≤ C for 0 ≤ xn+1 ≤ 1,

in place of (5.6) we have

‖Iδ∇X(Jr+1Φ̃ − Φ̃r+1)‖L2(Ω0) ≤ C‖[Jr+1, P ]Iδ∇XΦ̃‖L2(Ω0)

≤ C‖JrIδ∇XΦ̃‖L2(Ω0),

where we used the commutator estimate ‖[Jr+1, a]u‖ ≤ C‖Jr+1a‖‖Jru‖. Therefore, in place of
(5.7) we obtain

‖Jr+1Iδ∇XΦ̃‖L2(Ω0) ≤ C
(‖Iδ∇X Φ̃r+1‖L2(Ω0) + ‖Iδ∇X Φ̃‖L2(Ω0)

)
,

which together with Lemmas 4.2–4.4 yields the second estimate of the lemma. �

We proceed to give a L∞-estimate of Iδ∇X Φ̃. To this end, we use (4.6), where the matrix
P is defined by (4.5). It follows from (4.7) that

A :=
(
Iδ
∂Θ
∂X

I−1
δ

)(
Iδ
∂Θ
∂X

I−1
δ

)T

= A1 + δ2A2,

where A2 is a matrix whose elements are polynomials of ∇Xθ with coefficients which are also
polynomials of δ2, and

A1 =
(
En δaT

δa b

)
,

where {
a = ∂n+1θ + (1 + ∂n+1θn+1)∇θn+1,
b = (1 + ∂n+1θn+1)2.

By the definition of P we have P =
(
det

(
∂Θ
∂X

))−1
Ã, where Ã is the adjoint matrix of A and has

the form
Ã = Ã1 + δ2A3,

where A3 is a matrix whose elements are polynomials of ∇Xθ. Moreover, we see that

Ã1 =
(

(b− δ2|a|2)En + δ2aT a −δaT

−δa 1

)
.

By these relations and (4.13) we see that the matrix P has the form

P =
(

(1 + ∂n+1θn+1)En + δ2P11 δpT
12

δp12 (1 + ∂n+1θn+1)−1 + δ2p22

)
,(5.8)
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where P11, p12, and p22 are n× n, 1× n, and 1× 1 matrixes whose elements are polynomials of
∇Xθ. Moreover, it follows from (4.8) that

p12(x, 0) = p12(x, 1) = 0, p22(x, 0) = p22(x, 1) = 0.(5.9)

Using these notations we can rewrite the first equation in (4.6) as

∂n+1

((
δ−2(1 + ∂n+1θn+1)−1 + p22

)
∂n+1Φ̃

)
(5.10)

= −∇ · (((1 + ∂n+1θn+1)En + δ2P11)∇Φ̃
) −∇ · (p12∂n+1Φ̃) − ∂n+1(p12 · ∇Φ̃).

It follows from this, the boundary condition on xn+1 = 0, (4.2), and (5.9) that

∂n+1Φ̃ =
∫ xn+1

0

∂n+1

((
(1 + ∂n+1θn+1)−1 + δ2p22

)
∂n+1Φ̃

)
dxn+1(5.11)

= −δ2
∫ xn+1

0

∇ · (((1 + ∂n+1θn+1)En + δ2P11)∇Φ̃
)
dxn+1

−δ2
∫ xn+1

0
∇ · (p12∂n+1Φ̃)dxn+1 − δ2p12 · ∇Φ̃.

We also have

∇Φ̃ = ∇φ−
∫ 1

xn+1

∇∂n+1Φ̃dxn+1.(5.12)

Lemma 5.7. Let Φ = φ� and Φ̃ = Φ ◦Θ. Under Assumption 4.1 (A1) and (A2), there exists a
constant C = C(M, c, r) > 0 such that we have

‖Iδ∇X Φ̃‖L∞(Ω0) ≤ C
(‖∇φ‖r + δ‖Λ1/2

0 φ‖r+1

)
.

Proof. Note that the assumptions imply the uniform boundedness of P11, p22, p12, and their
first derivatives with respect to x. It follows from (5.12), the Sobolev inequality, and Lemma
5.6 that

‖∇Φ̃‖L∞(Ω0) ≤ ‖∇φ‖r + δ‖Jr+1Iδ∇XΦ̃‖L2(Ω0) ≤ ‖∇φ‖r +Cδ‖Λ1/2
0 φ‖r+1.

Similarly, it follows from (5.11) that

δ−1‖∂n+1Φ̃‖L∞(Ω0) ≤ Cδ
(‖Jr+1Iδ∇X Φ̃‖L2(Ω0) + ‖∇Φ̃‖L∞(Ω0)

) ≤ Cδ‖Λ1/2
0 φ‖r+1,

where we used Lemma 5.2. These yield the desired estimate. �

Remark 5.1. In the case of a flat bottom, by appying the maximal principle to the subharmonic
function |Iδ∇XΦ|2 we see that ‖I2

δ∇XΦ‖L∞(Ω) = ‖I2
δ∇XΦ‖L∞(Γ) ≤

√|∇φ|2∞ + (δ|Λφ|∞)2.

6 Fréchet derivatives of the Dirichlet-to-Neumann map

The following lemma was obtained by D. Lannes [13].

Lemma 6.1. The Fréchet derivative of Λ(η, b, δ) with respect to η has the form

DηΛ(η, b, δ)[ζ]φ= −δ2Λ(η, b, δ)(Zζ)−∇ · (vζ),
where {

Z = (1 + δ2|∇η|2)−1(Λ(η, b, δ)φ+ ∇η · ∇φ),
v = ∇φ− δ2Z∇η.(6.1)
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We proceed to give estimates of the Fréchet derivatives of Λ in the Sobolev spaces.

Lemma 6.2. Let s > n/2. Under Assumption 4.1 (A1) and

sup
0≤xn+1≤1

‖∇Xθ(·, xn+1)‖s+1 ≤M,

there exists a constant C = C(M, c, s) > 0 such that we have

‖Dn
η Λ[ζ1, . . . , ζn]φ‖s ≤ C‖ζ1‖s+3/2 · · · ‖ζn‖s+3/2‖Λ1/2

0 φ‖s+1.

Similar estimate holds for the Fréchet derivative of Λ with respect to b.

Proof. We only show the estimate in the case n = 1, and the general case can be proved in
the same way. Set Φ := φ� and Φ̃ := Φ ◦ Θ. Then, it holds that⎧⎨⎩

∇X · IδPIδ∇XΦ̃ = 0,
Φ̃(·, 1) = φ, en+1 · I2

δ∇XΦ̃(·, 1) = Λφ,
en+1 · I2

δ∇XΦ̃(·, 0) = 0.

For simplicity, we write Ληφ = DηΛ[ζ ]φ, Φ̃η = DηΦ̃[ζ], and Pη = DηP [ζ]. Taking the Fréchet
derivative of the above equations, we obtain⎧⎨⎩

∇X · IδPIδ∇XΦ̃η = −∇X · IδPηIδ∇XΦ̃,
Φ̃η(·, 1) = 0, en+1 · I2

δ∇X Φ̃η(·, 1) = Ληφ,

en+1 · I2
δ∇XΦ̃η(·, 0) = 0.

(6.2)

We take ψ ∈ H0 arbitrarily and define Ψ̃ by Ψ̃(·, xn+1) = e−δ|D|(1−xn+1)ψ. Taking the inner
product of the above equation and JsΨ̃ in L2(Ω0) and using Green’s formula, we see that

(JsΛηφ, ψ) =
∫

Ω0

JsPIδ∇XΦ̃η · Iδ∇XΨ̃dX +
∫

Ω0

JsPηIδ∇X Φ̃ · Iδ∇XΨ̃dX.

In view of ‖Λ−1/2
0 Iδ∇XΨ̃‖L2(Ω0) ≤ C‖ψ‖, we obtain

‖Ληφ‖s ≤ C
(‖Λ1/2

0 JsPIδ∇X Φ̃η‖L2(Ω0) + ‖Λ1/2
0 JsPηIδ∇X Φ̃‖L2(Ω0)

)
(6.3)

≤ C
(‖Js+1PIδ∇XΦ̃η‖L2(Ω0) + ‖Js+1PηIδ∇X Φ̃‖L2(Ω0)

)
.

On the other hand, taking the inner product of the first equation in (6.2) and J2(s+1)Φ̃η in
L2(Ω0) and using Green’s formula, we see that∫

Ω0

PJs+1Iδ∇X Φ̃η · Js+1Iδ∇X Φ̃ηdX

= −
∫

Ω0

[Js+1, P ]Iδ∇X Φ̃η · Js+1Iδ∇XΦ̃ηdX −
∫

Ω0

Js+1PηIδ∇X Φ̃ · Js+1Iδ∇X Φ̃ηdX,

which implies that

‖Js+1Iδ∇X Φ̃η‖L2(Ω0) ≤ C
(‖[Js+1, P ]Iδ∇XΦ̃η‖L2(Ω0) + ‖Js+1PηIδ∇XΦ̃‖L2(Ω0)

)
(6.4)

≤ C
(‖JsIδ∇XΦ̃η‖L2(Ω0) + ‖Js+1PηIδ∇XΦ̃‖L2(Ω0)

)
.
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Similarly, taking the inner product of the first equation in (6.2) and Φ̃η in L2(Ω0) and using
Green’s formula yield that ‖Iδ∇X Φ̃η‖L2(Ω0) ≤ C‖PηIδ∇X Φ̃‖L2(Ω0). Therefore, by the interpola-
tion inequality we obtain

‖Js+1Iδ∇XΦ̃η‖L2(Ω0) ≤ C‖Js+1PηIδ∇XΦ̃‖L2(Ω0)

≤ C
(‖Js+1Pη‖L2(Ω0)‖Iδ∇X Φ̃‖L∞(Ω0) + ‖∇Pη‖L∞(Ω)‖Js+1Iδ∇X Φ̃‖L2(Ω0)

)
≤ C‖ζ‖s+3/2‖Λ1/2

0 φ‖s+1,

where we used Lemmas 5.2, 5.6 and 5.7. Hence, we obtain the desired estimate. �

Lemma 6.3. Let s > (n+ 1)/2. Under Assumption 4.1 (A1) and

sup
0≤xn+1≤1

‖∇Xθ(·, xn+1)‖s+1/2 ≤M,

there exists a constant C = C(M, c, s) > 0 such that we have

‖Dn
ηΛ[ζ1, . . . , ζn]φ‖s ≤ Cδ−1/2‖ζ1‖s+1 · · · ‖ζn‖s+1‖Λ1/2

0 φ‖s+1/2.

Similar estimate holds for the Fréchet derivative of Λ with respect to b.

Proof. By (6.3) we have

‖Ληφ‖s ≤ Cδ−1/2
(‖Js+1/2PIδ∇X Φ̃η‖L2(Ω0) + ‖Js+1/2PηIδ∇XΦ̃‖L2(Ω0)

)
.

Therefore, by the same argument as in the proof of the previous lemma we obtain the desired
estimate. �

Lemma 6.4. Let s > n/2 + 2. Under Assumption 4.1 (A1) and

‖(η, b)‖s+1 + sup
0≤xn+1≤1

‖∇Xθ(·, xn+1)‖s ≤M,

there exists a constant C = C(M, c, s) > 0 such that we have

‖Λφ‖s ≤ Cδ−1/2‖Λ1/2
0 φ‖s+1/2.

Proof. It is sufficient to evaluate ‖Λφ‖s−1 and ‖∇Λφ‖s−1. By Lemmas 5.5 and 5.2 we have
‖Λφ‖s−1 ≤ Cδ−1/2‖Λ1/2

0 φ‖s−1/2. By the relation ∇Λφ = Λ∇φ + DηΛ[∇η]φ + DbΛ[∇b]φ and
Lemma 6.3, we see that

‖∇Λφ‖s−1 ≤ Cδ−1/2
(‖Λ1/2

0 ∇φ‖s−1/2 + ‖(∇η,∇b)‖s‖Λ1/2
0 φ‖s−1/2

) ≤ Cδ−1/2‖Λ1/2
0 φ‖s+1/2.

Therefore, we obtain the desired estimate. �

Lemma 6.5. Let s > n/2 + 1. Under Assumption 4.1 (A1) and

‖η‖s+3 + sup
0≤xn+1≤1

‖∇Xθ(·, xn+1)‖s+2 ≤M,

there exists a constant C = C(M, c, s) > 0 such that we have

‖D2
ηΛ[ζ1, ζ2]φ‖s ≤ C‖ζ1‖s+2‖ζ2‖s+1(‖∇φ‖s+1 + δ1/2‖Λ1/2

0 φ‖s+3/2).
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Proof. By Lemma 6.1 we have

DηΛ[ζ2]φ = −δ2Λ(Zζ2)−∇ · (vζ2),

where Z = (1 + δ2|∇η|2)−1(Λφ+ ∇η · ∇φ) and v = ∇φ− δ2Z∇η, so that

D2
ηΛ[ζ1, ζ2]φ = −δ2DηΛ[ζ1](Zζ2) − δ2Λ

(
(DηZ[ζ1])ζ2

) −∇ · ((Dηv[ζ1])ζ2
)
.

By Lemmas 5.5, 6.3, and 5.2 we see that

‖D2
ηΛ[ζ1, ζ2]φ‖s ≤ C

(
δ3/2‖ζ1‖s+1‖Λ1/2

0 (Zζ2)‖s+1/2

+δ‖(DηZ[ζ1])ζ2‖s+1 + ‖(Dηv[ζ1])ζ2‖s+1

)
≤ C‖ζ2‖s+1

(
δ(‖ζ1‖s+1‖Z‖s+1 + ‖DηZ[ζ1]‖s+1) + ‖Dηv[ζ1]‖s+1

)
.

Here, by Lemmas 5.5 and 5.2 it holds that

‖Z‖s+1 ≤ C
(‖Λφ‖s+1 + ‖∇φ‖s+1

) ≤ Cδ−1‖∇φ‖s+1.

The Fréchet derivative of Z can be written as

DηZ[ζ1] = −2δ2(1 + δ2|∇η|2)−2∇η · ∇ζ1(Λφ+ ∇η · ∇φ)
+(1 + δ2|∇η|2)−1(DηΛ[ζ1]φ+ ∇ζ1 · ∇φ),

so that by Lemmas 5.5, 6.3, and 5.2 we get

‖DηZ[ζ1]‖s+1 ≤ C
(
δ2‖ζ1‖s+2(‖Λφ‖s+1 + ‖∇φ‖s+1) + ‖DηΛ[ζ1]φ‖s+1 + ‖ζ1‖s+2‖∇φ‖s+1

)
≤ C‖ζ1‖s+2

(‖∇φ‖s+1 + δ−1/2‖Λ1/2
0 φ‖s+3/2

)
.

Similarly, we see that

‖Dηv[ζ1]‖s+1 = δ2‖(DηZ[ζ1])∇η + Z∇ζ1‖s+1

≤ Cδ‖ζ1‖s+2(‖∇φ‖s+1 + δ1/2‖Λ1/2
0 φ‖s+3/2).

Therefore, we obtain the desired estimate. �

7 Energy estimates of a linear system

Following D. Lannes [13], we linearize the equations in (2.14) around (η, φ). Taking the derivative
∂ of the second equation in (2.14), we see that

0 = ∂φt + ∂η + ∇φ · ∇∂φ+ δ4∇η · ∇∂η(1 + δ2|∇η|2)−2(Λφ + ∇η · ∇φ)2(7.1)
−δ2(1 + δ2|∇η|2)−1(Λφ + ∇η · ∇φ)

(
∂Λφ+ ∂(∇η · ∇φ)

)
= ∂φt + ∂η + ∇φ · ∇∂φ+ δ4Z2∇η · ∇∂η − δ2Z(∂Λφ+ ∇∂η · ∇φ+ ∇η · ∇∂φ)
= ∂φt + ∂η + (∇φ− δ2Z∇η) · ∇∂φ− δ2Z(∇φ− δ2Z∇η) · ∇∂η − δ2Z∂Λφ,

so that

(∂φ− δ2Z∂η)t + (∇φ− δ2Z∇η) · ∇(∂φ− δ2Z∂η) + (1 + δ2Zt + δ2v · ∇Z)∂η = 0,
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where we used the equation ∂ηt = ∂Λφ, which comes from the first equation in (2.14). By
Lemma 6.1 we also have

∂ηt = Λ(∂φ− δ2Z∂η)−∇ · (v∂η) +DbΛ[∂b]φ.

Introducing new functions ζ and ψ by

ζ := ∂η, ψ := ∂φ− Z∂η,

we obtain {
ζt + ∇ · (vζ)− Λψ = DbΛ[∂b]φ,
ψt + v · ∇ψ + (1 + δ2Zt + δ2v · ∇Z)ζ = 0.

(7.2)

Taking these equations into account, we will consider the following system of linear equations{
ζt + b1 · ∇ζ − Λψ = f1,

ψt + b2 · ∇ψ + aζ = f2,
(7.3)

where a, b1 = (b11, . . . , b1n), b2 = (b21, . . . , b2n), f1, f2 are given function of x and t and may
depend on δ, and Λ = Λ(η, b, δ) is the Dirichlet-to-Neumann map. We assume the function a to
be positively definite and define an energy function E(t) by

E(t) = (aζ(t), ζ(t)) + (Λψ(t), ψ(t))+ ‖ψ(t)‖2.(7.4)

Let (ζ, ψ) be a solution of (7.3). Then, it holds that

d

dt
E(t) = (atζ, ζ) + 2(aζt, ζ) + ([∂t,Λ]ψ, ψ)+ 2(ψt,Λψ) + 2(ψt, ψ)(7.5)

= (atζ, ζ) + ((∇ · (ab1))ζ, ζ) + 2(af1, ζ) + ([∂t,Λ]ψ, ψ)
−2(b2 · ∇ψ,Λψ)+ 2(f2,Λφ2) + ((∇ · b2)ψ, ψ)− 2(aζ, ψ) + 2(f2, ψ).

Here, we have

−2(b2 · ∇ψ,Λψ) = (ψ, (∇· b2)Λψ) + (ψ, b2 · [∇,Λ]ψ)+ (ψ, [b2,Λ] · ∇ψ).(7.6)

Lemma 7.1. Under Assumption 4.1 (A1) and

‖∇Xθt(·, t)‖L∞(Ω0) ≤M,(7.7)

there exists a constant C = C(M, c) > 0 such that we have

|([∂t,Λ]φ, φ)| ≤ C(Λφ, φ).

Proof. Set Φ := φ� and Φ̃ := Φ ◦ Θ. Then, by Lemma 4.2 we have

(Λφ, φ) =
∫

Ω
|Iδ∇XΦ|2dX =

∫
Ω0

PIδ∇X Φ̃ · Iδ∇X Φ̃dX,

so that

([∂t,Λ]φ, φ) =
d

dt
(Λφ, φ) = 2

∫
Ω0

PIδ∇X Φ̃ · Iδ∇X Φ̃tdX +
∫

Ω0

PtIδ∇XΦ̃ · Iδ∇XΦ̃dX.
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Since Φ̃(·, 1) = φ, we have Φ̃t(·, 1) = 0. Therefore, by Green’s formula we see that∫
Ω0

PIδ∇X Φ̃ · Iδ∇X Φ̃tdX = −
∫

Ω0

(∇X · IδPIδ∇X Φ̃)Φ̃tdX

+(e2 · I2
δ∇X Φ̃(·, 1), Φ̃t(·, 1))− (e2 · I2

δ∇X Φ̃(·, 0), Φ̃t(·, 0))
= 0.

Hence, we obtain
|([∂t,Λ]φ, φ)| ≤ |Pt|∞‖Iδ∇X Φ̃‖2

L2(Ω0)
.

This together with Lemmas 4.2 and 4.3 implies the desired estimate. �

The following lemma was given by S. Wu [22]. For the completeness, we will give the proof.

Lemma 7.2. For the Dirichlet-to-Neumann map Λ = Λ(η, b, δ) it holds that{ |(φ, aΛψ)+ (aΛφ, ψ)| ≤ (|a|∞ + 2|Λa|∞
)√‖φ‖2 + (φ,Λφ)

√‖ψ‖2 + (ψ,Λψ),

|(φ,Λψ)| ≤ √
(φ,Λφ)

√
(ψ,Λψ).

Proof. Set Φ := φ�, Ψ := ψ�, and A := a�. Putting u = A and v = ΦΨ in Green’s formula∫
Ω

{
u(∇X · I2

δ∇Xv) − v(∇X · I2
δ∇Xu)

}
dX =

∫
∂Ω

{
u(N · I2

δ∇Xv)− v(N · I2
δ∇Xu)

}
dS,(7.8)

we obtain

2
∫

Ω

AIδ∇XΦ · Iδ∇XΨdX

=
∫

∂Ω

{
A

(
Φ(N · I2

δ∇XΨ) + Ψ(N · I2
δ∇XΦ)

)− ΦΨ(N · I2
δ∇XA)

}
dS

= (a, φΛψ + ψΛφ)− (φψ,Λa).

This implies that

|(φ, aΛψ)+ (aΛφ, ψ)| ≤ |Λa|∞‖φ‖‖ψ‖+ 2‖A‖L∞(Ω)‖Iδ∇XΦ‖L2(Ω)‖Iδ∇XΨ‖L2(Ω).

Here, by the weak maximal principle we have ‖A‖L∞(Ω) = max{|a|∞, |A(·, b(·))|∞}. If a is not
constant and A attains its maximal value at the bottom (x0, b(x0)), then the strong maximal
principle implies that N · I2

δ∇XA(x0, b(x0)) > 0. However, this contradicts with the definition
of A. Therefore, it holds that ‖A‖L∞(Ω) = |a|∞. This together with Lemma 4.2 shows the first
estimate. By taking a ≡ 1 in the above argument, we obtain the second one. �

Lemma 7.3. Let r > n/2. Under Assumption 4.1 (A1) and (A2), there exists a constant
C = C(M, c) > 0 such that for any j = 1, . . . , n we have

|(φ, [ψ,Λ]∂jφ)| ≤ 1
2
|∂j(Λψ)|∞‖φ‖2 +C(‖∇ψ‖r + δ‖Λ1/2

0 ψ‖r+1)(Λφ, φ).

Proof. Set Φ := φ�, Φj := (∂jφ)�, and Ψ := ψ�. Putting u = Φj and v = ΦΨ in Green’s
formula (7.8), we see that

2
∫

Ω
ΦjIδ∇XΦ · Iδ∇XΨdX = (∂jφ, φΛψ + ψΛφ) − (φψ,Λ∂jφ)

= −1
2
(φ2, ∂j(Λψ))− (φ, [ψ,Λ]∂jφ).
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This implies that

|(φ, [ψ,Λ]∂jφ)| ≤ 1
2
|∂j(Λψ)|∞‖φ‖2 + 2‖Iδ∇XΨ‖L∞(Ω)‖Φj‖L2(Ω)‖Iδ∇XΦ‖L2(Ω).

Set Φ̃ := Φ ◦ Θ and Φ̃j := Φj ◦ Θ. Then,

‖Φj‖L2(Ω) ≤ C‖Φ̃j‖L2(Ω0) ≤ C(‖Φ̃j − ∂jΦ̃‖L2(Ω0) + ‖∂jΦ̃‖L2(Ω0))

≤ C(δ‖Iδ∇X(Φ̃j − ∂jΦ̃)‖L2(Ω0) + ‖Iδ∇XΦ̃‖L2(Ω0)),

where we used Poincaré’s inequality. Here, as in the proof of Lemma 5.6 we can show that
‖Iδ∇X(Φ̃j − ∂jΦ̃)‖L2(Ω0) ≤ C‖Iδ∇XΦ̃‖L2(Ω0). Therefore,

‖Φj‖L2(Ω) ≤ C‖Iδ∇XΦ̃‖L2(Ω0) ≤ C‖Iδ∇XΦ‖L2(Ω).

These estimates together with Lemmas 4.2 and 5.7 yield the desired estimate. �

Lemma 7.4. Under Assumption 4.1 (A1) and (A2), there exists a constant C = C(M, c) > 0
such that for any j = 1, . . . , n we have

|(ψ, [∂j,Λ]φ)| ≤ C
√

(Λψ, ψ)
√

(Λφ, φ).

Proof. Set Φ := φ�, Φj := (∂jφ)�, Ψ := ψ�, Φ̃ := Φ ◦ Θ, Φ̃j := Φj ◦ Θ, and Ψ̃ := Ψ ◦ Θ. By
Green’s formula we see that

(ψ, [∂j,Λ]φ) =
∫

Ω0

∇X · (Ψ̃IδPIδ∇X(∂jΦ̃ − Φ̃j)
)
dX

=
∫

Ω0

{
PIδ∇XΨ̃ · Iδ∇X(∂jΦ̃ − Φ̃j) + Ψ̃∇X · IδPIδ∇X∂jΦ̃

}
dX

= −
∫

Ω0

Ψ̃∇X · Iδ(∂jP )Iδ∇X Φ̃dX =
∫

Ω0

(∂jP )Iδ∇XΨ̃ · Iδ∇X Φ̃dX,

where we used the equation ∇X · IδPIδ∇X∂jΦ̃ = −∇X · Iδ(∂jP )Iδ∇XΦ̃ and (4.8). This implies
that

|(ψ, [∂j,Λ]φ)| ≤ C‖Iδ∇XΨ̃‖L2(Ω0)‖Iδ∇XΦ̃‖L2(Ω0),

which together with Lemmas 4.2 and 4.3 yields the desired estimate. �

Lemma 7.5. It holds that√
(Λ(aφ), aφ) ≤

√
|a|∞|Λa|∞‖φ‖ + 3|a|∞

√
(Λφ, φ).

Proof. Set Φ := φ�, A := a�, and Ψ := (aφ)�. Then, we see that

(Λ(aφ), aφ) =
∫

Γ
(N · I2

δ∇XΨ)AΦdS =
∫

Ω
∇X · (AΦI2

δ∇XΨ)dX

=
∫

Ω
Iδ∇X(AΦ) · Iδ∇XΨdS ≤ ‖Iδ∇X(AΦ)‖L2(Ω)‖Iδ∇XΨ‖L2(Ω).

By Lemma 4.2 we have (Λ(aφ), aφ) = ‖Iδ∇XΨ‖2
L2(Ω)

, so that the above inequality implies that√
(Λ(aφ), aφ) ≤ ‖Iδ∇X(AΦ)‖L2(Ω) ≤ ‖AIδ∇XΦ‖L2(Ω) + ‖ΦIδ∇XA‖L2(Ω).
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Here, by Green’s formula it holds that

‖ΦIδ∇XA‖2
L2(Ω) = (aφ2,Λa) − 2

∫
Ω

AΦIδ∇XA · Iδ∇XΦdX

≤ |a|∞|Λa|∞‖φ‖2 + 2‖AIδ∇XΦ‖L2(Ω)‖ΦIδ∇XA‖L2(Ω),

which implies that

‖ΦIδ∇XA‖L2(Ω) ≤
√

|a|∞|Λa|∞‖φ‖+ 2‖AIδ∇XΦ‖L2(Ω).

These estimates and ‖AIδ∇XΦ‖L2(Ω) ≤ ‖A‖L∞(Ω)‖Iδ∇XΦ‖L2(Ω) ≤ |a|∞
√

(Λφ, φ), which comes
from the maximal principle and Lemma 4.2, yield the desired estimate. �

Lemma 7.6. Let r > n/2. In addition to Assumption 4.1 (A1) and (A3), and (7.7), we assume
that

M−1 ≤ a(x, t) ≤M, ‖(at,∇a)‖r + ‖(b1, b2,Λ0b2)‖r+1 ≤M.(7.9)

Then, there exists a constant C = C(M, c, r) > 0 such that for any smooth solution (ζ, ψ) of
(7.3) we have

E(t) ≤ eCtE(0) +
∫ t

0
eC(t−τ )

(‖f1(τ )‖2 + ‖f2(τ )‖2 + ‖Λ1/2
0 f2(τ )‖2

)
dτ.

Proof. By the Sobolev inequality and Lemmas 5.5 and 5.2 we see that{
|Λ(∇ · b2)|∞ ≤ C(‖Λ0(∇ · b2)‖r + ‖Λ1/2

0 (∇ · b2)‖r) ≤ C(‖Λ0b2‖r+1 + ‖b2‖r+1) ≤ C,

|∇Λb2|∞ ≤ C(‖Λ0b2‖r+1 + ‖Λ1/2
0 b2‖r+1) ≤ C.

Therefore, by (7.6) and Lemmas 7.2–7.5 we get

|(b2 · ∇ψ,Λψ)| ≤ C
(‖ψ‖2 + (ψ,Λψ)

)
.(7.10)

Hence, by (7.5) and Lemmas 7.1–7.2 and 4.4 we obtain

d

dt
E(t) ≤ CE(t) + ‖f1(t)‖2 + ‖f2(t)‖2 + ‖Λ1/2

0 f2(t)‖2,

so that the desired energy estimate comes from Gronwall’s inequality. �

We proceed to estimate a high order energy function Es(t) defined by

Es(t) := (aJsζ(t), Jsζ(t)) + (ΛJsψ(t), Jsψ(t)) + ‖ψ(t)‖2
s.(7.11)

Let (ζ, ψ) be a solution of (7.3). Then, it holds that

d

dt
Es(t) = (atJ

sζ, Jsζ) + 2(aJsζt, J
sζ) + ([∂t,Λ]Jsψ, Jsψ)(7.12)

+2(ΛJsψt, J
sψ) + 2(Jsψt, J

sψ)
≤ |a−1at|∞(aJsζ, Jsζ) +C(ΛJsψ, Jsψ)

−2(aJsb1 · ∇ζ, Jsζ) + 2(aJsΛψ, Jsζ) + 2(aJsf1, J
sζ)

−2(ΛJsb2 · ∇ψ, Jsψ)− 2(ΛJsaζ, Jsψ) + 2(ΛJsf2, J
sψ)

−2(Jsb2 · ∇ψ, Jsψ)− 2(Jsaζ, Jsψ) + 2(Jsf2, J
sψ).
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Lemma 7.7. Let s > n/2 + 1. Then, there exists a constant C = C(s) > 0 such that for any
j = 1, . . . , n we have

‖Λ1/2
0 [Js, ψ]∂jφ‖ ≤ C‖ψ‖s+1

(‖Λ1/2
0 φ‖s + ‖φ‖s

)
.

Proof. Put u := Λ1/2
0 [Js, ψ]∂jφ. Then, we have

û(ξ) =

√
δ−1|ξ| tanh(δ|ξ|)

(2π)n

∫
Rn

ψ̂(ξ − η)
(
(1 + |ξ|)s − (1 + |η|)s

)
iηjφ̂(η)dη

=
1

(2π)n

∫
Rn

ψ̂(ξ − η)
(
(1 + |ξ|)s − (1 + |η|)s

)
iηj

√
δ−1|η| tanh(δ|η|)φ̂(η)dη

+
1

(2π)n

∫
Rn

(√
δ−1|ξ| tanh(δ|ξ|) −

√
δ−1|η| tanh(δ|η|))

× ψ̂(ξ − η)
(
(1 + |ξ|)s − (1 + |η|)s

)
iηjφ̂(η)dη.

Therefore, by (5.1) we obtain

|û(ξ)| ≤ 1
(2π)n

∫
Rn

|ψ̂(ξ − η)|∣∣(1 + |ξ|)s − (1 + |η|)s
∣∣|η||̂Λ1/2

0 φ(η)|dη

+C
∫
R
|ξ − η||ψ̂(ξ − η)|∣∣(1 + |ξ|)s − (1 + |η|)s

∣∣|η||φ̂(η)|dη.
In view of the inequality

∣∣(1 + |ξ|)s − (1 + |η|)s
∣∣ ≤ C|ξ − η|((1 + |ξ − η|)s−1 + (1 + |η|)s−1

)
, the

above estimate and Hausdorff-Young’s inequality give the desired estimate. �

Lemma 7.8. Let s > n/2+1. In addition to Assumption 4.1 (A1), (7.7), and (7.9), we assume
that

‖(∇a, b1)‖s + ‖b2‖s+1 + sup
0≤xn+1≤1

‖∇Xθ(·, xn+1)‖s+1 ≤M.(7.13)

Then, there exists a constant C = C(M, c, s) > 0 such that for any smooth solution (ζ, ψ) of
(7.3) we have

Es(t) ≤ eCtEs(0) +
∫ t

0
eC(t−τ )

(‖f1(τ )‖2
s + ‖f2(τ )‖2

s + ‖Λ1/2
0 f2(τ )‖2

s

)
dτ.

Proof. We will evaluate each term in the right hand side of (7.12). It is easy to see that

|(aJsb1 · ∇ζ, Jsζ)| =
∣∣−1

2 ((∇ · ab1)Jsζ, Jsζ) + (a[Js, b1] · ∇ζ, Jsζ)
∣∣

≤ 1
2 |∇ · (ab1)|∞‖ζ‖2

s +C|a|∞‖b1‖s‖ζ‖2
s,

|(Jsb2 · ∇ψ, Jsψ)| = ∣∣−1
2 ((∇ · b2)Jsψ, Jsψ) + ([Js, b2] · ∇ψ, Jsψ)

∣∣ ≤ C‖b2‖s‖ψ‖s,

|(Jsaζ, Jsψ)| ≤ ‖aφ1‖s‖φ2‖s ≤ C(|a|∞ + ‖∇a‖s−1)‖φ1‖s‖φ2‖s.

By Lemma 7.2, we have

|(aJsΛψ, Jsζ) − (ΛJsaζ, Jsψ)|
= |([Js,Λ]ψ, aJsζ) − ([Js, a]ζ,ΛJsψ)|
≤ |a|∞‖ζ‖s‖[Js,Λ]ψ‖+

√
(ΛJsψ, Jsψ)

√
(Λ[J s, a]ζ, [Js, a]ζ).
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Here, by Lemmas 5.4 and 4.4

‖[Js,Λ]ψ‖2 ≤ C‖Λ1/2
0 ψ‖2

s = C(Λ0J
sψ, Jsψ) ≤ C(ΛJsψ, Jsψ),

by Lemmas 4.4 and 5.2√
(Λ[J s, a]ζ, [Js, a]ζ)| ≤ C‖Λ1/2

0 [Js, a]ζ‖ ≤ C‖[Js, a]ζ‖1 ≤ C‖∇a‖s‖ζ‖s,

so that we obtain

|(aJsΛψ, Jsζ) − (ΛJsaζ, Jsψ)| ≤ C(|a|∞ + ‖∇a‖s)‖ζ‖s

√
(ΛJsψ, Jsψ).

By using the same procedure of the derivation of (7.10) and Lemma 7.2 we have

|(ΛJ sb2 · ∇ψ, Jsψ)|
= |(Λ[J s, b2] · ∇ψ, Jsψ) + (Λb2 · ∇Jsψ, Jsψ)|
≤

√
(ΛJsψ, Jsψ)

√
(Λ[J s, b2] · ∇ψ, [Js, b2] · ∇ψ) +C

(‖ψ‖2
s + (ΛJsψ, Jsψ)

)
.

Here, by Lemmas 4.4 and 7.7 we get

(Λ[J s, b2] · ∇ψ, [Js, b2] · ∇ψ) ≤ C‖Λ1/2
0 [Js, b2] · ∇ψ‖2

≤ C‖b2‖2
s+1

(‖ψ‖2
s + (ΛJsψ, Jsψ)

)
.

By the above estimates and Lemma 7.2, it follows from (7.12) that

d

dt
Es(t) ≤ Es(t) + ‖f1(t)‖2

s + ‖f2(t)‖2
s + ‖Λ1/2

0 f2(t)‖2
s,

so that the desired energy estimate comes from Gronwall’s inequality. �

8 Reduction to a quasi-linear system

In this section we reduce the equations{
ηt − Λφ = 0,
φt + η + 1

2 |∇φ|2 − 1
2δ

2(1 + δ2|∇η|2)−1(Λφ+ ∇η · ∇φ)2 = 0
(8.1)

to a quasi-linear system of equations. By the same way as in (7.1), differentiating the second
equation in (8.1) with respect to xi we obtain

∂iφt + ∂iη + (∇φ− δ2Z∇η) · (∇∂iφ− δ2Z∇∂iη)− δ2Z∂iΛφ = 0.

Differentiating this with respect to xj and xk, we see that

∂ijkφt + ∂ijkη + v · {∇∂ijkφ− δ2
(
Z∇∂ijkη + (∂jkZ)∇∂iη + (∂jZ)∇∂kiη + (∂kZ)∇∂ijη

)}
+(∂jv) ·

{∇∂ikφ− δ2
(
Z∂ikη + (∂kZ)∇∂iη

)}
+ (∂kv) ·

{∇∂ijφ− δ2
(
Z∂ijη + (∂jZ)∇∂iη

)}
+

{∇∂jkφ− δ2
(
Z∇∂jkφ+ (∂jZ)∇∂kη + (∂kZ)∇∂jη + (∂jkZ)∇η)} · (∇∂iφ− δ2Z∇∂iη)

−δ2{(∂jZ)∂ikΛφ+ (∂kZ)∂ijΛφ+ (∂jkZ)∂iΛφ+ Z∂ijkΛφ
}

= 0.

Here, by Lemma 6.1 we have

∂ikΛ = ∂k

(
Λ(∂iφ− δ2Z∂iη)− (∇ · v)∂iη +DbΛ[∂ib]φ

) − (∂kv) · ∇∂iη − v · ∇∂ikη,
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so that

(∂ijkφ− δ2Z∂ijkη)t + v · ∇(∂ijkφ − δ2Z∂ijkη) + (1 + δ2Zt + δ2v · ∇Z)∂ijkη

= δ2(∂jkZ)v · ∇∂iη − (∂jv) ·
{(∇∂ikφ − δ2Z∇∂ikη

)− δ2(∂kZ)∇∂iη
}

−(∂kv) ·
{(∇∂ijφ− δ2Z∂ijη

) − δ2(∂jZ)∇∂iη
}

−(∇∂iφ − δ2Z∇∂iη) ·
{(∇∂jkφ− δ2Z∇∂jkη

)
−δ2((∂jZ)∇∂kη + (∂kZ)∇∂jη + (∂jkZ)∇η)} + δ2(∂jkZ)∂iΛφ

+δ2(∂jZ)
{
∂k

(
Λ(∂iφ− δ2Z∂iη)− (∇ · v)∂iη +DbΛ[∂ib]φ

)− (∂kv) · ∇∂iη
}

+δ2(∂kZ)
{
∂j

(
Λ(∂iφ− δ2Z∂iη)− (∇ · v)∂iη +DbΛ[∂ib]φ

)− (∂jv) · ∇∂iη
}
.

Now, we write u = (η, b) and denote by Λn the n-th Fréchet derivative of the Dirichlet-to-
Neumann map Λ with respect to u. Differentiating the first equation in (8.1) yields that

∂ijkΛφ = Λ∂ijkφ + Λ1[∂ijku]φ+ Λ1[∂iu]∂jkφ + Λ1[∂ju]∂kiφ + Λ1[∂ku]∂ijφ

+Λ1[∂iju]∂kφ+ Λ1[∂jku]∂iφ+ Λ1[∂kiu]∂jφ

+Λ2[∂iu, ∂ju]∂kφ + Λ2[∂ju, ∂ku]∂iφ+ Λ2[∂ku, ∂iu]∂jφ

+Λ2[∂iju, ∂ku]φ+ Λ2[∂jku, ∂iu]φ+ Λ2[∂kiu, ∂ju]φ+ Λ3[∂iu, ∂ju, ∂ku]φ.

Here, by Lemma 6.1 we have

Λ1[∂ijku]φ = −δ2Λ(Z∂ijkη)−∇ · (v∂ijkη) +DbΛ[∂ijkb]φ.

Therefore, introducing new functions ζijk and ψijk by

ζijk := ∂ijkη, ψijk := ∂ijkφ− δ2Z∂ijkη,

we obtain {
∂tζijk + v · ∇ζijk − Λψijk = f ijk

1 ,

∂tψijk + v · ∇ψijk + aζijk = f ijk
2 ,

(8.2)

where a = 1 + δ2Zt + δ2v · ∇Z and

f ijk
1 = −(∇ · v)ζijk +DbΛ[∂ijkb]φ+ Λ1[∂iu]∂jkφ+ Λ1[∂ju]∂kiφ+ Λ1[∂ku]∂ijφ

+Λ1[∂iju]∂kφ + Λ1[∂jku]∂iφ + Λ1[∂kiu]∂jφ

+Λ2[∂iu, ∂ju]∂kφ+ Λ2[∂ju, ∂ku]∂iφ+ Λ2[∂ku, ∂iu]∂jφ

+Λ2[∂iju, ∂ku]φ+ Λ2[∂jku, ∂iu]φ+ Λ2[∂kiu, ∂ju]φ+ Λ3[∂iu, ∂ju, ∂ku]φ,

f
ijk
2 = δ2(∂jkZ)v · ∇∂iη − (∂jv) ·

{(∇∂ikφ− δ2Z∇∂ikη
)− δ2(∂kZ)∇∂iη

}
−(∂kv) ·

{(∇∂ijφ− δ2Z∂ijη
)− δ2(∂jZ)∇∂iη

}
−(∇∂iφ− δ2Z∇∂iη) ·

{(∇∂jkφ− δ2Z∇∂jkη
)

−δ2((∂jZ)∇∂kη + (∂kZ)∇∂jη + (∂jkZ)∇η)} + δ2(∂jkZ)∂iΛφ
+δ2(∂jZ)

{
∂k

(
Λ(∂iφ− δ2Z∂iη)− (∇ · v)∂iη +DbΛ[∂ib]φ

)− (∂kv) · ∇∂iη
}

+δ2(∂kZ)
{
∂j

(
Λ(∂iφ− δ2Z∂iη)− (∇ · v)∂iη +DbΛ[∂ib]φ

)− (∂jv) · ∇∂iη
}
.

Setting ζ := (ζijk) and ψ := (ψijk), we can rewrite (8.2) as{
∂tζ + v · ∇ζ − Λψ = f1,

∂tψ + v · ∇ψ + aζ = f2,
(8.3)
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where f1 and f2 can be written symbolically as

f1 = −(∇ · v)ζ +DbΛ[∂3b]φ+ 3Λ1[∂u]∂2φ+ 3Λ1[∂2u]∂φ+ 3Λ2[∂u, ∂u]∂φ
+3Λ2[∂2u, ∂u]φ+ Λ3[∂u, ∂u, ∂u]φ,

f2 = δ2(∂2Z)v · ∇∂η − 2(∂v) · (ψ − δ2(∂Z)∇∂η)
−(∇∂φ− δ2Z∇∂η) · {ψ − δ2

(
2(∂Z)∇∂η + (∂2Z)∇η)} + δ2(∂2Z)∂Λφ

+2δ2(∂Z)
{
∂
(
Λv − (∇ · v)∂η+DbΛ[∂b]φ

)− (∂v) · ∇∂η}.
We proceed to give a uniform estimate of the coefficients v and a, and the remainder terms

f1 and f2.

Lemma 8.1. Let s > n/2. There exists a constant C = C(s) > 0 such that we have

‖Λ1/2
0 (φψ)‖s ≤ C(‖φ‖s‖Λ1/2

0 ψ‖s + ‖Λ1/2
0 φ‖s‖ψ‖s).

Proof. In view of the fact that
√
α tanhα is equivalent to α/

√
1 + α for α ≥ 0, we easily obtain√

(α+ β) tanh(α+ β) ≤ C
(√
α tanhα+

√
β tanhβ

)
for α, β ≥ 0. Therefore, for any ξ, η ∈ Rn

we have √
δ−1|ξ| tanh(δ|ξ|) ≤ C

(√
δ−1|ξ − η| tanh(δ|ξ − η|) +

√
δ−1|η| tanh(δ|η|)).

Put u := Λ1/2
0 (φψ). Then, we have

|û(ξ)| =
∣∣∣∣ 1
(2π)n

∫
Rn

√
δ−1|ξ| tanh(δ|ξ|)φ̂(ξ − η)ψ̂(η)dη

∣∣∣∣
≤ C

∫
Rn

(|̂Λ1/2
0 φ(ξ − η)||ψ̂(η)| + |φ̂(ξ − η)||̂Λ1/2

0 ψ(η)|)dη.
Therefore, Hausdorff-Young’s inequality gives the desired estimate. �

In the following we will use the notation ∂φ = (∂jφ), ∂2φ = (∂ijφ), ∂3φ = (∂ijkφ), etc.

Lemma 8.2. Let s > (n+ 1)/2, M, c1 > 0 and suppose that{
‖b‖s+3 ≤M, E ≡ ‖(η, φ)‖s+3 + ‖(∂3φ− δ2Z∂3η,Λ1/2

0 (∂3φ − δ2Z∂3η)
)‖s ≤M,

1 + η(x)− b(x) ≥ c1 for x ∈ Rn,
(8.4)

where ∂3φ− δ2Z∂3η =
(
∂ijkφ− δ2Z∂ijkη

)
. Then, there exist positive constants δ2 = δ2(M, c1, s)

and C = C(M, c1, s) such that for any δ ∈ (0, δ2] we have{
‖Z‖s+1 + δ1/2‖Z‖s+2 + δ‖Λ1/2

0 Z‖s+2 ≤ CE,

‖v‖s+2 + ‖Λ1/2
0 v‖s+2 ≤ CE.

Proof. By Lemma 4.5, for any δ ∈ (0, δ1] we can construct a diffeomorphism Θ satisfying the
Assumption 4.1 (A1)–(A3) and

‖Js+5/2∇Xθ‖L2(Ω0) + sup
0≤xn+1≤1

‖∇Xθ(·, xn+1)‖s+2 ≤ C.
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Therefore, by the definition (6.1) of (v, Z) and Lemmas 5.5 and 5.2 we easily obtain ‖(v, Z)‖s+1 ≤
CE. By Lemmas 6.4 and 5.2 we obtain δ1/2‖Z‖s+2 ≤ CE. Therefore,

‖v‖s+2 ≤ ‖v‖s + ‖∂2v‖s ≤ ‖v‖s + ‖∂3φ− δ2Z∂3η‖s + Cδ2‖Z‖s+2‖η‖s+2 ≤ CE.

It remains to evaluate ‖Λ1/2
0 v‖s+2 and δ‖Λ1/2

0 ∇Z‖s+1. By the definition of Z and Lemma 6.1,
we see that

∂jZ = −2δ2(∇η · ∇∂jη)(1 + δ2|∇η|2)−2(Λφ + ∇η · ∇φ)
+(1 + δ2|∇η|2)−1

(
Λ(∂jφ− δ2Z∂jη)−∇ · (v∂jη) +DbΛ[∂jb]φ + ∂j(∇η · ∇φ)

)
= (1 + δ2|∇η|2)−1

{
Λ(∂jφ− δ2Z∂jη)−∇ · (v∂jη)
− 2δ2Z∇η · ∇∂jη +DbΛ[∂jb]φ+ ∂j(∇η · ∇φ)

}
= (1 + δ2|∇η|2)−1

{
δ2|∇η|2∂jZ + Λ(∂jφ− δ2Z∂jη)
+DbΛ[∂jb]φ + ∇η · ∂jv − (∇ · v)∂jη

}
,

which implies the expression

∂jZ = Λ(∂jφ − δ2Z∂jη) +DbΛ[∂jb]φ+ ∇η · ∂jv − (∇ · v)∂jη.(8.5)

Hence, by Lemma 8.1 we obtain

δ‖Λ1/2
0 ∇Z‖s+1

≤ Cδ
(‖Λ1/2

0 Λv‖s+1 + ‖DbΛ[∇b]φ‖s+1 + ‖Λ1/2
0 ∇v‖s+1‖∇η‖s+1 + ‖∇v‖s+1‖Λ1/2

0 ∇η‖s+1).

Here, by Lemmas 5.2 and 6.4 δ‖Λ1/2
0 Λv‖s+1 ≤ δ1/2‖Λv‖s+3/2 ≤ C‖Λ1/2

0 v‖s+2, and by Lemmas

6.3 and 5.2 δ‖DbΛ[∇b]φ‖s+1 ≤ Cδ1/2‖∇b‖s+2‖Λ1/2
0 φ‖s+3/2 ≤ C‖b‖s+3‖φ‖s+2. Therefore, we get

δ‖Λ1/2
0 ∇Z‖s+1 ≤ C(‖Λ1/2

0 v‖s+2 + E).

Similarly, we see that

‖Λ1/2
0 v‖s+2 ≤ ‖Λ1/2

0 v‖s + ‖Λ1/2
0 ∂2v‖s

≤ C
(‖v‖s+1 + ‖Λ1/2

0 (∂3φ− δ2Z∂3φ)‖s

+δ2(‖Λ1/2
0 ∇Z‖s+1‖η‖s+2 + ‖Z‖s+2‖Λ1/2

0 η‖s+2)
)

≤ C(δ2‖Λ1/2
0 ∇Z‖s+1 + E).

These two estimates imply that if we take δ2 ∈ (0, δ1] sufficiently small, then for any δ ∈ (0, δ2]
we have δ‖Λ1/2

0 ∇Z‖s+1 + ‖Λ1/2
0 v‖s+2 ≤ CE. The proof is complete. �

Lemma 8.3. In addition to hypothesis of Lemma 8.2 we assume that ‖b‖s+9/2 ≤ M . Then,
there exists a constant C = C(M, c, s) > 0 such that we have

‖(f1, f2)‖s + ‖Λ1/2
0 f2‖s ≤ CE.

Proof. By Lemmas 6.2 and 5.2 we have ‖DbΛ[∂3b]φ‖s ≤ C‖b‖s+9/2‖φ‖s+2. By Lemmas 6.2
and 6.3 we see that

‖Λ1[∂u]∂2φ‖s ≤ ‖Λ1[∂u](∂2φ − δ2Z∂η‖s + δ2‖Λ1[∂u](Z∂2η)‖s

≤ C
(‖∂u‖s+3/2‖Λ1/2

0 (∂2φ− δ2Z∂2η)‖s+1 + δ3/2‖∂u‖s+1‖Λ1/2
0 (Z∂2η)‖s+1/2

)
≤ C‖u‖s+5/2

(‖Λ1/2
0 ψ‖s + ‖φ‖s+3 + δ‖Z‖s+1‖η‖s+3

)
.
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By Lemma 6.1 we have

Λ1[∂2u]∂φ = −δ2Λ(Z1∂
2η)−∇ · (v1∂

2η) +DbΛ[∂2b]∂φ,

where {
Z1 = (1 + δ2|∇η|2)−1(Λ∂φ+ ∇η · ∇∂φ),
v1 = ∇∂φ− δ2Z1∇η.

Hence, by Lemmas 5.5, 5.2, and 6.2 we obtain

‖Λ1[∂2u]∂φ‖s ≤ C(δ‖Z1∂
2η‖s+1 + ‖v1∂

2η‖s+1 + ‖∂2b‖s+3/2‖Λ1/2
0 ∂φ‖s+1)

≤ C(δ‖Λ∂φ‖s+1 + ‖φ‖s+3) ≤ C‖φ‖s+3.

We can directly evaluate Λ2[∂u, ∂u]∂φ and Λ3[∂u, ∂u, ∂u]φ by Lemma 6.2, and Λ2[∂2u, ∂u]φ
by Lemma 6.5. Combining the above estimates and those obtained in Lemma 8.2 yields the
estimate for f1. By the same way as in the proof of Lemma 8.2, we can obtain the estimate for
‖f2‖s. By Lemmas 8.1, 6.2–6.4 and 5.2, and the estimates obtained in Lemma 8.2, we see that

‖Λ1/2
0 f2‖s ≤ C

{
δ2‖Λ1/2

0 Z‖s+2 + ‖Λ1/2
0 v‖s+1 + ‖Λ1/2

0 ψ‖s + ‖Λ1/2
0 (∂2φ− δ2Z∂2η)‖s

+δ2
(‖Z‖s+2‖Λ1/2

0 Λφ‖s+1 + ‖Λ1/2
0 Λv‖s+1 + ‖Λ1/2

0 DbΛ[∂b]φ‖s+1

)}
≤ C

{
E + ‖∂2φ− δ2Z∂2η‖s+1

+δ3/2(‖Λφ‖s+3/2 + ‖Λv‖s+3/2 + ‖DbΛ[∂b]φ‖s+3/2

)}
≤ C

(
E + δ(‖Λ1/2

0 φ‖s+2 + ‖Λ1/2
0 v‖s+2 + ‖∂b‖s+5/2‖Λ1/2

0 φ‖s+2)
) ≤ CE.

The proof is complete. �

In the following lemma we consider the case where η and φ depends also on the time t.

Lemma 8.4. Under the hypothesis of Lemma 8.2, there exists a constant C = C(M, c, s) > 0
such that for any δ ∈ (0, δ2] we have{

δ‖Zt‖s+1 + ‖vt‖s+1 ≤ C‖(ηt, φt)‖s+2,

δ‖Ztt‖s + ‖vtt‖s ≤ C(‖ηtt‖s + δ‖ηtt‖s+1 + ‖φtt‖s+1 + ‖(ηt, φt)‖2
s+2).

Proof. By the definition (6.1) of (Z, v) we have

Zt = (1 + δ2|∇η|2)−1
(
Λφt +DηΛ[ηt]φ+ ∇ηt · ∇φ+ ∇η · ∇φt − 2δ2Z∇η · ∇ηt

)
,

vt = ∇φt − δ2(Z∇ηt + Zt∇η).

Therefore, by Lemmas 5.5, 6.3, and 8.2 we obtain the estimate for (Zt, vt). Similarly, in view of

Ztt = (1 + δ2|∇η|2)−1
(
Λφtt +DηΛ[ηtt]φ+ 2DηΛ[ηt]φt +D2

ηΛ[ηt, ηt]φ

+∇ηtt · ∇φ+ ∇η · ∇φtt + 2∇ηt · ∇φt − 4δ2Zt∇η · ∇ηt − 2δ2Z(∇η · ∇ηtt + |∇ηt|2)
)
,

vtt = ∇φtt − δ2(Ztt∇η + Z∇ηtt + 2Zt∇ηt),

we obtain the estimate for (Ztt, vtt). �
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9 Proof of the main theorems

In this section we will give a proof of Theorems 2.1 and 3.1. The existence of the solution for fixed
δ > 0 can be proved by using approximate equations and taking the limit. See [23, 21, 22, 13]
for details. We can also show the dependence of the solution on the initial data, that is, the
well-posedness of the initial value problem. Therefore, to show Theorem 2.1 it is sufficient to
derive a priori estimates of the smooth solution (ηδ, φδ) for a time interval [0, T ] independent of
δ.

Suppose that (ηδ, φδ) is the solution of (2.14) and (2.15) and satisfies⎧⎪⎨⎪⎩
E (t) ≡ ‖(ηδ(t), φδ(t))‖2

s+3 + ‖Λ1/2
0 (∂3φδ(t)− δ2Zδ∂3ηδ(t))‖2

s ≤ N1,

‖(ηδ(t), φδ(t))‖2
s+2 ≤ N2,

1 + ηδ(x, t) − b(x) > c0/2 for x ∈ Rn, 0 ≤ t ≤ T, 0 < δ ≤ δ0,

(9.1)

where Zδ is determined by (6.1) from (ηδ, φδ) and positive constantsN1, N2, T , and δ0 will be de-
termined later. In the following we simply write the constants depending only on (M0, N1, c0, s)
and (M0, N2, c0, s) by C1 and C2, respectively. By Lemmas 4.5 and 4.4, there exists a small
δ1 = δ1(M0, N2, c0, s) > 0 such that for any δ ∈ (0, δ1] and ϕ ∈ H1 we have

C−1
2 (Λϕ, ϕ) ≤ (Λ0ϕ, ϕ) ≤ C2(Λϕ, ϕ).(9.2)

By Lemmas 8.2 and 8.3, there exists a small δ2 = δ2(M0, N1, c0, s) ≤ δ1 such that we have{
‖Zδ‖s+1 + δ1/2‖Zδ‖s+2 + δ‖Λ1/2

0 Zδ‖s+2 + ‖vδ‖s+2 + ‖Λ1/2
0 vδ‖s+2 ≤ C1,

‖(f1, f2)‖2
s + ‖Λ1/2

0 f2‖2
s ≤ C1E for 0 ≤ t ≤ T, 0 < δ ≤ min{δ0, δ2}.

(9.3)

In view of

ηδ
t = Λφδ, ∂jη

δ
t = Λ(∂jφ

δ − δ2Zδ∂jη
δ) −∇ · (vδ∂jη

δ) +DbΛ[∂jb]φδ,

ηδ
tt = Λ(φt − δ2Zδηt) −∇ · (vδηt),
φδ

t = −ηδ − 1
2 |∇φδ|2 + 1

2δ
2(1 + δ2|∇ηδ|2)(Zδ)2,

φδ
tt = −ηδ

t −∇φδ · ∇φδ
t + δ4(∇ηδ · ∇ηδ

t )(Z
δ)2 + δ2(1 + δ2|∇ηδ|2)ZδZδ

t ,

in the same way as the proof of Lemma 8.2 we obtain

‖(ηδ
t (t), φ

δ
t(t))‖s+2 + ‖ηδ

tt(t)‖s + δ‖ηδ
tt(t)‖s+1 + ‖φδ

tt(t)‖s+1 ≤ C1(9.4)

for 0 ≤ t ≤ T and 0 ≤ δ ≤ min{δ2, δ0}. Therefore, by Lemma 8.4

δ(‖Zδ
t ‖s+1 + ‖Zδ

tt‖s) + ‖vδ
t ‖s+1 + ‖vδ

tt‖s ≤ C1.

Particularly, for aδ = 1 + δ2(Zδ
t + vδ · ∇Zδ) we have ‖∇aδ‖s + ‖aδ

t‖s ≤ C1 for 0 ≤ t ≤ T and
0 ≤ δ ≤ min{δ2, δ0}. Moreover, by the Sobolev inequality

δ|Zδ
t + vδ · ∇Zδ|∞ ≤ Cδ(‖Zδ

t ‖s + ‖vδ‖s‖Zδ‖s+1) ≤ C1.

Hence, setting δ3 = min{δ2, (2C1)−1} we obtain 1/2 ≤ aδ(x, t) ≤ 2 for x ∈ Rn, 0 ≤ t ≤ T , and
0 < δ ≤ min{δ3, δ0}. Now, we can apply the energy estimate obtained in Lemma 7.8 to the
quasi-linear system (8.3) and obtain

‖ζδ(t)‖2
s + ‖ψδ(t)‖2

s + ‖Λ1/2
0 ψδ(t)‖2

s

≤ C2eC1t
(‖ζδ(0)‖2

s + ‖ψδ(0)‖2
s + ‖Λ1/2

0 ψδ(0)‖2
s

)
+C1

∫ t

0
eC1(t−τ )E (τ )dτ,
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where we used (9.2). By (9.4) we easily obtain

‖(ηδ(t), φδ(t))‖2
s+2 ≤ eC1t‖(ηδ

0, φ
δ
0)‖2

s+2.

Therefore, we obtain

E (t) ≤ (C2 + C1δ)eC1t(‖ηδ
0‖s+3+1/2 + ‖φδ

0‖s+4) +C1

∫ t

0

eC1(t−τ )E (τ )dτ,

which together with Gronwall’s inequality yields that

E (t) ≤ (C2 + C1δ)eC1T (‖ηδ
0‖s+3+1/2 + ‖φδ

0‖s+4).

Moreover, we have |ηδ(t) − ηδ
0|∞ ≤ C

∫ t
0 ‖ηδ

t (τ )‖sdτ ≤ c0C1t. By setting N2 = 2‖(ηδ
0, φ

δ
0)‖2

s+2,
N1 = 4C2(‖ηδ

0‖s+3+1/2 + ‖φδ
0‖s+4), δ0 = min{δ3, C−1

1 C2}, and T = (2C1)−1(< C−1
1 log 2), we

see that the estimates in (9.1) holds for 0 ≤ t ≤ T and 0 < δ ≤ δ0. By (9.4) we also obtain a
uniform bound for ‖(ηδ

t (t), φ
δ
t(t))‖s+2. The proof of Theorem 2.1 is complete.

We proceed to prove Theorem 3.1. To this end, we first expand the Dirichlet-to-Neumann
map Λ(η, δ) with respect to δ2. The next lemma is a mathematically rigorous version of the
formal expansion (3.2).

Lemma 9.1. Let s > n/2. Under Assumption 4.1 (A1) and

‖Js+2∇Xθ‖L2(Ω0) + sup
0≤xn+1≤1

‖∇Xθ(·, xn+1)‖s+3/2 ≤M,

there exists a constant C = C(M, c, s) > 0 such that we have

‖Λφ+ ∇ · ((1 + η − b)∇φ)‖s ≤ Cδ2(‖Λ1/2
0 φ‖s+2 + ‖∇φ‖s+1).

Proof. Set Φ := φ� and Φ̃ := Φ ◦ Θ. Then, we have (4.6). Since ∂n+1Φ̃(·, 0) = 0 and
δ−2∂n+1Φ̃(·, 1) = Λφ, we see that

Λφ =
∫ 1

0
∂n+1

((
δ−2(1 + ∂n+1θn+1)−1 + p22

)
∂n+1Φ̃

)
dxn+1

= −
∫ 1

0

∇ · (((1 + ∂n+1θn+1)En + δ2P11)∇Φ̃
)
dxn+1 −

∫ 1

0

∇ · (p12∂n+1Φ̃)dxn+1,

where we used (5.9) and (5.10). By (4.2) we see that Φ̃(·, xn+1) = φ − ∫ 1
xn+1

∂n+1Φ̃(·, y)dy and∫ 1
0 (1 + ∂n+1θn+1)dxn+1 = 1 + η − b, so that

Λφ+ ∇ · ((1 + η − b)∇φ)
=

∫ 1

0

∇ ·
(
(1 + ∂n+1θn+1)

∫ 1

xn+1

∇∂n+1Φ̃(·, y)dy
)
dxn+1

−δ2
∫ 1

0

∇ · P11∇Φ̃dxn+1 −
∫ 1

0

∇ · (p12∂n+1Φ̃)dxn+1.

Therefore, we obtain

‖Λφ+ ∇ · ((1 + η − b)∇φ)‖s ≤ C(δ2‖Js+1∇Φ̃‖L2(Ω0) + ‖Js+1∂n+1Φ̃‖L2(Ω0)).
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On the other hand, it follows from (5.11) that

‖Js+1∂n+1Φ̃‖L2(Ω0) ≤ Cδ2‖Js+2∇XΦ̃‖L2(Ω0).

These estimates together with Lemmas 5.6 and 5.7 imply the desired estimate. �

By the uniform estimate obtained in Theorem 2.1, Lemma 9.1, and the standard compactness
argument, we see that as δ → +0

(ηδ, φδ) → (η0, φ0) weakly* in L∞(0, T ;Hs+3),

where (η0, φ0) is a unique solution of the shallow water equations (3.3) with initial conditions
(η0, φ0)|t=0 = (η0

0, φ
0
0). Next, we will show the strong convergence. It follows from (2.14) and

(3.3) that {
(ηδ − η0)t + ∇ · ((1 + ηδ − b)∇(φδ − φ0) + (ηδ − η0)∇φ0

)
= δ2f δ

3 ,

(φδ − φ0)t + (ηδ − η0) + 1
2∇(φδ + φ0) · ∇(φδ − φ0) = δ2f δ

4 ,
(9.5)

where

f δ
3 = δ−2

(
Λφδ + ∇ · ((1 + ηδ − b)∇φδ)

)
,

f δ
4 = 1

2(1 + δ2|∇ηδ|2)−1(Λφδ + ∇ηδ · ∇φδ)
(
= 1

2 (1 + δ2|∇ηδ|2)(Zδ)2
)
.

By (9.3) and Lemma 9.1, we easily have ‖f δ
3 (t)‖s+‖f δ

4 (t)‖s+1 ≤ C for 0 ≤ t ≤ T and 0 < δ ≤ δ0.
Taking these equations into account, we will consider the following system of linear equations{

ζt + ∇ · (a∇ψ + b1ζ) = f1,

ψt + ζ + b2 · ∇ψ = f2,
(9.6)

where a, b1 = (b11, . . . , b1n), b2 = (b21, . . . , b2n), f1, and f2 are given function of x and t.

Lemma 9.2. Let s > n/2 and suppose that

M−1 ≤ a(x, t) ≤M, ‖(at,∇a)‖s + ‖(b1, b2)‖s+1 ≤M.

Then, there exists a constant C = C(M, s) such that for any smooth solution (ζ, ψ) of (9.6) we
have

‖ζ(t)‖2
s + ‖ψ(t)‖2

s+1 ≤ CeCt(‖ζ(0)‖2
s + ‖ψ(0)‖2

s+1) +C

∫ t

0
eC(t−τ )(‖f1(τ )‖2

s + ‖f2(τ )‖2
s+1)dτ.

Proof. We define an energy function Es(t) by

Es(t) := ‖ζ(t)‖2
s + (a∇Jsψ(t),∇Jsψ(t)) + ‖ψ(t)‖2

s,

which is equivalent to ‖ζ(t)‖2
s + ‖ψ(t)‖2

s+1. Let (ζ, ψ) be a solution of (9.6). Then, we see that

d

dt
Es(t) = 2(Jsζt, J

sζ) + 2(a∇Jsψt,∇Jsψ) + (at∇Jsψ,∇Jsψ) + 2(Jsψt, J
sψ)

= −2(∇ · [Js, a]∇ψ, Jsζ) − 2(∇ · [Js, b1]ζ, Jsζ) + ((∇ · b1)Jsζ, Jsζ) + 2(Jsf1, J
sζ)

−2(a∇([Js, b2] · ∇ψ),∇Jsψ) + ((∇ · (ab2))∇Jsψ,∇Jsψ)

−2
n∑

j=1

(a(∂jb2) · ∇Jsψ, ∂jJ
sψ) + 2(a∇Jsf2,∇Jsψ) + (at∇Jsψ,∇Jsψ)

+2(Js(f2 − ζ − b2 · ∇ψ), Jsψ)
≤ CEs(t) + ‖f1(t)‖2

s + ‖f2(t)‖2
s+1.
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Therefore, the desired energy estimate comes from Gronwall’s inequality. �

Applying the energy estimate to (9.5) we obtain

‖ηδ(t) − η0(t)‖s + ‖φδ(t) − φ0(t)‖s+1 ≤ C(‖ηδ
0 − η0

0‖s + ‖φδ
0 − φ0

0‖s+1 + δ2)

for 0 ≤ t ≤ T and 0 < δ ≤ δ0 with a constant C independent of δ and t. This shows the strong
convergence of the solution (ηδ, φδ) in C([0, T ];Hs ×Hs+1). Since we have a uniform bound of
the solution in C([0, T ];Hs+3), by the interpolation inequality we obtain the strong convergence
of the solution in C([0, T ];Hs+3−ε) for each ε > 0. The latter part of the theorem comes from
directly the above estimate. The proof of Theorem 3.1 is complete.
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