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HYPERBOLIC FREE BOUNDARY PROBLEMS AND APPLICATIONS
TO WAVE-STRUCTURE INTERACTIONS

TATSUO IGUCHI AND DAVID LANNES

ABSTRACT. Motivated by a new kind of initial boundary value problem (IBVP) with a free
boundary arising in wave-structure interaction, we propose here a general approach to one-
dimensional IBVP as well as transmission problems. For general strictly hyperbolic 2 x 2
quasilinear hyperbolic systems, we derive new sharp linear estimates with refined dependence
on the source term and control on the traces of the solution at the boundary. These new
estimates are used to obtain sharp results for quasilinear IBVP and transmission problems, and
for fixed, moving, and free boundaries. In the latter case, two kinds of evolution equations are
considered. The first one is of “kinematic type” in the sense that the velocity of the interface
has the same regularity as the trace of the solution. Several applications that fall into this
category are considered: the interaction of waves with a lateral piston, and a new version of
the well-known stability of shocks (classical and undercompressive) that improves the results
of the general theory by taking advantage of the specificities of the one-dimensional case. We
also consider “fully nonlinear” evolution equations characterized by the fact that the velocity of
the interface is one derivative more singular than the trace of the solution. This configuration
is the most challenging; it is motivated by a free boundary problem arising in wave-structure
interaction, namely, the evolution of the contact line between a floating object and the water.
This problem is solved as an application of the general theory developed here.

1. INTRODUCTION

1.1. General setting. This article is devoted to a general analysis of free boundary and free
transmission hyperbolic problems in the one dimensional case. It is mainly motivated by a new
kind of free boundary problem arising in the study of wave-structure interactions and for which
the evolution of the free boundary is governed by a singular equation.

In order to explain the singular structure of this problem, let us recall some results on hyper-
bolic initial boundary value problems (a good reference on this subject is the book [BGSQT]).
Let us for instance consider a general quasilinear equation of the form

for t > 0 and = € R. It is well known that if the system is Friedrichs symmetrizable, i.e., if
there exists a positive definite matrix S(u) such that S(u)A(u) is symmetric, then the associ-
ated initial value problem is well-posed in C([0,T]; H*(R)) if s > d + 1/2 (with d = 1 is the
space dimension). The proof is based on the study of the linearized system and an iterative
scheme. If we consider the same equation on R, and impose a boundary condition on U at
x = 0, then the corresponding initial boundary value problem might not be well-posed, even
if the system is Friedrichs symmetrizable. Well-posedness is however ensured if there exists a
Kreiss symmetrizer which, as the Friedrichs symmetrizer, transforms the system into a symmet-
ric system, but with the additional property that the boundary condition for this symmetric
system is striclty dissipative (roughly speaking, this means that the trace of the solution at
the boundary is controled by the natural energy estimate). The construction of such a Kreiss
symmetrizer in extremely delicate and is usually done under the so-called uniform Lopatinskii
condition which can formally be derived as a stability condition for the normal mode solutions
of the linearized equations with frozen coefficients. Under such a condition (and additional
1
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compatibility conditions between the boundary and initial data), a unique solution can again
be constructed (though with many more technical issues) via estimates on the linearized system
and an iterative scheme. The typical result for quasilinear initial boundary value problems satis-
fying the aforementioned condition, as announced in and proved in [Mok87], is that the
equations are well-posed but with higher regularity requirements, and more importantly, with a
loss of half a derivative with respect to the initial and boundary data.

In some situation, the boundary of the domain on which the equations are cast depends on
time. In dimension d = 1 for instance, this means that instead of working on R, one works on
(z(t),+00), where the function z is either a known function (boundary in forced motion) or an
unknown function determined by an equation involving the solution U of the hyperbolic system,
typically,

i) = x(U,_,,)
for some smooth function x (we shall say that this kind of boundary evolution of “kinematic
type” because, as for kinematic boundary conditions, the regularity of & is the same as the
regularity of the solution at the boundary). Such problems are called free boundary hyperbolic
problems.

It is noteworthy that, up to a doubling of the dimension of the system of equations under
consideration, the considerations above can be extended to transmission problems, where two
possibly different hyperbolic systems are considered on the two different sides of an interface,
and where the boundary condition is replaced by a condition involving the traces of the solution
on both sides. One of the most famous transmission problems with a free boundary is the
stability of shocks. The problem consists in finding solutions to a quasilinear hyperbolic system
that are smooth on both sides of a moving interface and whose traces on the interface satisfy the
Rankine-Hugoniot condition. In dimension d = 1, this latter condition provides an evolution
equation for the interface of the same form as above.

Showing the well-posedness of free boundary hyperbolic problems requires new ingredients
and in particular,

e A diffeomorphism must be used to transform the problem into a boundary value problem
with a fixed boundary.

e A change of unknown must be introduced to study the linearized equation. Indeed, with
the standard linearization procedure, a derivative loss occurs due to the dependence of
the transformed problem on the diffeomorphism. This loss is removed by working with
so-called Alinhac’s good unknown.

The proof of the stability of multidimensional shocks is a celebrated achievement of Majda

Maj83al, [Maj83b| [Maj12], with improvements in [Mét01]. Since the proof relies on the theory
of initial boundary value problems, the same loss of half a derivative with respect to the initial

and boundary data is observed.

The free boundary problem that motivates this work is the evolution of the contact line
between a floating object and the water, in the situation where the motion of the waves is
assumed to be governed by the (hyperbolic) nonlinear shallow water equations, and in horizontal
dimension d = 1. In a simplified version, this problem can be reduced to a free boundary
hyperbolic problem, but with a more singular evolution equation for the free boundary, which
is of the form
where U; is a known function (for the contact line problem, this condition expresses the fact
that the surface elevation and the horizontal flux of the water are continuous across the contact
point). Time differentiating this condition yields an evolution equation for z of the form

&(t) = X((atU)‘:v:Q(t)7 (axU)|z:£(t)7 (8tUl)|z:£(t)7 (81"U1)‘z:g(t) ) )
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The standard procedure for free boundary hyperbolic problems descrived above does not work
with such a boundary equation, because there is obviously a loss of one derivative in the esti-
mates: the boundary condition is fully nonlinear. In order to handle this new difficulty without
using a Nash—Moser type scheme, we propose to work with a second order linearization and
introduce a second order Alinhac’s good unknown in order to cancel out the terms responsible
for the derivative losses.

Proving the well-posedness of this fully nonlinear free boundary hyperbolic problem also re-
quires sharp and new estimates for one-dimensional hyperbolic initial boundary values problems
that are of independent interest. One-dimensional hyperbolic boundary value problems are gen-
erally dealt with using the method of characteristics [LY85]. In the Sobolev setting, there is no
specific work dealing with the one-dimensional setting, and the general multidimensional results
are used, with their drawbacks: high regularity requirements and derivative loss with respect
to the boundary and initial data. These drawbacks however can easily be bypassed by taking
advantage of the specificities of the one-dimensional case, and in particular of the explicit con-
struction of the Kreiss symmetrizers. For this reason, we propose in this article a general study
of initial boundary value problems (as well as transmission problems) for fixed, moving, and
free boundaries. This study is based on the new sharp estimates developed to solve the fully
nonlinear free boundary problem mentioned above and fully exploits the specificities of the one-
dimensional case. In particular, the high regularity requirements and the derivative loss of the
general theory are removed. This is for instance of interest to solve the problem of transparent
conditions for hyperbolic systems. We use this general approach to solve several problems com-
ing from wave-structure interactions, as well as other problems such as conservation laws with
a discontinuous flux and the stability of one-dimensional standards and nonstandards shocks.
Another advantage of our approach is that it is much more elementary than the general results,
and does not require refined paradifferential calculus for instance.

1.2. Organization of the paper. Section [2 is devoted to the study of several kinds of free
boundary problems for 2 x 2 quasilinear (strictly) hyperbolic systems. The case of non homo-
geneous linear initial boundary value problems with variable coefficients and a fix boundary is
considered first in §211 The main focus is the derivation of a sharp estimate, given in Theo-
rem [I, which requires only a weak control in time of the source term (weaker than L'(0,7),
which is itself weaker than the standard L?(0,7) that can be found in the literature [BGS07])
and which provides a better control of the trace of the solution at the boundary. We first as-
sume the existence of a Kreiss symmertrizer and derive a priori weighted L?-estimates in §2.1.2
and higher order estimates in §2.1.41 In order to complete the proof of Theorem [ the main
step, performed in §2.T.5]is the explicit construction of a Kreiss symmetrizer under an explicit
Lopatinskii condition. In §2.2] these linear estimates are used to prove the well-posedness of
quasilinear systems; Theorem [2] provides a sharp result for such systems, which takes advantage
of the specifities of the one-dimensional case and improves the results provided by the general
(multi-dimensional) theorems. It can for instance be used to improve the existing results con-
cerning transparent boundary conditions for the nonlinear shallow water equations. In §2.3] we
go back to the analysis of linear initial boundary value problems, but this time on a moving
domain, i.e., in the case where the domain on which the equations are cast is (z(t),c0), with x
assumed here to be a known function. Using a diffeomorphism that maps R4 to (z(¢),00) for
all times, this problem is transformed into an initial boundary value problem with fix boundary,
but whose coefficients depend on the diffeomorphism. One could apply Theorem [ to this prob-
lem, but would lose an unecessary derivative in the dependence on the diffeomorphism. This
loss is avoided in Theorem [ by applying Theorem [ to the system satisfied by Alinhac’s good
unknown; in order to get a sharp result in terms of regularity requirements on the initial data,
the sharp dependence on the source terms proved in Theorem [lis necessary at this point. These
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linear estimates are then used in §2.4] to study quasilinear initial boundary value problems with
free boundary, i.e., where the function z(¢) is no longer assumed to be known, but satisfies an
evolution equation. The case of an evolution equation of “kinematic” type is considered first,
so that a diffeomorphism of “Lagrangian” type can be used and a solution constructed by an
iterative scheme based on the linear estimates of Theorem Bl The more complicated case of fully
nonlinear boundary conditions of the type mentioned above is addressed in §Z51 To handle this
problem, another kind of diffeomorphism must be used and a generalization of Alinhac’s good
unknown to the second order must be introduced to remove the loss of derivative induced by
the fully nonlinear boundary condition. A more general type of fully nonlinear condition is also
considered in §2.5.4] where a coupling with a system of ODEs is allowed.

As an illustration of the fact that the theory developed above for 2 x 2 initial boundary value
problems can be generalized to systems involving a higher number of equations, we propose in
Section Bl a rather detailed study of transmission problems. More precisely, we consider two 2 x 2
hyperbolic systems cast on both sides of an interface, and coupled through transmission condi-
tions at the interface. Such transmission problems can be transformed into 4 x 4 initial boundary
value problems to which the above theory can be adapted. Linear transmission problems are
first considered in §3.1], the main step being the construction of a Kreiss symmetrizer whose
nature depends on the number of characteristics pointing towards the interface; the nonlinear
case is then considered in §3.21 Moving interfaces are then treated in §3.3] for linear systems and
an application to free boundary transmission problems with “kinematic” boundary condition is

given in §3.41

A first application of the general theory described above to wave-structure interactions is given
in Section @l The problem consists in studying the interaction of waves in shallow water with
a lateral piston. The nonlinear shallow water equations are a quasilinear hyperbolic problem
that falls into the class studied above. The domain is a half-line delimited by a piston which
can move under the pressure force exerted by the wave. Its motion (and therefore the position
of the boundary) is given by the resolution of a second order ODE in time (Newton’s equation)
coupled with the nonlinear shallow water equations. The key step is to show that this evolution
equation is essentially of “kinematic” type so that the results of §2.4] can be applied.

In Section Bl we present the problem that motivated this work, namely, the description of the
evolution of the contact line between a floating body and the surface of the water in the shallow
water regime. We recall in §5.1] the derivation of the equations proposed in to describe
this problem and investigate first, in §5.2] the case of a fixed floating body. We show that the
problem can be reduced to an initial boundary value problem with free boundary governed by a
fully nonlinear equation, which allows us to use the results of §2.51 The extension to the case of
a floating object with a prescribed motion is then presented in §5.3] and the more complicated
case of a freely floating object is studied in §5.41 For this latter case, the evolution of the contact
point is more complicated because it is coupled with the three dimensional Newton equation for
the solid (on the vertical and horizontal coordinates of the center of mass and on the rotation
angle). Technical computations are postponed to Appendix [Al

We finally present in Section [0 several applications of our results on transmission problems.
The first one, considered in §6.1]is a general 2 x 2 system of conservation laws with a discon-
tinuous flux (a typical example is provided by the nonlinear shallow water equations over a
discontinuous topography). We then investigate in §6.2] the stability of one-dimensional shocks
(both classical and undercompressive); using our sharp one-dimensional results, we are able to
improve the results one would obtain by considering the one-dimensional case in the general
multi-dimensional theory of [Maj83al, [Maj83b, Maj12, [Mét01] for classical shocks and [Cou03]
for undercompressive shocks.
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1.3. General notations. - We write Q7 = (0,7) x R

- The notation 0 stands for either 0, or 0, so that df € L*(Qp) for instance, means 9, f €
LOO(QT) and agf S LOO(QT).

- We denote by - the R? scalar product and by (-, )2 the L?(R,) scalar product.

- If A is a vector or matrix, and X a functional space, we simply write A € X to express the
fact that all the elements of A belong to X.

- In order to define smooth solutions of hyperbolic systems in Qp = (0,7") x R, it is convenient
to introduce the space W™ (T') as

l
W™T) = () C9([0,T); H™ (Ry)),
j=0

with associated norm

[wllwm )y = sup [lu@)ll,, — with [[u(@)]], leaj Ol m (w2 )-

te[0,T

We have in particular H™"(Qr) c W™(T) € H™(Qr).
- In order to control the boundary regularity of the solution, it is convenient to use the norm

m 1 1
. 2 2
|u|x:0|m,t = (Z |(89jcu)z_o|§{mj(0,t)> = ( Z |(aau)z_o|%2(0,t)>

7=0 |a|<m

- We also use weighted norms with an exponential function e~ for v > 0 defined by

e : mo :
91220y = ( [ |g<t'>|2dt') ey = (ng&m)) |

=0
(@)l = e Mu@)l,, ullwm )y = sup [[Ju(®)[l,,
t€[0,T]
m 3
‘u\z:o’mmt = <Z‘ |z =0 Hm 90, t))
7=0
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2. HYPERBOLIC INITIAL BOUNDARY VALUE PROBLEMS WITH A FREE BOUNDARY

This section is devoted to the analysis of a general class of initial boundary value problems,
with a boundary that can be either fixed, in prescribed motion, or freely moving. We refer to
JT.3] for the notations used, and in particular for the definition of the functional spaces.

2.1. Variable coefficients linear 2 x 2 initial boundary value problems. The aim of
this section is to provide an existence theorem with sharp estimates for a general linear initial
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boundary value problem with variable coefficients of the following form,
O+ A(t,x)0pu + B(t,z)u = f(t,x) in Qr,
(1) u),_y = u™(x) on R,
v(t) - u,_, = g(t) on (0,7),
where u, u™, f, and v are R2-valued functions and g is real-valued function, while A and B take

their values in the space of 2 x 2 real-valued matrices. We also make the following assumption
on the hyperbolicity of the system and on the boundary condition.

Assumption 1. There exists ¢y > 0 such that the following assertions hold.
i. AcWh®(Qr), B € L>®(Qr), ve C([0,7)).
ii. For any (t,z) € Qr, the matriz A(t,z) has eigenvalues Ay (t,z) and —A_(t, x) satisfying
)\:I: (t, LE) > Co.
iii. (The uniform Kreiss—Lopatinskii condition.) Denoting by ey (t,z) a unit eigenvector
associated to the eigenvalue Ay (t,z) of A(t,x), for any t € [0,T] we have
¥(£,0) - e(£,0)] > co.

Example 1. A typical example of application is to consider the linearized shallow water equa-
tions with a boundary condition on the horizontal water fluxz q. This system has the form

atC + 8:/Dq = 07
Orq + 2%8xq + <gh —

2

)axgzo

I::m|lm

with initial and boundary conditions
(€ @)z = (CMg™)  and g, =9,

where g is the gravitational constant. This problem is of the form (@) with u = (¢,q)*, B =0,
f=0,v=(0,17, and

0 1
2) Alt,z) = Alu) = <gh_ 2o, ) .
o b2

The eigenvalues A+ and the corresponding unit eigenvectors e+ of A are given by Ay = /g@i%
ﬁ(l, +21)T, so that Assumption [ is satisfied provided that h,q € Whee(Qr),

[SallES]

and ey =

and

h(t, ) = co, Veh(t,z) + gt

x
h(t, x
with some positive constant ¢y independent of (t,x) € Q.

))260

Notation 1. In order to define an appropriate norm to the source term f(t,x) in (), it is
convenient to use the following norm to functions of t

r :
0

te[0,7T

T
| e roea);

0

o) = sup{

®

which is the norm of the dual space to L3°(0,T) N L%(O,T) equipped with the norm

" :
sup e~ (t)] + (v / e-%u)r?dt)

te[0,7

associated to the inner product of L?Y(O,T).
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It is easy to check that Sf;,t( f) is a nondecreasing function of ¢ > 0 for each fixed f and that
S5 (f) is monotone with respect to f in the sense that if 0 < f1(t) < fo(t) for t € [0,77], then
we have 7 ,(f1) < S7 ,(f2) for t € [0,T]. Moreover, we have

T T %
S p(f) < /0 e f(B)]dt and S$7T<f>§<§ /0 e‘”lf(t)lzdt> .

Remark 1. The first of these two inequalities implies an L*-type control through the Cauchy—
Schwarz inequality,

/OT e ﬁ(/oT 6‘2”t|f<t>|2dt>%,

but with a right-hand side involving a factor \/T. This is not the case for the L?-type control (with
respect to time) deduced from S;T( f) and this improvement allows to derive energy estimates
with an exponential growth in Theorems 1, [3, and[7 for instance.

The main result of this section is the following theorem (see §I.3]for the definition of .\ W™~ 1(T)
and of the various weighted norms used in the statement).

Theorem 1. Let m > 1 be an integer, T > 0, and assume that Assumption [l is satisfied for
some co > 0. Assume moreover that there are constants 0 < Ko < K such that

= 1Al oo (2 V| Lo 0,7y < Ko,
[Allw1.00@2)s 1Bl Lo (1), 1(OA, OB) [lwm—1 (1), [V [wm.ee 0.1y < K.

Then, for any data v'™ € H™(R,), g € H™(0,T), and f € H™ (1) satisfying the compatibility
conditions up to order m — 1 in the sense of Definition [0l below, there exists a unique solution
u € W™(T) to the initial boundary value problem (Il). Moreover, the following estimate holds
for any t € [0,T] and any v > C(K):

t :
Wl + (3 [ W)+l gl
< () (10O + i 0) + Wi bn1.30 + S30(10 V).

Particularly, we have

[IKZEC] i o LT P
t
< C(Kg)e® <||IU(0)|||m +19lam0,) + [flacolm—1.6 + /0 |||3tf(t’)|||m_1dt'>-

Remark 2. The estimates provided by the theorem are a refinement of classical estimates that
can be found in the extensive literature on initial boundary value problems (see for instance
[Sch6, MEEOT NIEET2]).

i.  With the exception of [MétQ01], these references provide a control of the source term in
L?-norm with respect to time; it turns out that such a control is not enough to handle “fully
nonlinear” boundary conditions as in Y23 below. In [Mét01], a more precise upper bound in-
volving only the L'-norm in time of f is provided, but only for constant coefficient symmetric
systems. The above theorem extends this result to variable coefficients systems and also refines
it since it provides a control in terms of S7,; instead of L'. This latter refinement is important
for instance to get low reqularity results — W?(T) instead of W3(T) — in Theorems [, [, [3, [,
and [8.

ii. The estimates of the theorem provide a control of [u|,_;|m.. and not only of u,_,|gm (0. -

iii. In addition to the classical L*°(0,T) upper bound on t — ||u(t)||,,, our estimates provide
a control of its L'(0,T)-norm which is uniform with respect to t (see the comments in Remark
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[l above) which is typical of weghted estimates BGSO7]. This term is essential in the
derivation of the higher-order estimates (see the proof of Proposition [3).

Remark 3. The assumption |v|ym.eo ) < K can be weakened into |v|y10oqpm—1.000,7) < K
and |0]"v| 20,7y < K (this is a particular case of Theorem [3 below with z =0).
2.1.1. Compatibility conditions. From the interior equations, denoting uy = 8fu, we have

up = —Adyu — Bu+ f.

More generally, differentiating the equation k-times with respect to t, we have a recursion relation
k

Ups1 =— ) (’;) ((0F 7 A)d,u; + (8 Byuj} + O f.

J=0

For a smooth solution u, u}fn = ug|,_, is therefore given inductively by ul = u™™ and

k
® == (§) (@) 0mult 4 (0B ) + @)

j=0
The boundary condition v(t) - u|, _, = g also implies that
Gf (V(t) 'u‘xzo) = afg.

On the edge {t = 0,2 = 0}, smooth enough solutions must therefore satisfy

k
g > (Y@t i, = @,

J=0

Definition 1. Let m > 1 be an integer. We say that the data v'™ € H™(R,), f € H™(Qr),
and g € H™(0,T) for the initial boundary value problem @) satisfy the compatibility condition
at order k if the {u;n};”:(] defined in @) satisfy [@). We also say that the data satisfy the
compatibility conditions up to order m — 1 if they satisfy the compatibility conditions at order k
fork=0,1,...,m — 1.

2.1.2. A priori L?-estimate. We prove here an L? a priori estimate using the following assump-
tion, which will be verified later as a consequence of Assumption [Tl

Assumption 2. There exists a symmetric matriz S(t,z) € Mo(R) such that for any (t,z) € Qp
S(t,x)A(t, x) is symmetric and the following conditions hold.

i. There exist constants ag, By > 0 such that for any (v,t,x) € R? x Qr we have
aglv* < vTS(tx)v < Bolvf.
ii. There exist constants oy, 31 > 0 such that for any (v,t) € R? x (0,T) we have
vTS(t,0)A(t, 0)v < —ay|v]? + Brlv(t) - v]2.
iii. There exists a constant By such that

1005 + 0:(SA) = 25B| 120y 12(07) < B2

Notation 2. We denote by Bi* < By any constant such that the inequality in i of the assumption
is satisfied at t = 0.

In the L? a priori estimate provided by the proposition, the control of the source term by
S5 ([ f()llz2) is crucial to get the refined higher order estimates of Theorem [l
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Proposition 1. Under Assumption[3, there are constants

C0:C<a—iil,a—iof) and ¢ _C<§_2 S_; Z_(l))

such that for any u € H'(Qr) solving (@), any t € [0,T], and any v > g—f}, the following inequality

holds.
@i, + (~ [ hute |||oydt) 20

< collu™|| 2 + c1(|9|L3(0,t) + S’y,t(”f(')”LQ))v
where we recall that S3 (|| f(-)||r2) is defined in Notation [I.

Proof. Multiplying the first equation of () by S and taking the L?(£%;) scalar product with
e~ 2"y, we get after integration by parts,

e (Su(t), u(t)) 2 + 27 /Ot e (Su,u)p2dt’ — /Ot e (S Au - w)|,_,dt’
= (S}, u") 2 + /0 t e (8,8 + 0,(SA) — 2SB)u + 25 f,u) r2dt’.
Using Assumption 2 with Notation 2], this yields
aollwf®), + Gaoy = 52 [ It +aslu ol 0

t
< AP + Bilaftaio +280 | 1A el

We evaluate the last term as

t
/O 2 £ ()] 12 u(t) ]| ot

: ;
< 80Ol { o + ([ Mot )"}
< 85,1 ol + 228715010 + 122 [ ate R o

and we deduce that
t
2 Y 2 aq 2
) MO+ 3 [ a0 + 2 o

5 n fo g fo g i
B+ g + 222 y,t(Hf(‘)HLZ)Huﬂwg(t)+2<a—(0)5y,t(”f(‘)HL2)

2
(e >uLz>)

5 b 1
Po ” 1n”L2 + — " !g\QL%(OJ) + 5”““%&&@( ) +4

6 .
for v > a—i Particularly, we have

1 2
Sl < g + 2y + 4 2305010 )

Plugging this into (Bl), we obtain the desired estimate. O
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2.1.3. Product and commutator estimates. To obtain higher order a priori estimates, we need to
use calculus inequalities. By the standard Sobolev imbedding theorem H!(R,) C L>®(R.), we
can easily obtain the following lemma.

Lemma 1. Let m > 1 be an integer. There exists a constant C' such that the following inequal-
ities hold'

i u@)o®)l,, < CUlu@)llzee @y + 10wl Dl @],

L AI[0% u@®)]o®)l 2@, ) < CUOW®)] ooy + 10UE) ] DNV E ]y & |l <,

i [|0[0% u®)]o(®)l 2@,y < CUOW®)] ooy ) + M1OUWE) | D [V@Ely ¥ o] <m—1,
iv. [|9[0%; u(t), v(@)]ll2ry) < CllOwW)l o [O0E) I 1—g i 2 <ol <m—1,
where [0%; u,v] = 0%(uv) — (0%u)v — u(0%v) is a symmetric commutator.
The following Moser-type inequality is a direct consequence of the above lemma.

Lemma 2. Let U be an open set in RN, F € C°(U), and F(0) =0. If m € N and u € W™ (T)
takes its value in a compact set I C U, then for any t € [0,T] we have

ICE @)l < CUlllyrims2.00 @) @)l
where [m /2] is the integer part of m/2.

We also need Moser-type inequalities for the trace at the boundary of the nonlinear terms, as
in the following lemma.

Lemma 3. Let U be an open set in RN, F € C®(U), and F(0) =0. If m € N and u = u(t, )
takes its value in a compact set I C U, then we have

i |F(U)\z:o|m,t < C(Zm\g[m/z] |(aau)|x:o|Loo(0,t))|U|x:o|m,t;
i [F(w)),_olm.e < Cl[wllyimzi o) |u),_olm.t»
il [0p(F(u))],—olmt < CUlullwm gy, l[ull Lo (20)) (1(0r10) g lm.e + [|0cullwm [, [m,e)
where [m/2] is the integer part of m/2.

Proof. The proof of i is straightforward and i together with the Sobolev imbedding theorem
H'(R,) C L>®(R,) yields ii. We will prove iii. The case m = 0 is obvious so that we assume
m > 1. In view of 0%0y(F(u)) = F'(u)0%*0u + [0%, F'(u)]0pu, we have

104 (F (1)}, lmt < Cl(B5t) ,_y bt + CllOeullwm-re @y D [0%F (w204
1<]a|<m
< Cl(0t),—g lm.t + C[[ullyyim/201 () |O¢utllwym (1) [0, [,
Since [m/2] + 1 < m, we obtain the desired inequality. O

Lemma 4. There exists an absolute constant C' such that for any v > 0 and any integer m > 1

we have
1

©6) e Mu(t)] + <’y /0 e—2vt"u(t’)]2dt’>2 < C(ju(0)] + 52 (|0ul)),

_1 _
(D) Jupglm—t < COTE O, + 77 oy, myee)

@) Mu@®lllp-ry + <7/0 IIIu(t")|||,27~L_1,yd75'>5 < C(Mu(0) -y + 5,10l o))

Proof. Integrating the identity

%(6_2”!%'5)!2) +29e” " u(t)? = 2e7 u(t) - dyu(t),
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we have

t t
e u(t)]? + 2y / e ()2t = |u(0)]? + 2 / e u(t) - Bpu(t)dt’.
0

0
The last term is evaluated as

¢ t
2 / e u(t') - u(t')dt' < 2 / e 2 Ju(t')][Opu(t')|dt
0 0

n 1
< 25;t(yatu\){ sup e " |u(t)] + <’y / e—Q'Yt’yu(t')Pdt')z}
0

t'€[0,t]
1 —29t' |, (1|2 b oo
<= sup e )P+ [ e u)?dt + 38 t(\(‘)tu])
t'€[0,t] 0
so that we obtain (@]). Similarly, we can show (). As a corollary of (6), we have
_1 _
Jul iz 0. < C(v™2[u(0)] + 7 Opul L2 0.0))-
Applying this inequality to (8O‘u)‘zzo, summing the resulting inequality over || < m — 1, and
using the Sobolev imbedding theorem H'(R.) C L°°(R,), we obtain (). O

2.1.4. Higher order a priori estimate. We can now state the generalization of Proposition [ to
higher order Sobolev spaces.

Proposition 2. Let m > 1 be an integer, T > 0, and assume that Assumption [D is satisfied.
Assume moreover that there are two constants 0 < Ky < K such that

¢0, 1, 1Al oo (r)s 1A | oo (1) V| Lo 0,7y < Ko,
B2 )| Allwe gy 1Bl oo (@27 (DA, OB) [lyym—1 ¢y, [V wrmeoe o7y < K,

where ¢o and ¢y are as in Proposition . Then, every solution u € H™ 1 (Qr) to the initial
boundary value problem () satisfies, for any t € [0,T] and any v > C(K),

Ol + ([ e mmym) b
< C(Ko) (w0, + 1glezm 0,0) + | flacolm—1,2, + S5 N0 f E)].1p—1))-
Proof. Let u,, = 0;"u. Then, u,, solves
Optu, + A(t, ) Optiy, + B(t, ), = fr, in Qp,
U,y = (0" u)|,_, on Ry,
v(t) - U,y = gm(t) on (0,7),

where

gm = 0{"g — [0, v] - vy,
Applying Proposition [I] we obtain

t 3
2
llem @)llo., + <’Y/0 !Hum(t’)!Ho,»ydt’> + lum), |22 0

< colu(O)lll,n, + €1 (gmlr2 0. + S5 el fm()llz2))-
On the other hand, it follows from Lemma [I] that

{Hfm(t)HL2 < 18 f @y + CE) [,

9mlr2 0,6 < 19lEm(0,6) + CUE) vy, g lm—1.4.t-

?ﬁZWW>Bw—WﬁM&w
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Therefore, we obtain

: !
(9) e (@)l + <7 /0 |||um<t’>|||3,ydt’) + ol 2201

< C(Eo) (w0, + gl 0,0y + S5, NOf Nl =1))
+ C(E) ([, lm—1.7 + S5, (u()]],) -

We proceed to control the other derivatives. Let k£ and [ be nonnegative integers satisfying
k+1<m— 1. Applying 070’ to the equation, we get

OO u 4 ADFOL = OFOL(f — Bu) — [0FL, Al0pu =: fr.

By using these two expressions of f;; together with Lemma [Il we see that

12 (0)ll 22 < C(Ko)ll[u(0)],y,,
10 fra (Bl L2 < 10 f ()l 1 + CEul@)lly,
’fk,ux:o\Lg(o,t) < \f|x:0’m—1mt + C(K)‘U\x:o‘m—lmt-

We have now the relation 9kt u = A=Y (fr; — OF 10k u) so that

[0F O u(t) ]| 2 < C(Ko) (05T Obu() |l 2 + |1 fra(t)]] 12),
|(OF 05 )|, o2 0.0) < C(KO)(\(5f+1aiu)|x:o\Lg(o,t) + [ frtlozol 22 0,0))-

Therefore,
: ;
ot ol + (v [ Noko el ar )+ 00k ), iz
1
2
< ot 1ot ekutoll, + IR |||oydt) O L2000

2
Al + (o A A3, ¢) " + Loz |-

Here, by Lemma [ we have

el + ( / et mowdt)

< C(Ifra(0)l 2 + 85, (10e froa () 2))
< C(Ko) (1wl + S5,:(10ef (lr—1)) + CE)SS c(ul)lll)-

By using the above inequality inductively, we obtain

¢ 3
2
@y + {7 [ M@yt )+ g, glme
Y 0 Y

< C(K ){H\U( Mz, + S5 MBS Hlll 1) + oo 17,0

@l + (7 [ i |||oydt) ool 1200
Ol (/mu Wy d )}

+ CE) ([, lm—1.0 + 53 ([u()ll,))-
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This together with (@) and Lemma @] implies

)l + ( /|||u |||mdt) Tyl

< C(Ko) (1w, + |91z 0.) + [flazolm—17.6 + S5 (MlOf (V1))
+ CE) ([t olm—1.0 + S5, (u@)l,)
< C(Ko) (1w, + lglmz0.) + [flazolm—1.6 + S5 e (N1Of (1))

1
_1 _ 2 _
+C(K){’Y 2|[[u(O)Il,y, + 1(7/0 !HU(t')H\fn,ydt'> + 1’u|z—0‘m,%t}‘

Therefore, by taking v sufficiently large compared to C'(K), we obtain the desired estimate (note
that this would not be possible without the second term of the left-hand side). O

2.1.5. Proof of Theorem[d. Under Assumption 2 the existence and uniqueness of a solution u €
W™(T) to (@) can be deduced from Proposition 2land the compatibility condition along classical
lines (see for instance [Mét01l Mét12l BGS07]). We still have to prove that the assumptions
made in the statement of Theorem [l imply that Assumption [2is satisfied. This is given by the
following lemma.

Lemma 5. Let ¢g > 0 be such that Assumption [1l is satisfied. There exist a symmetrizer
S € Wh*(Q7) and constants ag, oy and By, 1, B2 such that Assumption@is satisfied. Moreover,
we have

1 1
¢ < C<%, HA|t:0||L°°(R+)> and ¢ < C<%a HAHLOO(QT))a

where ¢g and ¢1 are as defined in Proposition [, and we also have

B
< (= Al 1Bl n))

This lemma is a simple consequence of the following proposition and its proof, which charac-
terizes the uniform Kreiss—Lopatinskii condition iii in Assumption [l

Proposition 3. Suppose that the condition ii in Assumption[d, |v(t)| > co, and |A(t,z)| < 1/co
hold for some positive constant cy. Then, the following four statements are all equivalent.

i. There exist a symmetrizer S € W1 (Qr) and positive constants oy and By such that
aold < S(t,z) < Bold and that for any v € R? satisfying v(t) - v =0 we have

v S(t,0)A(t,0)v < 0.

ii. There exist a symmetrizer S € WH*°(Qr) and positive constants og, By, a1, and By such
that apld < S(t,x) < Bold and that for any v € R? we have

v S(t,0)A(t,0)v < —ayv* + Bi|v(t) - v]?
iii. There exists a positive constant oy such that
|7 (t,0)v ()| > ao,

where w4 (t,x) is the eigenprojector associated to the eigenvalue £A1(t,z) of A(t,x).

iv. There exists a positive constant o such that
lv(t) - e4+(t,0)] = ao,

where ex(t,x) is the unit eigenvector associated to the eigenvalue =Xy (t,x) of A(t,x).
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Proof. We note that the eigenprojector w4 (¢, x) is given explicitly by
A(t,x) + A_(t,z)Id () = At ) = A (8 2)Id
Ap(t,z) + A_(t,z)’ U N (o) + A (t, )

and that under the assumption Ay (¢,z) and |74 (¢, z)| are bounded from above by a constant
depending on cy. We see that

(t) e (t,0)] = |v(t)" - ey (t,0)7] = (7 (t,0)v()") - e+ (t,0)| < |7 (t,0)v(t)"|
and that
‘ﬂ-—(tv O)V(t)l‘ = ’(V(t)J_ ’ e+(t7 O)J')T('_(t, O)e-i-(tv O)J_’ < ’77— (t7 O)HV(t) ’ e+(t7 0)‘

These imply the equivalence of iii and iv. Obviously, ii implies i.
We proceed to show that i implies iii. By the assumption we have

(v (H))TS(t,0)A(t, 0)v () <0,
which together with the spectral decomposition
A(t7 l‘) = /\+(t7 :E)ﬂ--l-(t’ l‘) - /\—(tv :E)ﬂ-— (t7 l‘)

Ty(t, x) =

implies
) ) TS(t,0)m (¢, 0)w(t)*

) (4 (£, 0)w (8) ) TS (t, 0) (£, 0)w(t) -
v()HTS (L, 0)m_(t,0)v(t)*

Iy (£, 0)w ()" || (¢, 0)v(t)*]
().

coo|m (¢, 0)w ()2 <Ay (¢, 0) (my (¢, 0w (t
_(A_< 0) = Ay (t

A (t,0)(m—(t,

SﬁoP\—( 0) — A4 (t

+ BoA—(t,0)|m—(t,

Y 0)
0)

)

o O

Particularly, we have

< <Bg|/\—(t’0) - >‘+(t’0)|2

coon|m4 (¢, 0)v(t)*[? o0

+ 280 A_(t, 0)> \m_(t,0)v(t) .

Therefore, in view of cg < |[v(t)] < |m_(t,0)v(t)*| + |71 (t,0)v(t)*| we obtain the desired in-
equality in the statement iii.

Finally, we will show that iii implies ii. This is the most important part of this proposition.
We want to show that for a suitably large M > 1, a symmetrizer S(t, z) satisfying the conditions
in the statement ii is provided by the formula

S(tv :E) = 7T+(t, :E)Tﬂ--l-(tv :E) + Mﬂ-—(tv :E)Tﬂ-—(tv :E)’

so that the first point of ii is satisfied with ap = 1 and By = M. By the definition of 71, we
compute indeed that
SA= /\+7TJTF7T+ — M>M_7tr_,
which is obviously symmetric. For the second point of ii, just remark that
vISAv = Ay v — MA_|xm_v|%
We need to show that this quantity is negative on the kernel Rv+ of the boundary condition.

Under the hypothesis we can assume that |v(t)| = 1 without loss of generality. Then, we see
that

—|r_v]? = —|(vt - v)r_vt + (v )T v)?

1
< —§|1/l T Yl R R R S U

1
= —5\7T—VL!2\U\2 + (Ir-v? + [r_v ) - of?
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and that
ol = (vt o)t + (v )]
< 2mevt Pt w2y - o)
< A Pof? + Al R+ v Pl - o2,
Therefore, we obtain
M Ay |mpvt]?
vISAv < — A_|m_vt? (7 - 4%%) v|?
DM (v + v P A (my P+ ) Y of?

12
Taking for instance M = 2 + 8supg,, f\‘—f I:f'; L|‘2, we easily obtain the desired inequality in the

statement 1ii. O

2.2. Application to quasilinear 2 x 2 initial boundary value problems. The aim of this
section is to use the results of the previous section to handle general quasilinear boundary value
problems of the form

ou + A(u)0yu+ B(t,x)u = f(t,x) in Qp,
(10) uj,_, = u"(x) on Ry,

<I>(t,u|z:()) =g(t) on (0,7),
where u, u'®, and f are R?-valued functions, g and ® are real-valued functions, while A and

B take their values in the space of 2 x 2 real-valued matrices. We also make the following
assumption on the hyperbolicity of the system and on the boundary condition.

Assumption 3. Let U be an open set in R?, which represents a phase space of u. The following
conditions hold.

i. AeC™U).
ii. For any u € U, the matriz A(u) has eigenvalues Ay (u) and —A_(u) satisfying
)\i(u) > 0.

iii. There exist a diffeomorphism © : U — OU) C R? and v € C([0,T)) such that for any
t €0,7] and any u € U we have

O(t,u) =v(t)-O(u) and |V, P(t,u)-es(u)| >0,
where e4(u) is a unit eigenvector associated to the eigenvalue Ay (u) of A(u).

Remark 4. In the case of a linear boundary condition as the we considered for Theorem [d, we
have ®(t,u) = v(t) - u so that by taking ©(u) = u, the third point of the assumption reduces to
v (t) - e4(u)| > 0.

Remark 5. If ®(t,u) = ®(u) is independent of t and if for some u® we have |V, ®(t,ul) -
e, (u')| > 0, then by the inverse function theorem and up to shrinking U to a sufficiently small

neighborhood of u°, the existence of a diffeomorphism © satisfying the properties of point iii is
automatic.

Example 2. For the nonlinear shallow water equations
Ou + A(u)O0pu =0

with w = (¢,q)" and A(u) as given by @), whose linear version has been considered in Example
[d, the first two points of the assumption are equivalent to

h> 0, \/ghi%>0 (with h = ho + C).
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The condition iii of the assumption depends of course on the boundary condition under consid-
eration. Let us consider here two important examples:

e Boundary condition on the horizontal water fluz, that is, q,_, = g. As seen in Example
[ and Remark[J, this corresponds to ®(t,u) = v -u with v = (0,1)", and the condition
iii of the assumption is satisfied.

e Boundary condition on the outgoing Riemann invariant, that is, 2(\/g_ — \/gTo) +
q/h = g. We then have ®(t,u) = ®(u) = 2(\/gh — \/gho) + q/h and we can take the
diffeomorphism defined on U = {(h,q) € R?; h > 0} by

O(h,q) = (2(v/gh — V/gho) + a/h,2(\/8h — \/gho) —a/h) ",

where 2(\/gh — \/gho) — q/h is the incoming Riemann invariant. Then, ®(u) = v-O(u)
with v = (1,0)T; moreover, we compute V,® = (1/h)(A~,1)T so that all the conditions
of the third point of the assumption are satisfied.

The main result is the following.

Theorem 2. Let m > 2 be an integer, B € L¥(Qr), 0B € W™ YT), and assume that
Assumption [3 is satisfied with © € C®U) and v € W™>(0,T). If u™ € H™(R,) takes its
values in a compact and convex set Ko C U and if the data v, f € H™(Qr), and g € H™(0,T)
satisfy the compatibility conditions up to order m — 1 in the sense of Definition [2 below, then
there exist Th € (0,T] and a unique solution v € W™ (Ty) to the initial boundary value problem
@Q). Moreover, the trace of u at the boundary x = 0 belongs to H™(0,T1) and |u|,_y|m1 is
finite.

Remark 6. There is a wide literature devoted to the analysis of quasilinear hyperbolic initial
boundary value problems. For the general multi-dimensional case, assuming that the uniform
Kreiss—Lopatinskii condition holds, the existence is obtained for m > (d + 1)/2 + 1, with a
loss of 1/2 derivative with respect to the boundary and initial data MokS&7] (see also
[BGSOT]). Ezistence for m > d/2+ 1 without loss of derivative is obtained under the additional
assumption that the system is Friedrichs symmetrizable [Sch80, but one cannot expect in
general an H™(0,Ty) estimate for the trace of the solution at the boundary. In the particular
one-dimensional case, a C' solution is constructed in [LYS5] using the method of characteristics;
more recently, in the Sobolev setting, it is shown in that the general procedure of
Mok8T] can be implemented in the particular case of the shallow water equations with transparent
boundary conditions, that is, a boundary data on the outgoing Riemann invariant (see Example
@ above): for data in H'/?, a solution is constructed in W3(T). As said in Ezample [3, our
result covers this situation and, by taking advantage of the specificities of the one-dimensional
case proves existence in W™ (T), with m > 2 and without loss of derivative, and provides an
H™(0,T1) trace estimate.

2.2.1. Compatibility conditions. From the interior equations, denoting uy = 8fu, we have
u; = —A(u)0pu — Bu + f.
More generally, by induction, we have
up = cx(u, B, f),

where ci(u, B, f) is a smooth function of u and of its space derivatives of order at most k, and
of the time and space derivatives of order lower than k — 1 of B and f. For a smooth solution
u to (), up' = ug|,_, is therefore given by

(11) uikn = c}gn(u,B,f),
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where ¢®(u, B, f) = cx(u, B, f) The boundary condition ®(t,u|,_,) = g also implies that
OF®(t,uy,_,) = 0ryg.
On the edge {t = 0,2 = 0}, smooth enough solutions must therefore satisfy

{<I>(0,um|x_0) = 0}_0 k=0,

lte=0*

W Va®(0,u, ) + 9,20, u", ) = (Big),_, k=1,

[t=0

and more generally, for any k& > 1,
(12) u‘ik‘n‘z:o . VU‘@(O, uin‘zzo) + Fk(ubngjgk_”x:o) = (8tkg)h:07

where Fk(uiln< j<k| _O) is a smooth function of its arguments that can be computed explicitly by
induction.
Definition 2. Let m > 1 be an integer. We say that the data u™ € H™(R,), f € H™(Qr),

and g € H™(0,T) for the initial boundary value problem (IQ)) satisfy the compatibility condition

at order k if the {u}n "o defined in (LI) satisfy (I2)). We also say that the data satisfy the
compatibility conditions up to order m — 1 if they satisfy the compatibility conditions at order k

fork=0,1,...,m—1.

2.2.2. Proof of Theorem [3. Without loss of generality, we can assume that ©(0) = 0. The first
step is to linearize the boundary condition. Under Assumption B this is possible by introducing
v =0(u), J) =dy(07'(v)), and A(v) = J(v)AO (w))J(v).

Then, u is a classical solution to (I0) if and only if v is a classical solution of
Oy + A¥(0)0pv + J(v) ' B(t, )07 (v) = J(v) "' f(t,z) in Qr,
(13) v),_, = O(u"(x)) on Ry,
v(t) - v,y = 9(t) on (0,7)

with v(t) as in AssumptionBl Let K1 be a compact and convex set in R? satisfying Ko € K1 € U.
Then, there exists a constant ¢y > 0 such that for any u € K; and any ¢ € [0, 7] we have

)‘i(u) > €0, |Vu(1>(t,u) . e+(u)| > co-

Note that there exists a constant 6y > 0 such that ||v — ©(u")||z~ < dp implies that u = 0 (v)
takes its values in ;. We therefore construct a solution v to (I3)) satisfying ||v(t) —O(u™)||pe <
dg for 0 <t < T7. The solution is classically constructed using the iterative scheme

ot AL 9" = 7 in Qo
(14) 0"t ) = O(u™(x)) on Ry,
v(t) 'v"+1|x:0 =g(t) on (0,7),
for all n € N and with
i (tz) = J™) Lt x) — J™) 1 B(t, )0 (v").
For the first iterate u’, we choose a function u® € H™+/2(R x R,) such that
(OFu”)|,_y

with ul" as defined in (). Such a choice ensures along a classical procedure [Mét01]
that the data (O(u™), f™, g) are compatible for the linear initial boundary value problem (I4))
in the sense of Definition [l Moreover, |[|[v™(0)]||,, is independent of n, and there exists therefore
Ky such that

=u® for k=0,1,...,m

Il

1 n n ny\—
ol ()l 145 (0™ [ 220 (027, 145 (0™) " Hl o 2,y < Ko,
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as long as v" satisfies [[v™(t) — O(u™)||L~ < & for 0 < ¢t < Ty. We prove now that for M large

enough and T} small enough, for any n € N we have

15) {uv"HWmm) + [0" gl < M,

o™ (t) — O(u™)| L= < 6 for 0<t<Ty.

The main tool to prove this assertion is to apply Theorem [ to (I4]). In order to do so, we
first need to check that Assumption [ is satisfied. The only non trivial point to check is the
third condition of this assumption. The fact that this is a consequence of Assumption [3] for the
original system (I0) is proved in the following lemma.

Lemma 6. For any v € OU), the matriz A*(v) has two eigenvalues :I:)\Et(v) and associated

eigenvectors eEt(fu) given by

Ne() =2e(07(v)  and e (v) = J(v) ex (07 (v)),
Moreover, denoting u = ©~1(v) we have
v(t) 'eﬁr(v) = V. ®(t,u) - ex(u).
Proof of the lemma. The first part of the lemma is straightforward. For the second point, just
notice that by definition of ©, one has V,®(t,u) = (0'(u))Tv(t). Since moreover ©'(u) =
(dy,(©7(v)))~t = J(v)~!, we have
Vu®(t,u) ey (u) = v(t) - J(v) e (07 (v))

and the result follows from the first point. O

We can therefore use Theorem [ to prove (IH) by induction. Since it is satisfied for n = 0
for a suitable M and T}, we just need to prove that it holds at rank n + 1 if it holds at rank n.
There is K = K (M) such that

1A* (™) lwr (- 1OCAH(0™)) [fggm—1 () < K.

Taking a greater K if necessary, we can assume also that ||B||p~(q,) and [[0B|wm-1(7) < K
and therefore that

IO, < CE)A+(FE,)-
It follows therefore from Theorem [I] that

”UH—HHW’"(TQ + ‘Un—i_llz:o’mfl
K)T n
< CE) ™ (14 lalmo iy + b+ CCE) [+ £Ol)at).
We also have
[0 () — O (™) Lo < (100" | Lo () Tt < ClV w2y T
Therefore, by choosing M large enough and 7} small enough the claim is proved. The con-

vergence is classically obtained by proving that {v"}, is a Cauchy sequence and, therefore,
convergent in L?, and that the limit is actually in W™(T). We omit the details.
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2.3. Variable coefficients 2 x 2 boundary value problems on moving domains. We now
turn to consider initial boundary value problems that are still cast on a half-line, but instead
of Ry, we now consider (z(t),+00), where the left boundary z(¢) is a time dependent function.
We consider first linear problems with variable coefficients. For the sake of simplicity and to
prepare the ground for applications to quasilinear systems, we consider a slightly less general
system of equations than in ({l): the variable coefficient matrix A(t, z) is of the form A(U (¢, z)).
More precisely,

o0wU +AU)0,U+BU =F in (z(t),00) for te(0,7),
(16) U\t:() = uin(x) on (07 00)7
v(t) - U, _,., = 9(t) on (0,7),

where without loss of generality we assumed x(0) = 0. The first thing to do is of course to
transform this initial boundary value problem on a moving domain into another one cast on
a fix domain, say, Ry. This is done through a diffecomorphism ¢(t,-) that maps at all times
Ry onto (z(t),00) and such that for any ¢, we have ¢(t,0) = z(t). Several choices are possible
for ¢ and shall be discussed later. At this point, we just assume that ¢ € C'(Q7) and that
©(0,2) = x. Composing the interior equation in (6] with the diffeomorphism ¢ to work on the
fix domain (0, 00), introducing the notations

u=Uoyp, u=Uogp, Ofu= (U)o, OFu = (0.U) o ¢,

so that, in particular,

1 Z?tcp
17 0f = —0y, Of =0y — =0,
( ) v Oz ! ' Opp
and writing B =Bo ¢ and f = F o ¢, we obtain the following equation for u
(18) Ofu+ A(w)oFu+ B(t,z)u = f(t, ).

The initial boundary value problem on a moving domain (6] can therefore be recast as an initial
boundary value problem on a fix domain

ou + A(u, 0p)0,u+ B(t,x)u = f(t,z) in Qp,

(19) uj,_y = u™(x) on Ry,
v(t) U,y = g(t) on (0,7,
with )
Alw,09) = 5 (A(w) = (Op)1d).

If we want to apply Theorem [0l to construct solutions to ([I9)), it is necessary to get some
information on the regularity of ¢, which is of course related to the properties of the boundary
coordinate z(t). A direct application of Theorem [lrequires that dp be in W™ (T") in order to get
solutions w in W™(T). Using Alinhac’s good unknown [AIi89], it is however possible to obtain
refined regularity estimates, as shown in the following theorem which requires only the following
assumption.

Assumption 4. We have u € Wh>*(Qr), x € C1([0,T]), z(0) = 0, and the diffeomorphism
is in CY(Qr). Moreover, there exists a constant co > 0 such that the following three conditions
hold.

i. There exists an open setU C R? such that A € C®(U) and that for any u € U, the matriz
A(u) has eigenvalues Ay (u) and —A_(u). Moreover, u takes its values in a compact set
Ko CU and for any (t,z) € Qp we have

Ar(u(t, z)) F Oop(t,x) > o and  Ax(u(t,z)) > co.
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ii. Denoting by ey (u) a unit eigenvector associated to the eigenvalue Ay (u) of A(u), for
any t € [0,T] we have
v(t) - e (u(t,0))] = co.
iii. The Jacobian of the diffeomorphism is uniformly bounded from below and from above,
that is, for any (t,x) € Qr we have

1
co < Opp(t,x) < .

Example 3. Considering as in Example [l the linearized shallow water equations, but this time
on a moving domain, Assumption [4] reduces to the conditions h,q € Whee(Qr) and

tw) 2 o VR + (B ) 2 v, VERT) = B >

with some positive constant cy independent of (t,x) € Qrp.

Theorem 3. Let m > 1 be an integer, T > 0, and assume that Assumption [] is satisfied for
some co > 0. Assume moreover that there are two constants 0 < Ky < K such that

= 10Ol 15 V| 0,195 10 ll Lo (20 [[All Lo (x00) < Ko

10D lwm—1 (), 100l zrm (7Y (0™ @), | Lo (0,7) < K,

/w100 (pynwm (1), 1 Bllwt.oo ()5 10B llwm—1(1ys [Vlw1.oqwm—1.000.1), 107 VL2 0.1) < K,
where @(t,x) = @(t,z) —x. Then, for any data u'™ € H™(R,), f € H™(Qr), and g € H™(0,T)
satisfying the compatibility conditions up to order m—1 in the sense of Definition[d, there exists

a unique solution u € W™(T) to ([I9). Moreover, the following estimate holds for any t € [0,T]
and any v > C(K):

t !
et + (v / \Hu(twfnﬁdﬂ) gl
< C(Ko) (1 +107 |20 )Iw(O)  + 19111520, + ool + ST Ol

Particularly, we have

) + 241, ot
t
< C(Ko)ec(K)t<(1 107"V 20,0 1w (O) I, + |9l 0.8) + [ flomolm—1. +/0 H\f(t')!Hmdt/)

2.3.1. Proof of Theorem[3. A direct estimate in W(T") for the solution of (I39]) through Theorem
@ is not possible because it would require that 8¢ € W~1(T) while, under the assumptions
made in the statement of the theorem, we only have 9%p € W”~2(T). The key step is to derive
a W™=1(T) estimate on u as well as on 9fu = dyu — (9yp)0F u.

Proposition 4. Under the assumptions of Theorem 3, there is a unique solution u € W™~1(T)
to () satisfying

t
@) @)l + lup_ylos < C<Ko>eC<K>t(mu<o>mo +lolinon + [ !Hf(t’)\Hodt’>
in the case m =1 and
@) @l + ley

t
< C(KQ)e SR (mu<o>wm_1 1glme o) + 1ol /0 \!@f(t')\!\m_gdt/)
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in the case m > 2. Moreover, 9fu € W™ Y(T) and we have

t !
(22)  NOFuDN o+ (7 [ OFUEIZ 1108 )+ 1OF )bt
0

< C(Ko) ((1+ 10" ] 20,0 lw(O)lll 1, + 191 0,6y + [ floco lm—176 + S50 (LF O] )
+ CE) (S5 (Ml Mllm) + [ty gl m-1.7.8)-

Proof of the proposition. Step 1. We first show that there exists a solution u € W™~1(T) to
([[9) satisfying 20)—(2I)). A direct application of Theorem [I] almost yields the result, but with
a constant C'(K') bigger than C(K) in the sense that it depends on [|0¢|lyy1. () instead of
10¢]| Lo (7). The improved estimate claimed in (20)- (1)) is made possible by the particular
structure of the matrix A(u,dy), as shown in the following lemma which improves Lemma [5l

Lemma 7. Suppose that Assumption [J is satisfied. Then, there exist a symmetrizer S €
Whe(Qr) and constants ag, oy and Bo, B, B2 such that Assumption[d is satisfied for the initial
boundary value problem ([I9). Moreover, we have

1 in
0 < O 1AW @, |@ecollime.)),

1
1 < O AW e 912l ) ).
where u'™ = U,y and ¢y and ¢1 are as defined in Proposition [, and

B2 1
_< — o0 o0 oo .
5 _C(CO,HA(M)HWL ©@r)> 10epl Lo s 1Bl L (QT)>

Proof of the lemma. The proof is an adaptation of the proof of Lemmall We still denote by 7+
the eigenprojector associated to the eigenvalues £ of A(u). As a symmetrizer for A(u, ), we
choose

S = (Opp) (mimy + Mrln_)
with sufficiently large M. Since we have
= [(820)0:S + 02(SA) = (0:0)02S — 2(020) SB| Lo (27)

where we denoted S = 7l'I7T+ + MrT7_, and since 71 depends only on A(u), we deduce the
desired results. O

Using Lemma [7 instead of Lemma [ in the proof of Theorem [l in the particular case of the
initial boundary value problem (I9), we get (20)—(21I)).

Step 2. We prove here an extra regularity on 9fu that implies the inequality stated in the
theorem. The main tool to get this extra regularity is Alinhac’s good unknown [Ali89], which
removes the loss of derivative due to the dependence on ¢ in the coefficients of the initial
boundary value problem ([9). Differentiating with respect to time the interior equation in (I9),
and writing @ = dwu, f = O, f, etc., we get
(23) O+ Alu, )0yt + A'(w) [W)0F u + M(u, p, ;u)0¢ + Bir = f — Bu
with

M(u, dp, B, u)dp = —((9:)Alu, dp) + (9)Id) O u.
Obviously, the term M (u, dp, 0,u)0¢ is responsible for the loss of one derivative, in the sense

that a control of ¢ in W™*(T) is required to control the W™(T) norm of u. This singular
dependence is removed by working with Alinhac’s good unknown 4% = % — ¢p0f u instead of 1.
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The notations f¢ and B? are defined similarly. The following lemma is due to Alinhac [ATi89)]
and can be checked by simple computations.

Lemma 8. With 4% = i — @93 u, the equation [23) can be rewritten under the form
0?4+ A(u, )9yt + A'(w)[iP)0fu + BiP = f¥ — B%u.
Remark 7. We use the notations & = dyu and u¥ = dfu to underline the fact that this is a
general procedure that works for any linearization operator, not only time differentiation.
We can use ([I8]) to write
ou = Alw)™\(f — Bu— 1),
so that the lemma yields
opu® + A(u, 00)0, 17 + Byu? = fo,
where
(24) {Bm = B- AW AW,
fay = 1?2 = AW[@f]A(u) ' f = (BY — A'(w)[@?]A(w) ' B)u.

Therefore, 4¥ = 0f u solves an interior equation similar to those considered in Theorem [Il Let
us now consider the initial and boundary conditions for @%. For the initial condition, we have

(@), = ufly with  uff) = (Bsu)),_y — ()|, D™
For the boundary condition, let us differentiate with respect to time the boundary condition in
(@) to obtain v(t) - dyu|,_, = Org — V'(t) - u|,_, or equivalently

v(t) - (¥ +205u)|,_, = Org — V(t) - uj, -

Using (I8]), this yields
v(t) - ((Id — a';A(g)_l)u“D)‘I:O =g — V' (t) - uy,_, — av(t) - A(u) " (f — Bu)

|ac:0'

It follows that 4% satisfies an initial boundary value problem of the form (II), namely,

o + A(g, a(p)agﬂl(p + B(l)iﬁp = f(l) in Qp,

(25) uf_, = ull on Ry,
vy (t) -4 _ = gq) on (0,7,

where f() and By are as in (24 and

(26) g1y = 0rg — (Ov) - Uj,_y — LV Alw)~H(f — BU)|F0=
vy = (Id — ZA(Q|1:O)_1)TV.

Concerning the boundary condition, we have the following lemma which shows that the initial

boundary value problem (25)) satisfies condition iii in Assumption [I

Lemma 9. Under Assumption[{], for any t € [0,T] we have
2

’V(l)(t) 'e+(2(t70))‘ > W&’O))

Proof. We see that
vy (1) - e (u(t,0)) = v(t) - (Id — (1) A(u(t, 0))~")ey (u(t,0))

_ (t)
= (1 - m)’/(ﬂ -eq(u(t,0)).

Since &(t) = (Opp)(t,0), this gives the desired inequality. O
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Here, we see that
vylLeor) < C(Ko),  [[1Bayllieor) < C(K)
and that in the case m > 2
10B ) lwm—2(7), [V(1) lwm—1.00 (0,7) < C(K).

Therefore, we can apply the result in Step 1 to obtain

t 3
@) @l + <7 / |||u@°<t’>|||il_1,ydt’) I
0
< C(KO)(H‘Q)’@(O)’Hm—l + ’9(1)‘H’$*1(0,t) + ‘f(l)\zzo‘m—Q,'y,t + S*,t(H\f(l)(-)!Hm_1)),

where the term |f(1y,_,|m—2,~,¢ is dropped in the case m = 1. Here, we have

|ac:0

12 (0)]I],,—1 < C(Ko)|l|w(0)]l],
Ly @Ol ez < CE) UL Ol + M1,
| ) amolm—2.7¢ £ CUE)(f|azolm—1,7 + | —plm—1,7.0)-

Concerning the term |g()|gm-1(0,), especially, the term (9;v) - u|,_, we need to estimate it
carefully, because we do not assume v € W™°(0,T). In the case m = 1, we estimate it directly
as

[(Oev) -y, ol 12(0,0) < CUE)|up,_ol12(0,)-

In the case m > 2, we see that

|(8tl/) . U‘z:0|ijn—1(07t) é |V|Wm71,oo(0’t) |U|x:0|m_1’7’t + |8;n7/|L2(07t) lSL[lg)} e_’)/t |’u,(t/’ 0)|
t'el0,t

< C(E)|u),_glm—14.t + ClO" |20, [[w(0) 1,15

where we used supy¢jo g e u(t’, 0)] < C(||u(0)|| g1 + yz ||, _ol1,7,t), Which is a simple conse-
quence of (6] in Lemmafbl In any case, we have

L9yl m—1 0.0y Sl9lEm 04) + Cl1O7" V] 220, |w(O) Il oy + CE) (U, _olm—1,6 + | floolm—1,t)-
¥ ( 7) ol

Therefore, by (27) we obtain

(O —— ( / i ()12, - mit) il

o=
< C(Ko) (1 + 107 v p200,0) w0, + 9] mm (0.))
+ CE) (| f1—olm—1t + g, _olm—1,0 + S5 FOlll) + S5 Ul ee1))

which shows 97w € W™=1(T).

Step 3. Finally, we improve the above inequality to show (22]). It follows directly from Lemma
that we have also the equation for ¥ of the form

O’ + A(u, 0p) 0,07 = f(l)

with
fay = 0F f — A'(w)[0f u|0Lu — OF (Bu).
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Moreover, we have (27)) with f() replaced by f(l). In order to give modified estimates for ]?(1)
and g(1), in the case of m > 2 we use the following expressions

0 fry = 870 f + (0%, 071(9f u + A(uw)dfu + Bu)
— 0%(A(W)[0f uOFu + OF (Bu)),
O gy = O (Org — (Ow) -y, _y) — &v - A(w) ' OF (f — Bu),_,
— [0F, v - A(w))(0f u + A )|,
where we used (I8]). These expressions together with Lemma [I] give
17y s < CENFOM + CEul)

9) 10,y F 10 g lm—2.7.0
< C(Ko) (107" V|20, w0l oy + [9]mm (0,6 + [fmglm—1,) + CU) |y, _olm—1.¢,

which yields (22]). The proof of Proposition @l is complete. O

In order to conclude the proof of Theorem [Bl, we need to show that Proposition @ provides a
control of u in W™(T).

Lemma 10. Under the assumptions of Theorem [3, if u solves ([I9), then we have

t 3
Ou@ 1+ (7 [ NOWE) o1t ) + 10,y lm-1.
0

SC()MMNH+MMM%W+$NMﬂMMJ
O - (/MW nmyw>+mwwﬂmﬂ}

e ([T r) e

Proof. We will use the same notation 4% = 9fu in the proof of Proposition @ Then, (I8]) can
be written as

(28) W+ A(w)0fu = f — Bu=: fy.
We first consider the case m = 1. Here, it holds that

| £f0(0)][z2 < C(Ko)l[w(0)]ll;,
10cfo()lz2 < 10cf ()| 2 + CUE)[[u(@®)l];,
| fola—ol22(0,6) < a0l r2(0,8) + CUE) vy, o |22 0,0)-
It follows from (28] that
Oy = (Bup) A(w) ™" (fo — i¥).

We also have

Therefore, we obtain

|Ou(t, )| < C(Ko)([u?(t, x)| + [ folt, z))).
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By Lemma Bl we have

Mool + (v [ 5t mo,ydt)

< C(Ilfo(0)llz2 + S5 1 (10e fo()llz2))
< C(Ko) ([llu(0)]l, + S5 106 O)llz2)) + CE)SS ((lu()l)-

Using the above inequalities, we get the desired estimate in the case m = 1.
We proceed to consider the case m > 2. Applying 0% with a multi-index « satisfying |a| <
m — 1 to ([28) and using the identity

(29) DL = 0°0Fu+ (970 0)0Fu + (Dnp) 0% Drp, OF 1]
with a symmetric commutator [0%; v, w] = 0% (vw) — (0“v)w — v(0%w), we obtain
A(w)020% + 0%u? = 0%(f — Bu) — [0%, A(u)]0%u
+ A(u)((9£0%9)0Fu + (Dup) "1 [0% Dup, B 1)
= fla-
Here, by Lemma [l it holds that
1f1,a(0)llz2 < C(Ko)l[w(0)],,,
10 f1,a@) |l L2 < C(E)0f (E)l,—y + CE) L+ 100l ) (@)1,
‘fl,a|x:0‘L2/(0,t) < ‘f|x:o’m—1mt + C(K)’ulx:o‘m—l,%t-
We also have
9% 0pu = (Do) A(w) " (fra — 0%i?),
which will be used to evaluate d,u. Applying 0 to the identity dyu = ¥ + (9;0)0% u and using
[9]) we obtain

D“Opu — 0“u¥ — (0y)(Dp0) "L 0%Opu
= (0% 0p)0Fu + [0%; 01, 05 u] — (Drp) (Duip) ™ (0% D) OF u + [0%; Duip, OF u])
=: fa.q-
Here, by Lemma [l it holds that
1f2,2(0)llz2 < C(Ko)[[u(O)]],,,
10 f2,0(8)l[ 2 < CUE) (L + (10 @) Il )l 5,
‘f2,a|x:0‘L3(0,t) < C(K)’ulx:o‘m—l,%t‘

We also have
9%0pu = 00 + (9y0) (Dpp) ~1 %Dyt + fo.as

which will be used to evaluate J,u. Therefore, we obtain
|0%0u(t, )| < C(Ko)(|0*?(t, )| + | fr,a(t 2)| + [ f2,a(t, 2)]),
so that

: :
10U cr + (3 [ O, 1) Oy
: :
< ORI Wlory + (7 [ N8N 1) 4105 o
: :
w5 (W5l + (v [ M50 ) " + e lizon) |

o] <m—1,j=1,2
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Here, by Lemma [ we see that

1f5.0) o + (7/0 |||JZ',oz(7f’)|||§,~,dt'>§

< C([1£5,0(0) 12 + S5 419 fj,a ()l 22))

< C(Ko) (w0, + S50 f (Mlp—1)) + CE)SS (X + 1100 Ol ()] )
and that

S5 (L1 Ol ) w7, )

1 [t L,
< <; /0 |||u<t'>|||il,vdt'> + /0 e 91t s, 2

1 ! N2 / % ¢ N2 ! %
=5 OlHu(t)H\m,»ydt + 10l mrm () O\HU(t)!Hm,ydt :

Summarizing the above inequalities, we obtain the desired estimate. O

Now, it follows from the estimates in Proposition dl and Lemma together with Lemma [
that

t 3
2
My + {7 [ M@yt ) e, olmee
0

1

t 3
< [ou@l -1 + <’v/0 \HGU(t/)\an_l,fydto +1(0u)),—olm—14

t ;
()l + (7 / |||u<t’>|||?n_1,wdt’> + 1ol
< C (o) (14 107w 20 1O 1, + 191 2520.0) + iacobmet7 + S2a 1107 O ll-1))

_1 t % _1 _
+C(K){7 2<’v /0 mu<t/>m$wdt/) A, + lruh_o\m,w,t}.

Therefore, by taking v sufficiently large compared to C'(K), we obtain the desired estimate in
Theorem [Bl The proof of Theorem [3is complete.

2.4. Application to free boundary problems with a boundary equation of “kine-
matic” type. We investigate here a general class of free boundary problems. We consider a
quasilinear hyperbolic system cast on a moving domain (z(t), co),

U+ AU)OzU =0 in  (z(t),00) for te (0,T),
(30) U,o = u'(z) on (z(0),00),
U, =) on (0,T)

and assume that the evolution of the boundary is governed by a nonlinear equation of the form

(31) T = X(U|z:;(t))

for some smooth function X. The set of equations [B0)-(3I) is a free boundary problem. In
the following, without loss of generality we assume z(0) = 0. Using as in §2.3] a diffeomorphism
o(t, ) : Ry — (z(t),00), and recalling the notations

1
w="Uog, a;g:wax, af:at—gt—iax,
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the free boundary problem (B0)—(31]) can therefore be recast as an initial boundary value problem
on a fixed domain,

o+ A(u, 0p)0,u=0 in Qp,

(32) u),_, = u"(v) on Ry,
v-up,_o = g(t) on (0,7),

where v € R? is a constant vector and
1

T

Au, 0p) = -— (A(u) — (Grp)1d),

(o))

complemented by the evolution equation
(33) &= X(up,_,), z(0) = 0.

As shown in §2.3] the regularity of ¢ plays an important role in the analysis of the initial
boundary value problem (B2]). It is therefore important to make an appropriate choice for the
diffecomorphism. For a boundary equation of the form (B3]) which is of “kinematic” type, a
“Lagrangian” diffeomorphism is appropriate. In particular, in the second point of the lemma,
the structure of ¢ allows the control of d,p in W™ (T') (which involves m + 1 derivatives of ¢)
by uw in W™(T') (which involves only m derivative of w).

Lemma 11. Let U be an open set in R? and X € C®(U). Suppose that u € WH>(Qr) takes
its values in a compact and convex set K1 CU and that

lwllwroe (pys 1 Twtee ey < K.
Then, x € C1([0,T]) can be defined by the ODE

{@(t) = X(u,_,(t)) for te(0,T),
z(0) = 0.

Moreover, there exists Ty € (0,T] depending on K such that the mapping ¢ : Qr — R defined by

(34) o(t,z) =+ /0 X(u(t',z))dt’

satisfies the following properties:

i. We have ¢(t,0) = x(t) and that for any t € [0,T1], ©(t,-) is a diffeomorphism mapping
Ry onto (z(t),00) and satisfying 3 < Oyp(t,x) < 2.

ii. If moreover m > 2, u € W™(T), and X (0) = 0, then we have, with ¢(t,x) = ¢(t,z) —x,
106(0) 11, 19l o< (27, ) < CIIu(0)]l],1,),
|8l (11ys 18ellwm (71 (0" ) ol oo 0,11y < C (eellwym (1) 16—y I,y ) -
We can now state the main result of this section, which holds under the following assumption.

Assumption 5. Let U be an open set in R?, which represents a phase space of u. The following
conditions hold.

i A,X € C®(U), X(0) = 0.
ii. For any u € U, the matriz A(u) has eigenvalues Ay (u) and —A_(u) satisfying
Ar(u) >0 and Agp(u) F X(u) > 0.

iii. Denoting by ey (u) a unit eigenvector associated to the eigenvalue Ay (u) of A(u), for
any uw € U we have
v e (w)] > 0.
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Theorem 4. Let m > 2 be an integer. Suppose that Assumption[d is satisfied. If u'™ € H™(R,)
takes its values in a compact and convex set Ko C U and if the data u™ and g € H™(0,T) satisfy
the compatibility conditions up to order m — 1 in the sense of Definition[3d below, then there exist
Ty € (0,T) and a unique solution (u,z) to B2)-@3) with uw € W™(Ty), x € H™1(0,T1), and ¢
given by Lemma [T1]

2.4.1. Compatibility conditions. For the free boundary problem, z(t) and ¢(t,z) are unknowns
so that the interior equation dyu + A(u, dp)0,u = 0 does not determine (afu)‘zzo directly in
terms of the initial data «™ and its derivatives. In order to determine them, we need to use
[B4)), or equivalently, the evolution equation d;p = X (u) at the same time.

Suppose that u is a smooth solution to ([B2)—(33]). We note that the interior equation in (32))
can be written as

O u~+ A(u)dfu =0

and that 97 and 97 commute. Therefore, denoting Up) = (0f)*u and using the above equation
inductively, we have

wiy = c1(u, 0%u, ..., (09) ),

where ¢; j is a smooth function of its arguments. In view of this, we define ul(‘,;) by
(35) ul(r,;) = ¢ p(u™, Q™ ... R ™)
for k =1,2,.... Using the relation 9; = 9/ + (9;p)0% inductively, we see that
k
OF =@ +@OFe)05+> . D o (@e) - (00 (0F )0 (07),

1=2 jo+ji+-+5=k
1<),

so that denoting uj, = 0fu and ¢}, = 0F ¢ we have

k
1
up =gy FeROFu+Y D o i i (09) UGy
1=2 jo+jit++u=Fk

1<j1,-01
Particularly, denoting ul = (0fu)|,_, and ¢}* = (9f¢),,_, we obtain
k
(36) i =y RO Y Y e 95 05U
1=2 jo+j1+-+ji=k
1<),

This implies that uikn is written in terms of goijn and G%uin for 0 < j < k. On the other hand,
differentiating the evolution equation 9, = X' (u) k-times with respect to ¢, we have

Vrt1 = ok (u, Opu, . .. ,Gfu),
where ¢y 1 is a smooth function of its arguments. Therefore, we get
(37) (pikn—i-l = c2,k(uin7 uifl’ e 7u}cn)‘
Using (B6]) and (B7) alternatively we can determine ui" and ¢". Now, the boundary condition
V- u|,_, = g implies that

k k
v- 0 Uypeo = 9y

On the edge {t = 0,2 = 0}, smooth enough solutions must therefore satisfy

(3%) voul, = (0F9)|-
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Definition 3. Let m > 1 be an integer. We say that the data v™ € H™(Ry) and g € H™(0,T)
for the initial boundary value problem [B2)-B3)) satisfy the compatibility condition at order k if
the {um ", defined by B)-B7) satisfy BY). We also say that the data satisfy the compatibility
condztzons up to order m — 1 if they satisfy the compatibility conditions at order k for k =
0,1,...,m— 1.

Remark 8. These compatibility conditions do not depend on the particular choice of the diffeo-
morphism ¢ such as B4)). The other choice of the diffeomorphism ¢ : Ry — (z(t),00) will give
the same conditions.

2.4.2. Proof of Theorem[J. Let K1 be a compact and convex set in R? satisfying Ko € K1 € U.
Then, there exists a constant ¢y > 0 such that for any u € Ky we have

Ax(u) >co,  Ax(u) FX(u) >co,  |u-ep(u)] > co.

We will construct the solution u with values in ;. Note that there exists a constant dy > 0
such that ||u — u™| =~ < &y implies u(z) € Ky for all # € R,. Therefore, it is sufficient to
construct the solution u satisfying ||u(t) —u'||p~ < dg for 0 < ¢ < Ty. The solution is classically
constructed using the iterative scheme

t
(39) o (t,x) = x—i—/ X (u”
0
and
Opu Tt + (u ,00M) 0, u" Tt =0 in Qp,
(40) "t = u™ (@) on Ry,
voutt L =g(t) on (0,7)

for all n € N. For the first iterate u° we choose a function u’ € H™HY/2(R x Ry) such that
(Oful),_, = ult for 0 < k <m w1th ul® defined by (BH) @7). Then, for the initial boundary

value problem (0) to the unknowns u"+1 the data (u™,g) satisfy the compatibility conditions
up to order m — 1 in the sense of Definition [Il Moreover, |||u™(0)]||,, is independent of n, and
there exists therefore K such that

1 n ~ n
g 1 O, WOPON 15 109" | 2w 2 ) 2], 1Az ) < Ko

as long as [[u” |10 (q,) < K and T1 € (0,77 sufficiently small depending on K. We prove now
that for M large enough and 7T} small enough, for any n € N we have

”U"HWm(Tl.) + U, _olma < M,
lu™(t) — u™||pe < o for 0<t<T.

We prove this assertion by induction. Since it is satisfied for n = 0 for a suitable M and T}, we
just need to prove that if holds at rank n + 1 if it holds at rank n. By the Sobolev imbedding
theorem and Lemma [Tl we have

||Un||W1»°°(QT1)a ||95n||Wm(T1), Hat(vanWm(Tl), |(8m90")\,:0|L°o(0,T1) < K(M).
It follows therefore from Theorem [3] that
[u" @) g () + [0 ol < C(K0)e“ M (1 + |glgm 0.17))-

Choosing M = 2C(Ko)(1 + |g|gm(0,1)), it is possible to choose 71 small enough to get that the
right-hand side is smaller than M. We also have ||u" () — u™|zo < Cllu™ |z T1 < o
for 0 <t < Tj. Therefore, the claim is proved.
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We proceed to show that the sequence of approximate solutions {(u", ¢™)},, converges to the
solution (u, ¢) to [B2)-B3) satisfying u € W™ (T}) and z = ¢,_, € H™"(0,71). We have

O (ut? —u ) + A(u™, 09™) 0 (u T2 — T = 7 in Qg
(un+2 o un-i—l) =0 on R-H

=0 on (0,7)

lt=0
V- (un+2 o un+1)|z:0
with

f' = —(AW 00" — A(u”, 09™)) dpu
It follows therefore from (2II) in Proposition Ml that

e (O] I [ T
t
< COD (") l-a+ [ oW € )

t
< c() /O O )l + 1OS ™o}

for 0 <t < Ty, where we used Lemma @ and the fact that (9fu™)
n. Here, we see that

10 f" lwym—2(7y) <

limo = ul" does not depend on

(M)[|(u™ = u™, " — o™ (" — ™)) lyym-1(7y)

C
C(M)”UnH - UnHWmﬂ(Tl)

IN

and that

O ™o lm—2,m < CD([[(u™ =, " = 0™ (" — ™)) w123
(@ =, " =" (" = "))l
< OM)(u = u™lygm-1(7yy + (W = U)o lm—111 )
where we used Lemma Bl Note that in the above inequalities, the quantity d;(¢" " — ") has
been controled in W™~1(T}); a similar control of 9, (¢" ™! — ¢™") is not possible and this is the

reason why it is important to have [|0;f(t)|||,,,_, rather than ||| f(¢)||,,_; in the right-hand side
of 2I) in Proposition @l Therefore, by taking T3 sufficiently small if necessary, we obtain

”un—i-2 _ (un+2 _ un—i—l)

W vy + | lomolm—1,13

1
< §(HU"Jrl — " lym-1(ry) + @ = U)o lme1,1)-

This together with an interpolation inequality Hu”%vlm(ﬂn) < Cllullwm—1 () llullwm (r,) shows

that {(u™, ")}, converges to (u,@) in W"=H(Ty) N WL (Qq,), so that (u, ) is a solution to
B2)-@33). Moreover, by standard compactness arguments we see that

lwllwm (1) + W), _olma < M.

The regularity and the uniqueness of the solution stated in the theorem is obtained by standard
arguments so we omit them. The proof of Theorem []is complete.

2.5. Application to free boundary problems with a fully nonlinear boundary equa-
tion. We now consider a 2 x 2 quasilinear hyperbolic system on a moving domain (z(t),00):

(41) U +AU)0zU =0 in  (z(t),00)
with a fully nonlinear boundary condition

(42) U=U; on z=z(t),
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where U; = Ui(t,z) is a given R?-valued function, whereas z(t) is unknown function. Compared
to the free boundary problem (B0)—-(BIl), the evolution equation of the boundary is implicitly
contained in the above boundary condition. In fact, differentiating the boundary condition
U(t,z(t)) = Ui(t,z(t)) with respect to ¢ and taking the Euclidean inner product of the resulting
equation with 0,U — 9, U;, we obtain

(43) & = x((0U)

where

e (OUR) ),
(0.U — 0, U;) - (U — 0,Uy)

|0, U — 0, U;|?
In view of this, a discontinuity of the spatial derivative 9,U on the free boundary is crucial to
the free boundary problem (4I])-(42]) whereas U itself is continuous. Compared to the boundary
equation (3I]) of kinematic type, (@3] does not depend on U itself but on its derivative OU.
Therefore, [{@I)-(3]) is more difficult than B0)-@I) in the previous subsection. We will use
again a diffeomorphism ¢(¢,-) : Ry — (z(¢),00) and put w = U o ¢ and u; = U; o ¢. Then, the
free boundary problem ([{I)—([2) is recast as a problem on the fixed domain:

Uy = Ui,y on (0,7).

X(@U, 8U1) = —

(44)

We impose the initial conditions of the form

(45) uj,_, = u™(z) on R, z(0) = 0.

We also note that the equation (@3] for the free boundary is then reduced to
(46) & = x((07u)|,» (07ui)|,)-

Assumption 6. Let U be an open set in R?, which represents a phase space of w.
i. AeC™U).
ii. There exists co > 0 such that for any uw € U, the matriz A(u) has eigenvalues A4+ (u) and
—A_(u) satisfying Ay (u) > cp.

As before, this condition ensures that the system is strictly hyperbolic. We denote by ey (u)
normalized eigenvectors associated to the eigenvalues +A; (u) of A(u). They are uniquely de-
termined up to a sign. Since both eigenvalues are simple, we have A1,e; € C°(U) under an
appropriate choice of the sign of e+. As mentioned above, a discontinuity of 9.U at the free
boundary is crucial so that we will work in a class of solutions satisfying

(47) [(0Fu — OFui)),_y| = o
for some positive constant ¢y. The interior equation in ([44]) can be written as
ou + A(u, 0p)dpu = 0,

where A(u, p) = (0,p) L (A(u)—(0;p)Id). The eigenvalues of this matrix are (9,p) ™1 (£A4 (u)—
Oyp), whereas the corresponding eigenvectors are ey (u) which does not depend on dp. In view
of i in Assumption 1, we also restrict a class of solution by

(48) M) Fop>co in (0,T) xRy

We note that the boundary equation ([@g)) is not of the kinematic type considered in §2.41so that
we need to use a different diffeomorphism from the one given by Lemmal[lll Let ¢ € C§°(R) be a
cut-off function such that ¥ (x) = 1 for |x| < 1 and = 0 for || > 2. We define the diffeomorphism
by

(49) eltx) =z +v(Z)a(),

|ac:0
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where € > 0 is a small parameter which will be determined later. As we will see below, under
this choice of the diffeomorphism, ([48]) would be satisfied if the solution satisfies

(50) At(up,_o) F& >2c0 on (0,7).

The following lemma shows that this choice of diffeomorphism behaves differently than the
Lagrangian diffeomorphism studied in Lemma [II} in particular, the latter has a better time
regularity, while the former has a better space regularity.

Lemma 12. Suppose that z € C'([0,T]) satisfies £(0) = 0 and |&|;207) < K. Then, there
exists Ty € (0,T] depending on € and K such that the mapping ¢ : Qr — R defined by (@9)
satisfies the following properties:

i. We have p(t,0) = z(t) and ¢(0,x) = x and for all0 <t < T4, o(t,-) is a diffeomorphism
mapping Ry onto (z(t),c0) and satisfying % < Opp(t,z) < 2.
ii. For any nonnegative integers k and [, we have

1005 3() | L1nzoe (i) < Cle, k)]0 (t)],

where ¢(t,x) = p(t,x) — x. Particularly, if moreover m > 2 and x € H™(0,T}), then
we have

1030} 1,1z 196 z=an) < Ce (Z\ ), Orwﬂrx\mm)

H‘:Z||Wm*1(T1), Hat(vp||Wm*1(T1)v |(am_ @)\x:o|L°°(O,T1) < 0(5)|§|Wm*17®ﬁHm(07T1)-

Theorem 5. Let m > 2 be an integer. Suppose that Assumption[d is satisfied. Ifu™ € H™(R,)
takes its values in a compact and convex set Ko C U and if the data u™ and Uy € W™>((0,T) x
(—0,9)) satisfy
i. )\i(uin‘xzo) Zngln >0,
ii. (Z?xun.l)h: — (0:Ui),_yo # 0, .
iii. ((Opu™),_y — (0Ui),_p_o)t - e (u™, ) #0,
where 2 = (Oyz),,_, will be determined by [E2) below, and the compatibility conditions up to

order m —1 in the sense of Definition[]] below, then there exist Ty € (0,T] and a unique solution
(u,z) to @) with u,dpu € W=HTy), z € H™(0,T}), and ¢ given by Lemma 12

Remark 9. Thanks to Proposition [d below, the condition iii in the theorem can be replaced by

i1 p - ex (ul),_,) £ 0,
where po is the unit vector satisfying po - (0;Us + A(U;)0.Us)),_,_, = 0. This unit vector g is
uniquely determined up to the sign under the other assumptions of the theorem.

2.5.1. Compatibility conditions. Suppose that u is a smooth solution to ([@4)—([@5]). We note that
97 and 0f commute. Denoting ugy) = (9f)*u and using the interior equation in (@) inductively,
we have

Uy = c1p(u,0fu,. .., (E?f)ku),
where ¢; 1 is a smooth function of its arguments. In view of this, we define u‘(I,;) by
(51) ul(’}i) = ¢ (U™, Q™ ... R ™)

for k =1,2,.... We proceed to express (Gfg)‘ .o in terms of the initial data. Differentiating the
boundary condition in (@) with respect to t, we have dfu = dFu; on x = 0. Using the relation
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Oy = Of + (0yp)0% inductively, we see that

k
OF =09+ 0f @08 +> Y. o (@0) - (0]10)(0F )0 (%),
=2 jo-i-lj<1'f“”'+jl:k
SJ15--9J1

so that denoting z; = afg we have

wy — (0F)Fus + 2 (0w — OFw;)

k
. .
3 D> @iy 2, (09) (g — (3F)Pw) =0 on @ =0.
1=2 jo+ji++j=k
1Sj17"'7jl
Decomposing this relation into the direction 0fu — 0fw; and its perpendicular direction, we
obtain
afu — 8}0%

k
= g g {0~ P

k
| |
P Y ey, e, (09) <u<jo>—<af>”ui>}
=2 jotjit++i=k
1<j1,...,01

‘:c:O

and

(Z?fu — 8fui)J' . {U(k) — (Of)kul

k

| |

P ey, (09) <u<jo>—<af>”ui>} _o,

=2 jo+j1++j=k |lz=o0
1<j1,...,71

respectively. In view of this, we define g}gn inductively by zl' = 0 and

&Duin — (890[]1)

in __ [t=0 in krr.
6 g (O
k
in inql 7, in j
+ Z Z Cljo,...iLjy * " Ly, a:c(u(]o) - (agOUi)h—o)}
1=2 jotj1++ji=k lz=0
1<j1,001
for k=1,2,....

Definition 4. Let m > 1 be an integer. We say that the data v'™ € H™(R,) and U; €
Wm((0,T) x (—=9,0)) for the initial boundary value problem ([A4)—[AD) satisfy the compatibility
condition at order k if {ul(?)};”:() and {gl(?)};n:_ol defined by (BI)-([B2) satisfy uin‘zzo = Ui|,_uo
in the case k =0 and

(amuin - (890Ui)\t:0)J_ ’ uir]; o (ani)‘tZO
(k)

k
. A .
+ Z Z Clvjov"'vjlgl(?ﬂ . 'zl(?l)ax(ul(?o) o (agoUi)h—o)} =0
1=2 jotj1+-+i=k lz=0
1<j1,...01

in the case k > 1. We say also that the data u™ and U; for ([@)-@D) satisfy the compatibility
conditions up to order m — 1 if they satisfy the compatibility conditions at order k for k =
0,1,...,m— 1.
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Roughly speaking, the definition of g}gn ensures the equality Ofu = OFu; at 2 = t = 0 in
the direction 9fu — 0% u;, whereas the compatibility conditions ensure it in the perpendicular
direction (9Fu — Ofu;)*.

We shall need to approximate u™ and U; by more regular data which satisfy higher order
compatibility conditions. Such an approximation is given by the following proposition.

Proposition 5. Let m and s be integers satisfying s > m > 2 and let Aec o®U). If u™ €
H™(Ry) takes its value in U and if the data u™ and Uy € W™((0,T) x (—6,0)) satisfy

(@Euin)'x:o - (aﬂﬂUi)h:x:o #0

and the compatibility conditions up to order m —1, then there exists {(uin’(”), Ui("))}n a sequence
of data such that (uinv("),Ui(")) € H5(Ry) x W>®((0,T) x (—8,0)) converges to (u™,U;) in
H™(R,) x B"Y([0,T] x [~6,6]) and satisfies the compatibility conditions up to order s — 1.

Proof. Once we fix Uj, the compatibility condition at order k is a nonlinear relation among
(&%uin)‘zzo for j = 0,1,...,k. We need to know the explicit dependence of the highest order
term (ai?uin)‘zzo

The compatibility conditions at order 0 and 1 are given by (uin)‘xzo = Ui|,_,_, and

((0u™)),_y = (02U ,_ug) ™ - (A(u™ ) (0u™)),_y + (OUR),_,_,) =0,
respectively. We proceed to consider the compatibility condition at order k in the case k > 2.
We will denote simply by LOT the terms containing ou™ for j = 0,1,...,k — 1, U;, and its
derivatives only, and not containing 0*u™™. Then, we have

ulhy = (—A@W™)*ou™ + LOT
and gzn = LOT for 0 < j < k — 1. Denoting ul* = (0fu)
Of + (0yp)0% inductively, we obtain
k

u = Z <]> ((Oep)i=0) Oqufy_jy + (854,0)‘t:08xum +LOT
=0

= ((0rp)i=0ld — A(u™))*Oku™ + (9f )

of the compatibility condition to show this proposition.

.o and using the relation J; =

‘t:oaxuin + LOT,
so that . . . . . .
upt o= (@P1d — A(u™|,_ ) (05u™),_, + 2} (Opu™)),_, + LOT.

We also have

(afui)‘t:z:O = giﬂn(ain)h:z:O + LOT
Therefore, the compatibility condition at order k is given by
(0ou™)}zg = (OaU1)ji )™ - {(@1d = Aw™),_))*(OFu™)),_, +LOT} = 0.

Once we obtain these expressions to the compatibility conditions, the approximation stated in
the proposition is obtained along classical lines. See for instance [RMey]. g

2.5.2. Reduction to a system with quasilinear boundary conditions. At first glance the boundary
condition in (44]) is nothing but a nonhomogeneous Dirichlet boundary condition. However,
ui(t,0) = Uj(t,z(t)) depends on the unknown free boundary z, which would be determined
from the unknown 0%u through the evolution equation ([@@l). Therefore, the boundary condition
represents implicitly a nonlinear relation between u and its derivatives, so that we will reduce
([#4) to a system with standard quasilinear boundary conditions to solve the initial value problem
([#4)-@3). Now, suppose that u is a solution to ([@4]). Putting

(53) ugy) = 0 0f u,



HYPERBOLIC FREE BOUNDARY PROBLEMS AND APPLICATIONS 35

we will derive a system for u and wu) with quasilinear boundary conditions together with a
quasilinear evolution equation for z. We note that 9/ and 97 commute. Applying differential
operators 9f and 95 to the first equation in (@), we can express 997 u and 97 97 in terms of
u(2), u, and 0¥u as
(54) 8208}0“ - (_A(u)_l)(u@) + A/(u)[afu]afu)7

O 0Fu = (—A(u) 1) (ug) + A' (W) [0 u)dFu) + (—A(u) ) A’ (u)[0F u]0F u.
Applying 99/ to the first equation in (@) and using the above relations, we obtain

afu(2) + A(u)0Fue) + B(u, 0%u)ug) = fo)(u, 0%u),

where

Blu, 0% u)uy = A'(w)lua))0fu — 24/ (w[0F u] Aw) uge),

fioy (1, 0°10) = 24/ () [0 ] A(w) ™ A'(w)[DF ulOF w — 24" (w) 6 u, O ],

This is an equation for u(;). We proceed to derive a boundary condition for u3) and an evolution
equation for x. Differentiating the boundary condition v = u; on x = 0 with respect to ¢ twice
and using the relation 8; = 97 + (9;p)0%, we have

YO u + 2207 0P u + 2202 0% u + £8P u = Y O us 4 2207 0P u; + 22020 u;s + £0Pu;
on z = 0, where we used 0yp(t,0) = &(t). This together with (54]) implies
(Id — QA(u)_l)%(g) + (05w — 0%wi) = g1(Z, u, 0¥u, 0¥ 0%u;),
where
g1(&, u, 0%u, 0¥ 9% u;)
= (22A(u) " — 2% (A(w) 1)) A (W) [0F u]0Lu + 22 A(u) T A (u) [0Fu)0F u
+ 0F 0 u; + 2207 0Fu; + 22020 us.
Decomposing this relation into the direction dfu — dFw; and its perpendicular direction, we
obtain an evolution equation for x as
& = x(Z,u, u(z), 0%u, 0%u;, 0¥0%u;),
where
X(&, u, ugg), 07u, 0%u;, 0¥ 0%u;)
(0Fu — OFws) - (91(&, u, 0¥u, 0¥ 0%u;) — (Id — @A(u)_1)2u(2))
|0F u — OF u;|?

and a boundary condition for u () as
V(2) " U2) = 9(2)>
where v(9) = v(9)(Z, u, OFu, OFu;) and 92) = 9(2) (&, u, 0¥u, 0u;, 090%u;) are defined by
V) = ((Id — 2A(u)~)*) T (97w — 9Fui) ),
92) = (0Fu — OFwi)* - g1 (&, u, 0%u, 09 0%u;).
Concerning a boundary condition for u, we would like to write it in the form v-u = g. However,
we have a high degree of freedom for choosing the vector v. From the point of view of the

maximal dissipativity in the sense of ii in Assumption 1, the most convenient choice is v = v,
where

(55)

v = e (u"(0)).
As before, we introduce the matrix A(u,d¢) = (0,00) 1 (A(u) — (0;p)Id). The eigenvalues of
this matrix are (9,¢) ! (£A+ (u) — 0sp), whereas the corresponding eigenvectors are e (u) which



36 TATSUO IGUCHI AND DAVID LANNES

does not depend on dp. Summarizing the above arguments, the initial value problem (@4])—(@3])
yields the following:

o+ A(u, 0p)0,u=0 in Qp,
(56) uj,_, = u"(x) on Ry,
on (0,7),

Z ’ ulz:() = Z ’ ui‘z:O

together with
Oru(z)y + A(u, 09)0ru(g) + Blu, 0%u)uggy = fio)(u,0%u) in  Qr,
(57) U(2)|mp = ul(‘;) (x) on Ry,
Y(2) " U@)la=0 T 9(2)lz=0 on (0,7),

and an equation for the evolution of the free boundary given by

{i = X (&, u, ugy, 0%u, 0%us, 09 0%u;), for te(0,7),
x(

(58) ) 0 o=0

where the initial data uig) and ml(rll) should be chosen appropriately for the equivalence of (B0)—
[B]) with (@)-E") and will be given in the next subsection.

Remark 10. i. In place of 37 0fu we can also use 0?u — (0?p)05u as u(2)- An advantage of
the choice ([B3)) is that the reduction and calculations become a little bit simpler.

ii. It is essential to differentiate (@) twice in time to derive a system with quasilinear bound-
ary conditions. For example, the first derivative u) = Ofu satisfies a boundary condition

(A(uw) ugy + 0fu) "t - (uqy — Ofus),_, =0 on (0,T),

=

which is still nonlinear in ).

Then, we will analyze maximal dissipativity for (57)) in the sense of ii in Assumption 1, that
is, the positivity of [v(9) e, |. The following proposition characterizes this condition algebraically
under the restrictions 7)) and (Eg]).

Proposition 6. Suppose that u together with x is a smooth solution to ([@4) satisfying 1) and
[@8) and that v(y) is defined by (BI). Then, there exists a unique unit vector = u(t) up to the
sign such that
- (E?ful + A(ul)(‘)ful)‘ = 0.
Moreover, we have the following identity on x = 0:
v - e |_(A+—i)3 |07 u — OF ] eyl
2) €4 = - Ty
® N [(@ld — Afw) Tl

x=0

This proposition implies that the positivity of |1/(2)-e, | is essentially equivalent to the positivity
of |- e4|, where p is a unique direction that the quantity 9fu + A(u)95 u is continuous across
the boundary.

Proof of the proposition. Differentiating the boundary condition in (44]) with respect to ¢ and
using the relation 9; = 97 + (9)0%, we have 0fu + £0Fu = 9 u; + 05 u; on x = 0. This and
the interior equation in (4] imply
(59) (21d — A(u))(0%u — O%u;) = Of ui + A(u;)0%u; on  x = 0.
Since the matrix Id — A(u) is invertible, it should hold that (9fw; + A(ui)dfus)|,_, # 0.
Therefore, the direction p is uniquely determined up to the sign as
(8 ui 4+ A(u)OF i), )"
|(0f ui + A(u;)0F u;)

=0

|x:0|
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By taking the Euclidean inner product of (B9]) with p, we have
(&1d — A(u,_,)) - (9Fu — 0w,
Since both vectors (zId — A(u|z:0))T,u and (0fu — 07wy,
(07 u — 0Fwi)|,_, |
Ifu — Ofw) =+ 20 (&Id — A(u,_ ) p
( oo = # ] — A )T E4 A=)
Particularly, we see on x = 0 that
V() - €+ = (0fu — O%u)t - (Id — £ A(u)1)2ey
— (1= 27080 — D)t ey
0Fu — OFui| .
. T — A -e.,
[T — Afw))T] &~ e

which gives the desired identity. O

=0.

|ac:0

_, are nonzero, so that

=£(1 - 2A;h)?

Once the diffeomorphism ¢ is given, we can regard the initial boundary value problems (G6l)
and (B7)) as the same type of problem considered in the previous sections. Concerning the
compatibility conditions for the problems, it is straightforward to show the following lemma.

Lemma 13. Suppose that the data u'™ € H™(R,) and U; € W™>((0,T)x (—6,6)) for the initial
boundary value problem ([@4)-{R) satisfy the compatibility conditions up to order m — 1 in the
sense of Definition[{| and that the diffeomorphism ¢ satisfies ©(0,x) = x and (0f)(0,0) = Z (k)
fork=1,...,m—1.
i. The compatibility conditions for the initial boundary value problem (B6l) are satisfied up
to order m — 1 in the sense of Definitions [IHZ. .
ii. Let m > 3. If the initial datum ugy s given by EI) and u satisfies ((8f)ku)|t:0 = Uy
fork =0,1,...,m — 1, then the compatibility conditions for the initial boundary value
problem (B0l are satisfied up to order m — 3 in the sense of Definition [

2.5.3. Proof of Theorem [J. We will first show the existence of the solution (u,wu(s),z) to the
reduced system (B6)—(E8]) with the diffeomorphism ¢ given by ([@9) under an additional assump-
tion m > 4. Then, we will show that (u,z) is in fact the solution to the original problem
[#2)—HE5). In order to reduce the condition on m, we will derive an a priori estimate for the
solution (u,z) under the weaker assumption m > 2, which together with Proposition [ and
standard approximation technique gives the result stated in the theorem.

Step 1. Let K; be a compact and convex set in R? satisfying Ky € K1 € U. We will construct
the solution (u,z) satisfying u(t,z) € Ky and {7)—@S]).

Lemma 14. Under the assumptions of Theorem [3, there exist positive constants cg,<g, 0o, Co,
and Ty € (0,T] such that if u(t,z) and x(t) satisfy

(60) lu(t) = w™ || poo, [(Dpult, ) — Bpu™)|, |, |z (t) — 25|, B (t) — 2] < bo,
and if p(t,x) is given by [@9) with the choice € = &g, then for 0 <t < Ty we have
i u(t,x) € Ky,

il. Ap(u(t,x)) > co, Ax(u(t,x)) F orp(t,z) > co,
iii. co < [(OFu(t, ) — OFui(t,-)),_o| < Co,
iv. |y (t) - eq(ult,-)),_,)| = co,
v. § <Ot z) <2, |0p(t,z)| < Co,
where v(y) is given by (B3).
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Proof. 1t follows from the assumptions that there exists ¢y > 0 such that
Ax(u™(x)) > 2co,  Ax(u™),_,) F 2 > 4co,
’(&cum)lz;o - (ain)‘t:z:O‘ > 2cy,
(1= ) H(@ot™), = @ali)jp_, ) - e (™), )| > 2e0.

In view of Oyp(t,x) = 1(£)0sx(t), we proceed to show that if we choose gy sufficiently small,
then we have

Ax(u(2)) F (&2l > 2¢o.
Since zb(%) = 0 for = > 2¢g, it is sufficient to show this inequality for 0 < z < 2¢g. In the case
" < 0 we easily get
Ay (U™ (2)) = P(E)a > Ay (u (@) > 200
In the case m > 0, for 0 < x < 2¢( we see that
A (u™(2)) = (Z)a > Ay (u(2)) — 2
= A () — 2 + (A (i (@) = A (u™), )
> deg — 220 || Vul™|| Lo max [V Ay (u)].
uelo
Therefore, if we choose g9 > 0 so small that eo|Vu™| e maxyueic, |Vt )| < co, then we

(u
obtain A, (u™(z)) — ¢(%)giln > 2¢g. Similarly, we can show A_ (u™(x)) + Y(E)z" = 2¢ so that
the claim is proved.

Now, we note that
(atz) t= ?
V(Q) (0) : e+(u‘t:x:0) =|1- ‘ ° ((a-’ﬂu)h:z:o - (8 U)|t 0,2=z(0 )J_ : e+(u‘t:x:0)7
PO, =
t=x=0

where we used (0:¢)|,_, = 1. Therefore, by taking dp and Tp sufficiently small, we obtain the
desired results. g

We will construct the solution (u, U(2), T z) as a limit of a Sequence of approximate solutions
{(u™, u(z) 2™)},,, which is defined as follows. We start to construct z* by

|
Mi
| &

k=0

Suppose that z" is given so that (afg")‘tzo = 2l for 0 < k < m — 1. We define the diffeomor-
phism ¢" by ([@9) with the choice ¢ = gy, where g9 > 0 is the constant stated in Lemma [I4]
Thanks to Theorem Bl together with Lemma [[3] using the standard arguments such as those in
the proof of Theorems 2] and dl we can define ™ on a maximal time interval [0,77") as a unique
solution to

O + (u ,0™M)0,u™ =0 in (0,7)) x Ry,
(61) u",_, = u"(z) on Ry,
vout, o = v on (0,77),

where ul' = Uj(t,2"(t)). Then, we see that ((8fn)ku")‘t o= u( )y for 0 <k <m —1. Therefore,

by Theorem [l together with Lemma [I3] again, we can define u(2) as a unique solution to
atu + A(u", 0" )&cu&) + B(u",@wnu")u&) = f(’é) in (0,77) x Ry,

Nle—o — (2)( ) on Ry,

) U)o = 90 (D) on (0,77),

(62) Uy
Yz
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where f(g) = f(g) (u™, 0¥"u™) and

Vi) = V(2) (0", ", anu",afnu?)|x:0,

g&) = g(2)(Ox", u", 0% u", 0¥ uf', 0¥ 0¥ ul')| -
Then, we define 2! as a unique solution to
(63) Ofx"tt =" for te(0,TM),

zn—i-l(o) =0, (8t£n+1)(0) - xilnv

where

X" = X (O™ u" ully, 07 U, 0 uf, 09" 0 uf) .
We see that (&fg”“)‘tzo = i for 0 < k < m — 1, so that we can define (2", u", u’é)) on a time
interval [0, 7}") for all n > 1.

We prove now that for My, Ms, M3 large enough and 7T} small enough independent of n, we
have T7 < T[* and
H‘unmwmfl(ﬂ) + ’un‘xzolm_lle < My,
(64) ey sy + ey by < Mo,
2™ grm(0,11) < M.

Here, by taking T7 = Ty (Mj, My, M3) small enough again we see that " (¢, z) and x"(t) satisfy
([60) so that we can apply Lemma[I4l In the following, we denote inessential constants indepen-
dent of My, My, Ms, and n by the same symbol C, which may change from line to line. By (64]),
without loss of generality we have also
(65) [t lwm=2.00 (7, ) Uy llwm=s.00 @z )5 0" [wm-1.00(07 ) < C
where " (t,x) = ¢"(t,x) — z = Y (£)x"(t), so that

€0
IB(u", 8" u™) || wm-2(1,), |8;n_2’/(nz)|L2(0,T1) < CM,
‘V&)’Wm—&oo(O’Tl) S C

Therefore, it follows from Lemmas [12] [[4], and Theorem [B] that

™ (O + 10", b1, < Ce“MMELpful s ),

ey Ol + [y bz < CeX (1107207

t
1y s + g bmse + [ 178 <t'>mm_zdt’)-

It is easy to see that
2" gm0,y < C(L+ X gm—200.1))-
Here, by (64)—([G3]) we have
(uf! | rm=1(0,71): 1 f {3y}, o Im—311 < C,
|90yl rm=2(0,71)5 | f {3y llwm—2(1) < C(1+ M),
X" zrm-2(0.17) < C(1 4 My + My).
Therefore, we obtain

el 7y + [, g lm—ry < CeCRARIT,

H‘u?g)mwmfz(ﬂ) + ’u?2)\z:0’m—27T1 < CeC(Ml,Ms)Tl(l + M),
2" gm0y < C(1 4 My + Ma).
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Putting My = 2C, My = 2C(1 + M,), and M3 = C(1 + My + M), and taking T} sufficiently
small, we see that (64]) holds for all n.
Once we have such uniform bounds for the approximate solutions, by considering the equations

for (u™tt —um, u?;)rl — u&),gnﬂ —a™) as in the proof of Theorem [l and by taking 77 sufficiently
small, we can show that {(u", u&),g”)}n converges to (u,u(),z) in (W™2(Ty) NWH°(Qr,)) x
Wm=3(Ty) x H™(0,Ty) and that the limit is a solution to (G6)-(G8). Moreover, by the standard

compactness and regularity arguments we see that the solution satisfies (u,u)) € wm=L(1) N
Wm_2(T1).

Step 2. We will show that the solution (u,u(s),z) to (B8)-(E8) constructed in Step 1 is in fact
a solution to ([@4)-([@5) and satisfies 07 07 u = (o). Putting w9y = 07 07 u, it is sufficient to show
that w) = u(z) and the boundary condition u = u; on z = 0.

Clearly, u satisfies (B4]) with u(g) replaced by w(y) so that wu(y) satisfies the same interior
equation in (B7) as u(z). The boundary condition in (B7)) for u) and the equation in (B8) for x
are equivalent to

(66) (Id — iA(u)_1)2u(2) + Z(0%u — 0%u;) = g1(&, u, 0%u, 0¥0%u;) on x =0.

On the other hand, by differentiating the boundary condition in (Bl for u twice with respect
to t we see that

0=w-0F(u—u),_,

= v ((Id = 2A(u) ") U + £(0fu — 0fw) — g1 (&, u, 0¥u, 0¥ 0% u;))

|ac:0

Eliminating Z from these two equations, we obtain
v (Id — 2A(u) ") () — u@))),_, = 0.
Therefore, vig) = () — u(g) is a solution to the initial boundary value problem

Orv() + Alu, 0)Dyv(2) + B(u, 0¥u)vpy =0 in - Q)
V@)le=o = 0 on Ry,
Y@) " V(@)]emo = 0 on (0,11),

where 79y = ((Id — 2A(u,_,)~")*) . Here, we have

Z

V() - e+ (u),_) = (1 - ﬁ)&r(umuzo) e (u),,),

u‘x:O
which is not zero. Therefore, we can apply Theorem Bl to the above problem and the uniqueness
of the solution gives v() = 0, that is, 49 = u(). Particularly, ([66) holds with u(z) replaced by
U()-

We proceed to show the boundary condition in ([@4). Putting w(t) = (u — u;)|,_, we have

W = ((Id — iA(U)_1)2a(2) + 2(0%u — 0%u;) — g1(&, u, 0% u, 8‘”8‘pui)) =0.

Iz:()
The compatibility conditions implies w),_, = w,_, = 0. Therefore, we obtain w = 0, that is,
u = wuj on x = 0, so that (u,z) is in fact the solution to ([#4)—(@5). Uniqueness of the solution
follows from that of the reduced problem (G6])—(G8).

Step 3. In order to reduce the condition m > 4 to m > 2, we will derive an a priori estimate
for the solution (u,z) under this weaker assumption. Although we will again use the reduced
system (B6)-(B8), we can now use the relation 9797 u = w(y) to obtain an additional regularity
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of u. We will prove again that for My, Ms, M3 large enough and 77 small enough, we have
|||U|||Wm71(T1) + ), _olm—1,m < M,

(67) lw@) llwm-2(7) + 1%@) a0 lm—2,11 < Ma,
|z 0,1) < M.

Let ¢ and Cj be the constants in Lemma [[4l By Lemma [I2] there exists K independent of
Ml, Mg, M3 such that

1 N m—1 )
ot Co, [10B(0),—as [0, MOl oy M2y (Ol —9s Y 12| < Ko
7=0

Moreover, by taking T} = T3 (M, Ma, M3) sufficiently small if necessary, we have
(68) V@) |10, |Zlwm=1.00(0,1), [|@lwm=1.0 (07, ) 1020l wm—1.00 (00, ) < C(Ko)-
Let K be a constant such that Kg, My, Mo, M3 < K.

Lemma 15. For a smooth solution (u,z) to [@4) with ¢ given by [A9) satisfying [@1) and (GS]),
we have

10z ullwm—1(1y), [llwm=1.00 g, )5 (U], —p lm,y < C(K).
Proof. We begin to evaluate |||0u(t)]]|,,_;- In view of the identities
) 02 = (00?0207 u + (P2)0F
010pu = (0p0){0F 05 u + (04p) 0% 05 u + (0% Opp) 0% u},
we see that
(70) 102wl oy < NOZwE s + OBzt ps + |05 () s
< C(Ko) (10 07 w(®)lly—y + NOF OFu(®)y—g + M)l )
We note that u satisfies (B54)). In the case m > 3, by Lemmas [[H2] we have
10205 w(t)l—o + 10F OF (O -z < CUIE) o) N2y Dl + 107l —s):
which together with (Z0) implies [|0u(t)]],,_; < C(K). In the case m = 2, by using the Sobolev
imbedding theorem ||u||p~ < \/§||u||1L/22||8gcu||2/22 we have
10707 u(t)l| 2 + 10f OF u(t)l| 2 < C(Ko)(lue)(t)llz2 + 10u(t)]| 2]l Ozu(t)]| L)
3/2 1/2
< C(Ko)(lu) ()2 + @ 72 102w 1),
which together with (0] implies
2:u(@)lll, < C(Ko)([lue)®)llz2 + llu@)lll, + lu®]lF) < C(K).

Therefore, in any case we have ||0,u(t)||,,—; < C(K), which together with the Sobolev imbed-
ding theorem yields

1/2

el gy < Cllulligos g 0l g2 1 7y, < CUE).

We proceed to evaluate [u|, |, In view of (69) and the identity
OFu = u) + (079)08u + 2(0yp)0f Ofu + (D)2 02w,
we see that
|u|x:0|m7t < |(at2u)\x:o|m—2,t + |(8ta:vu)|x:o|m—2,t + |(8£%u)‘x:0|m—27t + |u|x:0|m—1,t
< C(Ko) ([tz)),olm—2.t + 1), o lm—1
+1(070) o lm—2,t|0wull Lo () + 1(OFOFU) |, _q 2.t + [(OF OF)|, o lm—2.t)-
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Here, we have [(07¢),_ylm-2,¢ < C|z|gm(04). Noting again that u satisfies (54)) and using Lemma
we have
(0507 )|, lm—2,¢ + [(0f 0Fu)|,_olm—2.4 < CUK)([u(),—olm—2s +1) < C(K).
Therefore, we obtain |u|,_|m,r < C(K). O
Thanks of this lemma, by taking 77 sufficiently small we have (60]) and
[ullwm-2.000q,) < C(Ko).

Without loss of generality we can also assume ||Uj||yym.co((0,1)x (—5,5)) < Ko. Since u is a solution
to (B6l), we can apply Theorem Bl with m replaced by m — 1 to u and obtain

()l + 1], o 1,6 < C(EKo)e TN WO —y + Jutil rrm1(0.9)
< C(Ko)e“M N ([u(0)1,—y + 1)

We note that u(y) is a solution to (57) and that in the case of m > 3 we have

HB(U,&OU)HW"L*?(TQ’ |V(2)|W1»°°ﬂWm*3»°°(O,T1), |6?_2V(2)|L2(0,T1) < C(K).

Therefore, thanks of Lemma [[4] we can apply Theorem Bl with m replaced by m — 2 in the case
m > 3 and Proposition [l together with Lemma [T in the case m = 2 to u) and obtain

()l + 1], g Iz < C(Kp)e“H* <(1 107" 1) 20, l2) ()l

t
lo o0+ abose + [ Nl <t'>mm_zdt’),

where the term | f@ lm—3¢ is dropped in the case m = 2. Here, we have

|ac:0
V(@) lwm=2.000,1), [9(2) lwm—2.00.11): 1 f(2) lwm=2.00 (2 yowym—2(1y) < C(K),
so that
()l + 1], o2, < C(EKo)e? (L + CUE)VE([[[ugz) (0) ]z + 1)-
Since z is a solution to (58)), we see that
2| m 01 < C(Ko)(L + )| —glm—2: + [U),_g lm—14)-
Therefore, if we define the constants My, Ms, M3 by
My = 2C(Ko)([w(0)l.pp—y + 1),
My = 2C(Ko)([llw@) ()l 5,2 + 1),
Ms = C(Ko)(l + My + MQ),
and if we take T} = Ti(K) sufficiently small, then (€7 holds. The proof of Theorem [ is

complete.

2.5.4. An extension to a system coupled with ODFEs. In application to physical and engineering
problems, the free boundary problem (@I)—([@2) appears coupled with a system of ordinary
differential equations for the unknown W = W (t), which takes its value in R". We will extend
Theorem [0 to such a problem. More precisely, we consider (4I)—(@2) with the boundary data U;
of the form Ui(t,z) = Gi(W(t), x), where G;(W,z) is a given function whereas W (t) satisfies

(71) {WZF(W@) in (0,7),

W =wi on {t=0}.
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As before, we will use the diffeomorphism ¢(t,-) : Ry — (z(t), 00) given by Lemma [I2] and put
u = U o . Then, the problem is recast as

)
(72) uj,_, = u(x on Ry,
up,_, = ui(t) on (0,7)

Ou+Aw)dfu=0 in Qp,
)

with 2(0) = 0, where u;(t) = Gi(W (t), z(t)).

Assumption 7. Let W be an open set in RN, which represents a phase space of W. We have
Gi, F € W™®(W x (=6,0)).

Theorem 6. Let m > 2 be an integer. Suppose that Assumptions [{7 are satisfied. If u™ €
H™(Ry) takes its values in a compact and convex set Ko C U and if the data u'™ and W™ € W
satisfy
i. )\i(uin‘xzo) Zngln > 0,
ii. (axulr.l)lzzo — (axGi)‘W:Wi“,z:O
iii. ((0pu™)),_, — (8:Gh)

# 0,
)J_ : e+(uin|x:o) 7& 07

where 2 = (Oyz),,_, will be determined by ([[A) below, and the compatibility conditions up to
order m — 1 in the sense of Definition[H below, then there exist Ty € (0,T] and a unique solution
(u,z) to ()2 with u,0p,u € W YTy), z € H™(0,T1), W € H™(0,T}), and ¢ given by
Lemma[12.

|W:Win,x:0

Remark 11. As stated in Remark[9, the condition iii in the theorem can be replaced by

i’ o - eq (u™,_,) #0,

where pug is the unit vector satisfying po- (O Ui+ A(Ui)9:Ui)|,_,_, = 0 with Ui(t, z) = Gi(W (), z).
This unit vector ug is uniquely determined up to the sign under the other assumptions of the
theorem.

Outline of the proof of Theorem[d. The solution (u,z, W) can be constructed as a limit of a
sequence of approximate solutions {(u",z™, W™)},,, which are defined by

ou™ + A(u™, 0¢™)0,u™ =0 in  Qp,

u",_, = u(z) on Ry,

u", = ul(t) on (0,7)
with 2™(0) = 0, where ul*(t) = Gi(W"(t),2"(t)) and ¢" is given by @) with ¢ = ¢ and z
replaced by z', and

Wl = (W™, z") for te (0,T),
Wntl(0) = win,
Under the condition [W" |yym—1.00 0.1y, [2" |yym—1.000,7) < C(Ko) we have
(W g 0.1y < C(Ko) (W™ gm0,y + 12" [rm 0,7 + 1)

Therefore, we can apply Theorem [l for the existence of the solution (v, z™) with uniform bounds
in appropriate function spaces, so that we can pass to the limit n — oo to obtain the desired
solution. ]
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2 5.5. Compatibility conditions. Suppose that (u,z, W) be a Smooth solution to (IZ[I)*(IZZI) As
in §2.5.0] we define u(k) ((87)*u)),_, by E). We denote W» = (9FW),,_, and 2" = (8fz)|,_,
as before. It follows from W = F(W,z) that

(73) Wil = ca (W W, . Wi 2 s o))
Using the relation Ui(t, z) = G;y(W(t), x), we have

(OFOLUY) oy = Coea (W, W, L D).
This together with (52]) yields

Opu™ — (0,G})

(74) zi' =— |0,ui™ — (0,U5)

‘WfWi“ in in in in
PG — ok o(WQ", W™, ..., W)
lw—win
k
in in/ql, in in in in
+> DY ezl (Dl — e (W W ”“’Wjo))}

= 2j0+]1+ +jl k
1< .717 7.7l

Iz:O
Now, we can calculate zi* and W;» inductively by zi* = 0, Wi* = W™, and (73)-(74) in terms
of the data v and W™.

Definition 5. Let m > 1 be an integer. We say that the data u™ € H™(R,) and W™ for
the problem ([[I)—([T2)) satisfy the compatibility condition at order k if {ul(r]1 ., and {a: ;’1:_01
defined by 1) and ([[d) satisfy u™(0) = G;(W™,0) in the case k =0 and

(0™ = (:Gs). o) {ui(g) — o po(WE, Win, Wi

k
in in ! in in in _
+ >, o) 2 (021G = €20 (W, W ,-.-,Wjo))} -
1=2 jot+ji1++i=k le=0
1<g1,001

in the case k > 1. We say also that the data u™ and W™ for the problem ([I)—(T2) satisfy the
compatibility conditions up to order m — 1 if they satisfy the compatibility conditions at order k
fork=0,1,...,m—1.

Roughly speaking, the definition of g}ﬂn ensures the equality 8fu = Ofui at x =t =0in
the direction dfu — 0fu;, whereas the compatibility conditions ensure it in the perpendicular
direction (0Fu — OFu;)*.

3. TRANSMISSION PROBLEMS

We proposed in Section [2] a general approach to study initial boundary value problems with a
possibly free boundary for 2x 2 hyperbolic systems. Our results can easily be extended to systems
involving more equations, provided that the diaganalizability properties used in Proposition [3]
to construct the Kreiss symmetrizer are still valid. This is for instance the case for transmission
problems involving the coupling of two 2 x 2 hyperbolic systems across an interface. Such
problems can be transformed into a 4 x 4 initial boundary value problems that have the required
diagonalizability properties. Transmission problems being relevant for many applications, we
devote this section to their study.
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3.1. Variable coefficients linear 2 x 2 transmission problems. We consider here a linear
transmission problem, where we seek a solution u solving a linear hyperbolic system on 2, =
(0,T) x R_, another one (possibly the same) for 2. = (0,7) x R, assuming that a transmission
condition is provided at the interface {x = 0}

dyu + A(t,2)0pu + B(t,x)u = f(t,x) in QF,

o+ A(t,z)0,u+ B(t,z)u = f(t,z) in QFf,

uj,_y = u"(x) on R_URy,

Ni(t)up,_.o — NY(t)u,__, = g(t) on (0,7,

(75)

where u, u'®, f, and fare R2-valued functions, g is a RP-valued function, while A, g, B, and
B take their values in the space of 2 x 2 real-valued matrices. The matrices Nll, and Nll, that
appear in the transmission condition are of size p x 2, where p (the number of scalar transmission
conditions) depends on the sign of the eigenvalues of A and A.

Notation 3. We shall consider three possibilities corresponding to the following cases, where
At j(t,—x) and Ay j(t,z) (7 =1,2,0) are assumed to be strictly positive for all (t,x) € Qp:
e Case p = 1. There is one outgoing characteristic, that is, one of the following two
situations holds: _
— The matrices A(t,—z) and A(t,x) have eigenvalues £y (t,—z) and —A_;(t,x)
(7 =1,2), respectively.
— The matrices A(t,—xz) and A(t,z) have eigenvalues Ay j(t,—2) (5 = 1,2) and
+Ai(t, x), respectively.
e Case p = 2. There are two outgoing characteristics, that is, the matrices g(t, —x) and
A(t,x) have eigenvalues +Ay (t, —x) and £Ai(t,x), respectively.
e Case p = 3. There are three outgoing characteristics, that is, one of the following two
situations holds: B
— The matrices A(t,—x) and A(t,x) have eigenvalues £A1(t, —x) and Ay ;(t,x) (j =
1,2), respectively.
— The matrices A(t,—z) and A(t,z) have eigenvalues —A_j(t,—x) (j = 1,2) and
+Ai(t, x), respectively.
Denoting by €4 j(t, —x) and ey j(t,x) unit eigenvectors associated to the eigenvalues A4 ;(t, —x)
and A\t ;(t,x) (7 =1,2,0), we define a 4 x p matriz E,(t) by

B0 = ( g(t) 2l )

where 0 < p' < 2 (resp. 0 < p" < 2) denotes the number of negative eigenvalues of g(t,O) (resp.
positive eigenvalues of A(t,0)), and E_(t) and EL(t) the matriz formed by the corresponding
eigenvectors.

Remark 12. Here we did not list any possible cases, that is, the cases p = 0,4 are omitted.
Moreover, even in the case p = 2 there are two other posibilities. Such cases can be treated in
the same way so we omit them.

It is convenient to recast (0] as a 4 x 4 initial boundary value problem by setting

(76) At x) = Alt,z), B'(t,z) =B(t,z), [f'(t,z)=[f(tz), u(tz)=ult ),
Al(t,x) = A(t,—x), B\t,z) = B(t,—xz), fi(t,x) = f(t,—x), u(t,z)=u(t,—x),

and

_( —AY 020 _( B' 022 _ ([ (!
(77) A_<02><2 Ar >7 B_<02><2 Br >7 u_<ur>a f_<fr>
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The transmission problem ([73)) is equivalent to the following initial boundary value problem
ou+ A(t,z)0,u+ B(t,x)u = f(t,x) in Qr,

(78) u),_, = u"(z) on Ry,
Ny(t)u,_, = g(t) on (0,7,

where u'®(z) = (u(—z),u™(z))T and N, is the p x 4 matrix

(79) N,(1) = ( ~N)e) N3(t) ).

This initial boundary value problem has a block structure. In order to ensure its well-posedness,
we shall make the following assumption, which ensures that the sytem of equations is strictly
hyperbolic. Note that the condition on the invertibility of N, (¢)IN,(¢)T in the first point is here
to ensure that IV, is uniformly of rank p.

Assumption 8. There exists ¢y > 0 such that the following assertions hold.

i. AL A" € WL*(Qr) and B',B* € L®(Qr). Moreover, N, € C([0,T]) and for any
t € [0,T] we have

det(N, (N (6)") > co.
ii. One of the three cases stated in Notation [3 holds. Moreover,
Xj;j(t, _‘T)7)\iyj(t7x) 2 CO (j = 1727(2))7
A1 (t, —2) — Apo(t, —2)], A1 (8, 2) — Aso(t, )| > co.

iii. With E,(t) in Notation[3, the p x p Lopatinskit matriz L,(t) = N,(t)E,(t) is invertible
and for any t € [0,T] we have

_ 1
1Lp(8) ™ lrr—rr < —.
€o

We can then derive sharp estimates similar to those derived in Theorem [l for initial boundary
value problems. The compatibility conditions are not made explicit because they can be obtained
as for Definition [

Theorem 7. Let m > 1 be an integer, T > 0, and assume that Assumption [8 is satisfied for
some co > 0. Assume moreover that there are constants 0 < Ko < K such that

= 1Al oo 1)s 1 Np | L (0,1 < Ko,
[Allw.ee @) 1Bl Lo @1), 1(OA, OB) |lywm—1 (), [ Nplwm.oo 0,7 < K.

Then, for any data u'™ € H™(R,), g € H™(0,T), and f € H™(Qr) satisfying the compatibility

conditions up to order m — 1, there exists a unique solution u € W™(T) to the transmission
problem ([[8). Moreover, the following estimate holds for any t € [0,T] and any v > C(K):

t !
2
mwmmw+<¢émwwmmm) ot gl

< C(Ko) (1 O)lll, + 191 0,6y + | Focolm—1,6 + S5 (NOF (1)) -

Particularly, we have

el 4 [, —g .

t
< C(Ko)eo(K)tOHU(O)\Hm +19lmm 0 + [ Flasolm—1t +/0 !Hatf(t')!Hm_ldt'>-
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3.1.1. A priori estimates. We prove here an L? a priori estimate using the following assumption,
which is the natural generalization of Assumption 2lto 4 x 4 systems.

Assumption 9. There exists a symmetric matriz S(t,x) € My(R) such that for any (t,x) € Qrp
S(t,x)A(t,z) is symmetric and the following conditions hold.

i. There exist constants ag, By > 0 such that for any (v,t,x) € R* x Qp we have
aglv]? < vTS(t,z)v < Bolv|?.
ii. There exist constants oy, 81 > 0 such that for any (v,t) € R? x (0,T) we have
vTS(t,0)A(t,0)v < —ay|v> + BN, (t)v|?.
iii. There exists a constant Py such that
1068 + 0:(SA) = 28Bl| 2,12 < Ba.

Under this assumption, the L? a priori estimates of Proposition [l can be straightforwardly
generalized.

Proposition 7. Under Assumption[d, there are constants

in in 5
o b1 o
¢ = C<—0, —0) and ¢ = C<—, —, —)
Qp Qa1 Qo Qp a1

such that for any uw € HY(Qr) solving ([¥), any t € [0,T], and any v > g—i, the following
iequality holds.

t 3
2
(@)l + <7/0 ||IU(t’)|||o,th'> + w200

< collw™ g2 + ex(lgliz o) + S5 (IF O 22))-

Similarly, the following generalization of Proposition 2l does not raise any difficulty, and we
therefore omit the proof.

Proposition 8. Let m > 1 be an integer, T > 0, and assume that Assumption [Q is satisfied.
Assume moreover that there are two constants 0 < Ko < K such that

c0s 1, [|All Lo )5 1A oo )5 [N Lo 0.1y < Ko,
%7 [Allw.ec @) Bl @1, [(OA, OB)lyym—1 (1), [ Nplwm.o0,1) < K,

where ¢o and ¢ are as in Proposition [ Then, every solution u € Hm+1(QT) to the initial
boundary value problem (I8) satisfies, for any t € [0,T] and any v > C(K),

t 2
2
ey + (7 [ M)At )+ g lma
0 Y

< C(Ko) (w(O)lll, + 19l 0.0 + 1 Fucolm—r.e + S5, (0eF ) 1o1))-

3.1.2. Proof of Theorem []. As for the proof of Theorem [7, we just have to prove that the
assumptions made in the statement of Theorem [0 imply that Assumption [ is satisfied. This
is what the following lemma claims; its proof requires the construction of a Kreiss symmetrizer
yielding maximal dissipativity on the boundary.

Lemma 16. Let ¢y > 0 be such that Assumption (8 is satisfied. There exist a symmetrizer S €
Whe(Qr) and constants ag, 1 and Bo, b1, B2 such that Assumption [ is satisfied. Moreover,
we have

1 1
0 < O A e @) and e < O Al @), Nplimom).
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where ¢y and ¢y are as defined in Proposition [T, and we also have

B>
< — oo oo
= (Al 1Bl o )

Proof. Most of the proof is similar to the proof of Lemma [l and Proposition Bl and we therefore
omit the details. The only new point is to show that it is possible to construct a symmetrizer S
satisfying ii in Assumption 8] We show here how to prove this point, namely, that there exist
constants oy, 31 > 0 such that for any (v,t) € R* x (0,T) we have

vTS(t,0)A(t,0)v < —aq|v]* + B1| N, (t)v]*

Let us denote by 74 ;(t,2) and 74 (¢, x) the eigenprojectors associated to the eigenvalues Xi,j
and Ay ; (with j = 1,2,0); they are of the form

~ T+ Oaxo O2x2  O2x2
= | J 0 and w4 ;= 0 -,
2x2 2x2 2x2 Tt j

where 74 ;(t,x) and 74 j(t,x) are the corresponding eigenprojectors of A(t,z) and A(t,z). Dis-
tinguishing the three cases stated in Notation Bl and writing as in (76])

Al:l:,](t7 .Z') = A:l;j(ta —.Z'), )\th(t, x) = )\i,j(t7 .Z'),
ﬂ-ltvj(t’ :E) = 7f1V';|:7j(t, _x)7 ﬂ{l:,j(t 33‘) = 7T:|:,j(t7 33),
the spectral decomposition of the matrix A is given by

Al — ALzl — AL 7wl 1 — AL gml 5 (frist case of p = 1),

" (second case of p=1),

(

DU D UIRT AP VY P
A=A al L anay — ALzl — gt (p=2),
ALzl a7 L F N o7, — ALl (
(

ALl +>\1 oo AL — AL

first case of p = 3),

second case of p = 3).

We construct the Symmetrlzer S in the form

(7)) Tl + M{(x )Tl + (7t )T+ (7 )Tt ) (frist case of p = 1),

(mi) ot + M{(Trh_’l Tﬂ'h_ 1+ (7r+72)T7r+72 + (7" )Tt} (second case of p = 1),
S= < (m)Txl + (7)) "7 + M{(#') "7l + (77)Tw" } (p=2),

(7)) Tl + (71'171)T7r‘;71 + (7r‘f|r72)T7rfh2 + M(ml )Tl (first case of p = 3),

(TI'I_’I)T 1_71 + (71'1_72)T7r1_’2 + (7)) + M (7" )Tt (second case of p = 3),

where M > 0 will be determined later.
From now on, we focus on the case p = 2, the adaptations to the cases p =1 and p = 3 being
straightforward. Then, we have

SA =2 (al )Tl + A (w) T () = M{AL (m )Tl + AL () Tt ]
We begin to show that for v € ker IN),(t) we have
lv|? < —CvT(SA)(t,0)v.

1
For any v = <zr> € R*, we have

—vTSAv = N (7lo)Talo -\ (7ho)Tn r'v—l—M{/\1 (mho) 'l o + A (7 o) Twn v}
= —AL[rl ol 2 = AL [rl ot + M, e ol P 4+ A |r_ot 2.
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We decompose v! and v* as

1 14l 1 Al
(80) {v =cye; t+c_e_,

vt =c el +clel,
where 7l 0! = ¢ el, and 7Lv" = ¢ e.. Particularly, we have |7l v
that

' =|ck| and |rLo"| = |ck], so

—vTSAv = —AL|cL |2 — N2+ ML el P 4+ A2
Now, suppose that v € ker IN,(t). Then, we have
Nyv =—N'+ Njo' =0.
Plugging (80) into the above relation, we have
—clJrN}l)elJr — cl_NIl,el_ +cy Nyel, +cLNyel =0,
which we can rewrite, using the Lopatinskii matrix,

Cl— 1,41 T T Cl—i—
L,(t) o) = (Nyel, —Nje") o)
+ —
Under the uniform Kreiss-Lopatinskii condition made in Assumption B, we deduce
LI+ | P < O P + |2 ),
where C' depends only on [N}z (o) and 1/co, or equivalently,
It ol|2 4 7ot 2 < C(Inl o' P + 7ot ).
Therefore, if we take M sufficiently large, then for any v € ker IN,(t) we have
lv|? < —CvT(SA)(t,0)v.
Next, we will show that for any v € R* we have
vT(SA)(t,0)v < —aq|v|* + 51|Np(t)'v|2.
To this end, we use the assumption that
(81) | det(N,,() Ny (t)")] = co-

This condition means that the 2 x 4 matrix IN,,(¢) has rank 2 uniformly in time. For any v € R%,
we decompose it as

v=vi+vy with vy =N, (N,N,) 'Nyv.
Then, we have
v1 € ker N, Nyv = N,va,
so that
[v]* < O(jor]* + v2f)
< —Cvl SAv; + C|vs|?
= —C(v—v2)TSA(v — v2) + Clvy|?

1
< —Cv'SAv + §|v|2 + Clva)?.

Since |va| < C|Npv|, we obtain the desired estimate. O
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3.2. Application to quasilinear 2 x 2 transmission problems. As done in §2.2] in the
case of initial boundary value problems, we can use the linear estimates of Theorem [7 to solve
quasilinear problems. More precisely, after reduction to a 4 x 4 initial boundary value problem
as indicated in §3.1] let us consider

Ou+ A(u)0,u+ B(t,x)u = f(t,x) in Qr,
(82) u),_, = u"(z) on Ry,
Ny(t)u),_, = g(t) on (0,7),
where u = (ul,u~r )T, u'™, and f are R*-valued functions, and g is a RP-valued function, while
A(u) = diag(—A(u!), A(0")) and B = diag(B', B) take their values in the space of 4 x 4 real-
valued matrices and IV, is a p x 4 matrix, where p is the number of outgoing characteristics (i.e.,
the number of positive eigenvalues of A(u)).

Notation 4. Adaptating Notation [3 in a straightforward way, we consider three different pos-
sibilities (p = 1,2,3) depending on the sign of the eigenvalues of Z(ul) and A(u"). Correspond-
ingly, a 4 x p matriz Ey(w, _,) is formed as in Notation [ with the eigenvectors associated
to the eigenvalues defining outgoing characteristics, and we define the Lopatinskit matriz by
Lp(t7 u|x:0) - Np(t)Ep(u\x:O)'

We also make the following assumption on the hyperbolicity of the system and on the boundary
condition.

Assumption 10. Let U and U be open sets in R? and p € {1,2,3} such that the following
conditions hold with U =U X U representing a phase space of w.
i. AeC™®U).

ii. The integer p is such that for any uw = (u!,u")T € U the matrices A(u') and A(u*) satisfy
one of the three conditions of Notation [3.

iii. For anyt € [0,T] and any w € U, the Lopatinskit matriz L,(t,w) is invertible.

The main result is the following. The compatibility conditions mentioned in the statement of
the theorem can be obtained as for Definition 2l It can be deduced from Theorem [7in the same
way that Theorem 2] was deduced from Thoerem [l and we therefore omit the proof.

Theorem 8. Let m > 2 be an integer and assume that Assumption [I0 is satisfied with some
p € {1,2,3}. Assume moreover that B € L*(Qr), 0B € W™ Y(T), and N, € W™>(0,T). If
u € H™(Ry) takes its values in IEO x Ko with IEO c U and Ko CU compact and convex sets,
and if the data u™, f € H™(Qr), and g € H™(0,T) satisfy the compatibility conditions up to
order m — 1, then there exist Ty € (0,T] and a unique solution w € W™ (T1) to the transmission
problem (82). Moroever, the trace of w at x =0 belongs to H™(0,T1) and |w|,_;|m1, is finite.

3.3. Variable coefficients 2 x 2 transmission problems on moving domains. As for the
initial boundary value problems considered previously, we consider here the case of variable coef-
ficients transmission problems on a moving domain as a preliminary step to treat free boundary
transmission problems. We consider therefore a transmission problem with transmission condi-
tions given at a moving boundary located at © = z(t) with z(-) a given function. As in §23
we consider variable coefficients matrices of the form A(t,x) = A(U(t,x)), etc. Let us consider
therefore

U +AU)OU +BU = F in  (—oo0,z(t)) for te(0,7),
(83) U+ A(U)0,U +BU = F in  (z(t),+o0) for te(0,7),
U,_, = u™(z) on R_URy,

ng(t)U|z:£(t)+O - NIIJ(t)ULE:g(t)fO =g(t) on (0,7),
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where, without loss of generality, we assumed that z(0) = 0, and with notations inherited from
the previous sections. As in §2.3] we use a diffeomorphism ¢(t,-) : R — R such that ¢(0,-) =1Id
and that for any ¢ € [0,7] we have

90(75’0) = &(t)’ 90(75’ ) ‘Ro— (_OO’Q(t))’ and 90(75’ ) : R—l— — (@(t)’ +OO)'

Writing as before u = U o ¢, 9fu = (0,U) o ¢, etc., and with 97 and 9/ as defined in (7)), we
transform (83)) into a transmission problem with a fix interface located at = 0. Using the same
procedure as in 3.1 and with the same notations as in (76) (writing also ¢!(t,z) = ¢(t, —) and
O (t,x) = p(t,z) for x > 0), this transmission problem can be recast as a 4 x 4 initial boundary
value problem on (0,7) x R, namely

ou + A(u, 0p)0,u + B(t,x)u = f(t,z) in Qrp,
(84) u),_, = u"(x) on Ry,
Np(t)uy,_, = g(t) on (0,T),

with w = (u}, u")T, o = (', ¢")T, and

_ (AN, 99 Oaxo
Alu, 0¢p) = ( 9o A (uf, 0¢")

as well as

17,1 I 1 A1y 1 r(, T ry _ 1

while B and f as in §3.01 The matrix IV, is as in ({3) and still denotes a p x 4 matrix, but
the difference is that the value of p depends not only on the eigenvalues of A(u) and A(u), but
also on the speed & of the interface. For the sake of simplicity, we shall consider here the case

where A(u) and A(u) have both a positive and a negative eigenvalue, and shall consider two
cases depending on the speed of the interface.

(A(u) — (Op")1d),

Definition 6. Denoting by i (u!) and £AL(u") the eigenvalues of A(u!) and A(ur), respec-
tively (with A+ (u'), A (u") > 0), we define two regimes:

e Subsonic regime. We say that u = (u',u")T and x € R are in the subsonic regime if
the following condition holds.
Xi(yl) Fx>0 and M(u')Fx>0.

e Lax regime. We say that u = (u!,u")T and x € R are in the Lax regime if the following
condition holds.

M) Fx >0 and  —Ap(u) +x >0,
or
“A_(@W)—x>0 and Ai(w)Fx>0.
Remark 13. This terminology is of course inherited from the study of shocks [Lax57]. The

linearized equations around a shock can indeed be put under the form ([83). We refer to §6.2
where we prove the stability of one-dimensional shocks for nonlinear 2 x 2 hyperbolic systems.

Since the eigenvalues of the matrix A(u,dy) are given by
1

m( Ap() + ') and

1
832(,01" (i)\i(gr) B at(pr)’
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the number p of outgoing characteristics for ([84]) is equal to 2 in the subsonic regime, and to 1
in the Lax regime. As in Notation [3 we form a 4 x p matrix Ep(w _,) given by

E(u,_,) = ( e (u),_) O )

O2x1 et (u'),_,)

in the subsonic regime, and

B = (4 ) e - ()

(depending on which of the two conditions in Definition [l is satisfied) in the Lax regime. As in
Assumption [§] we define a Lopatinskii matrix L, (¢, H\z:o) by

(85) Lp(taﬂ\zzo) = Np(t)Ep(H\z:O)-

In order to be able to apply Theorem [0 to this initial boundary value problem, we make the
following assumption. It is the natural generalization of Assumption[dto transmission problems.

Assumption 11. We have u = (u},u")T € WH>(Qr), z € CL([0,T]), z(0) = 0, and the
diffeomorphisms @' and ¢ are in C*(Qr). Moreover, there exists co > 0 such that the following
three conditions hold.

i. There exist open sets Zj,Z/{ C R? such tizat, withtd =U XU, we have A GNC’OO(U) qzzd for
any u = (u, )T € U, the matrices A(u') and A(u*) have eigenvalues Ay (u'), —A_(u')
and Ay (u"), —A_(u"), respectively. Moreover, u takes its values in a compact set ICo C U
and for any (t,z) € Qr we have

Ae(@(t,2)) > o and AL (t,2)) > co,
and one of the following conditions holds
a) Xi(gl(t,x)) T o (t,x) > o  and  AL(u'(t,2)) T O (t, ) > co,
) da(@(t2) FoP ) 2o and = A (@t 2) + 0 (Ex) > co,
¢) —A(u(t.2)) ~pl(ta) 2co  and  Ap(u(t2)) F O (t,2) 2 co.
ii. The Lopatinskii matriz Ly(t,w, _ ) associated to the condition a), b), or c) constructed
in [88) is invertible and for any t € [0,T] we have
1
1Ly (t, o () lremr < o

iii. The Jacobian of the diffeomorphism is uniformly bounded from below and from above,

that is, for any (t,x) € Qr we have
1 1
co < _am‘pl(t7x) < — and co < amgpr(t,x) < —.
Co Co

The equivalent of Theorem [ for transmission problems is the following. We do not make
explicit the compatibility condition in the statement of the theorem because they are obtained
along a procedure similar to the one used for Definition [l

Theorem 9. Let m > 1 be an integer, T > 0, and assume that Assumption [I1] is satisfied for
some cg > 0. Assume moreover that there are constants 0 < Ky < K such that

a5 102 (Ol 100" | o< (027 1A o< (3c4) [Nl Lo (0, < Ko,

10G  [lwm—1. (1) 1062 Lm0y (O™ ) o Lov 0.7y < K,
lwllw1.00 @pyrwm (1) [ Bllwtoe @g)s 0B lwwm—1(1ys [Nplw .o awm—1.00 0,7y, 07 Np| 22001y < K,
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where @' (t,x) = ¢ (t,x) — x and P\ (t,x) = p\(t,x) + x. Then, for any data u™ € H™(R,),
g€ H™(0,T), and f € H™(Qr) satisfying the compatibility conditions up to order m — 1, there
exists a unique solution uw € W™(T') to the transmission problem (I8]). Moreover, the following
estimate holds for any t € [0,T] and any v > C(K):

t !
2
el + (7 [ M@0 ) " + gyl
0

< C(Ko) (1 + 10" Np| 20,0 Ml1w(O)lll, + 1911 (0,) + [ Flacolm—r7.6 + S5 F ) -

Particularly, we also have

@)l + [y, glm.
t
< C(Ko)ec(K)t<(1 + 107" Np| 22 (0,0) @O}l + 191z (0,8) + | floolm—1,¢ +/0 H\f(t')H\mdt'>-

3.3.1. Proof of Theorem[d. As for Theorem [@, we do not seek a direct estimate on u = (u!, u")
1 T

in W™(T), but W"=1(T) estimates of u and u® = (9f u!,d{ u"). The W™~1(T) estimate of u

is obtained exactly as in Step 1 of the proof of Proposition M and requires a variant of Lemma

[7 which is easily obtained by choosing a symmetrizer S given in the subsonic case p = 2 (with

straightforward adadptation in the Lax regime p = 1) by

(86) S = (-0, ") [(w)Twl + M(=')T7 ] + (9.9 (=) Tl + M (7" )Tt ]

and by using Theorem [7l In order to obtain the W”~1(T') estimates of u¥, we first remark that
u? solves

(87) ), = ui) on Ry

Npy(H)a® _ =gq(t) on (0,7,
where By = diag(Bél),Bil)) and fq) = (f(ll),f(rl)) are straightforwardly deduced from (24))
while g(1) = (gh),gfl)) and Ny = (—N(ll)(t) N(rl)(t)) are obtained using a procedure similar
to the one used to derive (26]). In particular

N(11)(t) = Nll,(l - Zg(ylhzo)_l)z Ny (t) = Ny(1— ZA(E\,:O)_I)-

In order to apply Theorem [7to (8T), it is necessary to show that the third point in Assumption
is satisfied. We therefore consider the Lopatinskil matrix L(t, ), _,) associated to (817,
namely,

1 r
Loy, ) = (N0 Noy() Byl ).
When p = 2 (the case p =1 is a straightforward adaptation), one has therefore

o B
—(u
L(l) (t7y|x:0) - Lp(ty E‘x:()) 0_ ‘x:o 1 _ Q

Aty )
and the required bound on L(l)(t, 2\1:0)_1 is therefore a direct consequence of Assumption [I11
It is therefore possible to apply Theorem [[and to obtain an W~ (T) bound on %¥ by a close
adaptation of the proof of Proposition @l Thanks to the block structure of the equations, the

end of the proof follows the same lines as the proof of Theorem [B] and we therefore omit the
details.
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3.4. Application to free boundary transmission problems with a transmission con-
dition of “kinematic” type. We consider here a general class of free boundary quasilinear
transmission problem in which two quasilinear hyperbolic systems at the left and at the right of
a moving interface located at z = x(t) on which transmission conditions are provided

U + A(U)d,U =0 in  (—oo,z(t)) for te(0,7),
(8) oU + A(U)@xU =0 in  (z(t),+00) for te(0,T),

U,_, = u" () on R_URy,

N,U,_ 2(4)+0 ﬂ}Dlezg(t),o =g(t) on (0,7,

where we assumed that x(0) = 0 without loss of generality. Moreover, we assume that the
position of the interface is given through a nonlinear equation of the form

(89) T = X(U‘z:g(t)fo’ U\z:g(t)w)

for some smooth function x defined on a domain of R? x R?. The same reduction as in §3.3}
and using the same notations, leads us to consider the 4 x 4 initial boundary value problem

ou + A(u,0p)0,u=0 in Qp,
(90) u),_, = u"(x) on Ry,
Nou, = g(t) on (0,7,

where IV, = ( — ﬂ}n ﬂ;) is here, for the sake of simplicity, a constant p x 4 matrix (the value
of p is discussed below). These equations are complemented by the evolution equation

(91) z= X(u\xzo)'

This boundary condition, of “kinematic” type, leads us to work with the following generalization
of the “Lagrangian” diffeomorphism (34)),

(92) oltr) =+ 0 (%) [ xtalt,leyar

where ¢ € C§°(R) is an even cut-off function such that ¢(z) =1 for |x| < 1 and = 0 for |z| > 2,
while € is chosen small enough to have u close enough to its initial boundary value when x is
in the support of ¢ and ¢t small enough. Contrary to (B4)), this cut-off is necessary here because
X might not be defined at the origin (this is for instance the case in §6.2] for the evolution of
shocks). In particular, we have

Olt,x) = —x + 1/)(?) /Otx(u(t/,:n))dt/ and @' (t,x) =z + ¢<§) /Ot x(u(t', x))dt,

and ¢* satisfy the same kind of bounds as those given in Lemma [T (with 3" (¢, z) = ¢* (¢, x) —
r and @'(t,x) = ¢!(t,r) + z). The well-posedness of (@0)-([@2Z) also requires the following
assumption.

Assumption 12. Let Z/{ and U be two open sets in R? and let U = Z/{ X U representing a phase
space of w. Let Ur CU and Uy C U be also open sets and let Uy = U x Uy representing a phase
space of w,_,. The following conditions hold:

i. Ae C®MU) and x € C>*Uy).
ii. Forallu = (u!,w)T € U, the matrices A(u') and A(u¥) have eigenvalues Ay (u)), —A_ (u))
and Ay (u"), —A_(u"), respectively, satisfying

X)) >0 and  Ap(ut) > 0;
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moreover, one of the following situations for any u = (u!,u")T € U holds:
a) Ae(@) Fx(u) >0 and  Ae(u’) F x(u) >0,
D) Ae(w)Fx(uw) >0 and A (u) — x(w) <0,
o) AW +x(w) <0 and Ai(ut)F x(u) > 0.

iii. For any w € Uy, the Lopatinskii matriz L,(u) associated to the condition a), b), or c)
constructed in (8Bl) is invertible (note that p = 2 under condition a) and p = 1 under
conditions b) and c)).

Remark 14. With the terminology introduced in the previous section, condition a) corresponds
to an interface moving at subsonic speed, while conditions b) and c) correspond to interfaces
moving at supersonic speed (to the right for condition a) and to the left for condition b)) and
satisfying Laz’s conditions.

We can now state the following theorem, which can be deduced from Theorem [ in exactly
the same way as Theorem Hlis deduced from Theorem [] for free boundary initial value problem
with an evolution equation of kinematic type for the location of the boundary.

Theorem 10. Let m > 2 be an integer. Suppose that Assumption [I2 is satisfied. If u™
H™(R,) takes its values in ICO x Ko with ICO C U and Ko C U compact and conver sets, 'f
u'™(0) € Uy, and if the data u™ and g € H™(0,T) satisfy the compatibility conditions up
to order m — 1, then there exist Ty € (0,T] and a unique solution (u,z) to (B8)—([R9) with
uw € W(Ty), x € H™Y(0,Ty), and ¢ given by (@2)).

4. WAVES INTERACTING WITH A LATERAL PISTON

We analyze here a particular example of wave-structure interaction in which the fluid occupies
a semi-infinite canal over a flat bottom which is delimited by a lateral wall that can move
horizontally. When the wall is in forced motion, this situation corresponds to a wave-maker
device often used to generate waves in wave-flumes [KE02, [OBT12]. We are more interested
here in the case where the lateral wall moves under the action of the hydrodynamic force created
by the waves and of a spring force that tends to bring it back to its equilibrium position. This
configuration corresponds to a wave absorption mechanism and can also be seen as a simplified
model of wave energy convertor, such as the Oyster. Such a configuration has been studied
numerically in various references [HKHT 09, [KSS09, [KD17], but there is no mathematical result
available yet. Note also that this problem is related to the piston problem for isentropic gas
dynamics whose linear analysis can be found in and weak solutions constructed in
[Tak95]. Our goal in this section is to provide a well-posedness result for this wave-structure
interaction under the shallow water approximation, i.e., assuming that the evolution of the free
surface is governed by the nonlinear shallow water equations. The configuration under study
here is described in Figure [I1

4.1. Presentation of the problem. In the canal, of mean depth hy and delimited on the left
by the moving wall located at = = z(t), the waves are described by the nonlinear shallow water
equations. It is convenient to write them in (H, V') variables, where H(t,z) = ho+ Z(t, ) is the
water depth, Z(t, ) is the surface elevation of the water, and V (¢, z) is the vertically averaged
horizontal velocity

(93)

OH +0,(HV) =0 in  (z(t),00),
OV +Vo,V+gdH=0 in (z(t),0),
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e

7 ;
x(t)

FIGURE 1. Waves interacting with a lateral piston

where g is the gravitational constant; with this formulation, the boundary condition at the left
boundary at the canal will be imposed as the kinematic type: the velocity V' matches the velocity
&, that is,

(94) Vit,a(t) = i(t).

Since the wall moves under the action of the hydrodynamic force exerted by the fluid and of the
spring force, its position z(t) satisfies Newton’s equation

mi = —k(z — zg) + Fiyd,

where m is the mass of the moving wall, k the stiffness of the spring force, z, its reference
position, and Fjyq the hydrodynamic force. This force corresponds to the horizontal pressure
forces integrated on the vertical wall. Assuming, in accordance with the modeling of the flow
by the nonlinear shallow water equations, that the pressure is hydrostatic, we get

Z(ta(t))
Foa= [ pelZ(t.(t) - £
—ho
1
= - pelho + Z(1,2(0))*

At rest, we have H = hg and the equilibrium position z, is therefore given by

1 pgh?
Loq L0 = 5
so that Newton’s equation can be put under the form

) 1
(95) mit = k(2 — Zoq) + 508((ho + Z,_,)* = 1§).

The free boundary problem we have to solve consists therefore in the equations ([@3)—(35]) com-
plemented by the initial conditions

—in

(96) (ZV)jeo = (Z™ V) on Ry, (2,d),, = (0,2]"),

[t=0

where we assumed without loss of generality that the wall is initially located at x = 0.

4.2. Reformulation of the equations. As in §2.3] the first step is to use a diffeomorphism
o(t, ) : Ry — (z(t),00) and to work with the transform variables

C(t,x) = Z(t, ¢(t,x)),  V(t,z) =V(E et z))
with A = hg + . The boundary condition ([@4]) which can be rewritten as
i(t) =v(t,0)



HYPERBOLIC FREE BOUNDARY PROBLEMS AND APPLICATIONS 57
leads us to work with the Lagrangian diffeomorphism
t
(97) ot,z) =x +/ ot z)dt,
0

which satisfies the properties stated in Lemmal[IIl After composition with ¢, the problem under
consideration is reduced to the initial boundary value problem

8 + hd?T = 0 i Q,
(98) 8t@_+ g@fﬁ :ig - in Qp,

(C? U)|t:o = (C , U ) on R-i—v

U)o =& on (0,7),

coupled to the ODE

mi - —k@ - &eq) + %Pg((ho + C|z:())2 - hg) for te (OaT)v
(E) i)|t:0 = (07£11n)7

where we used the same notation as in (I[T), that is, 97 = ﬁ@m. The initial boundary value

problem (@8] is of course of the form () with v = (¢,7)T, v = (0,1)T, and

(100) Au) = <5 h) :

g v

(99)

whose eigenvalues A1 (u) and the corresponding unit eigen vectors ey (u) are given by

M) = VER AT, eplu) = ——

\/g—I—h(i\/g).

Therefore, the positivity of [v-e (u|,_,)| stated in Assumptiondlis automatically satisfied under
the positivity of h.

Here, we will show another equivalent formulation to ([@8)—([@9]). The following lemma shows
that (@) provides an expression for & in terms of ¢, _.

Lemma 17. Let m > 1 be an integer, giln € R, and assume that ¢, € H™(0,T). Then there
exists a unique solution x € H™2(0,T) to

mi = k(2 — Zeq) + 308(CH + 2h0Gh),
(,2),_ = (0,27"),

so that we can define a mapping G : H™(0,T) > (, v & € H™L(0,T), which satisfies
GG Emr10) < C(VE(Zeg| + 1217]) + (1 +8) (1 + [Sblyrim/a100 0.0 S0l Hm (0,0))
for any t € [0,T], where C' > 0 is a constant depending only on m,k, pg, hg, and m.

Proof. The existence and uniqueness of the solution z is obvious, so that we focus on the

derivation of the estimate. Replacing z with z + z,, it is sufficient to consider the problem

{mz = —kz+ f,

(£7 &) lt=0 — (&eq, zlln) ’

where [ = %pg((ﬁ + 2h0Cb). Then, we see that

1d, :
5 7 @E(D? +kx(t)’) = F(1)a(8),
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from which we deduce that

¢
)]+ (0] < C(Iabl + lawal + | 17(€)10¢)
< C(|£11n| + |£eq| + \/E|f|L2(0,t))7
so that
|Z] 1 (0,) < C(Vi(lz" + Zeql) + t1fl220)) -
On the other hand, it follows from the equation directly that

0522|200, < CUOF 2| L2(0.0) + 10F flL2(0.0))
for k =0,1,2,.... Using these inductively, we obtain

[zl pmi2(0.) < C (V2T + lzeq)) + |20 + 1flam(0)

which together with | f[gm 0,0 < C(1+[Cblyim/2.00(0,4))CblEm(0,1) gives the desired estimate. [

It follows from the lines above that the problem presented in §4.1] can be recast under the
following form

ou+ A(u, 0p)0,u=0 in Qp,
(101) u),_y = u on R,
voup,_, = G(vt- u,_,) on (0,T),

where v = (0,1)T and ¢ is given by (@), with a boundary equation given by

(102) T=voup,_, z),_, = 0.

Here, we emphasize that the notation for the matrix A(u, ) is the same as in (I9) with the
matrix A(u) defined by (I00). However, thanks to our choice of the Lagrangian diffeomorphism
p, the term 0 is cancelled and does not appear in the equation. The problem is therefore
a small variant of the free boundary problem considered in §2.4] the difference being that the
boundary condition v-u),_, = g(t) is replaced by a semi-linear and nonlocal boundary condition

veoup,_o =Gt u,_,). Of course, (IOI)—(I02) is equivalent to (O8)—(@J).

4.3. Compatibility condition. As usual, compatibility conditions are required to have regular
solutions. However, we can derive the conditions easier than the problem considered in §2.4]
because the equation does not contain the term ;. Denoting u, = 0fu, we get classically
by induction that wu; is a polynomial expression of space derivatives of u of order at most k,
and of space and time derivatives of (0,¢)~' of order at most & — 1. Remarking further that
&%8#190 = &%8@ and 8%+1<,0|t:0 = 0,0, where J;¢ is the Kronecker symbol, it follows that at
t = 0, we have an expression for u}fn = Ug|,_, as

(103) ul = ¢ g (u™, pu™, ... OFu™)

with ¢, a polynomial expression of its arguments such that the total number of derivatives of
u™ involved in each monomial is at most k. Using the equation in ([@9) we can express z}* for
k > 2 in terms of the initial data as

(104) Ei]gn+2 = c2,k(£iln7 Cin7 .in7 HE) licn)\xzo

with ¢, a polynomial expression of its arguments. The compatibility condition is obtained by
differentiating the boundary condition v|,_ = & with respect to ¢ and taking its trace at ¢ = 0.
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Deﬁnition 7. Let m > 1 be an integer. We say that the initial data v'™ = (¢, 7)1 € H™(R,)
and z\* € R for the initial boundary value problem @8)—[@9) satisfy the compatibility condition

at order koif {ul}7y and {z" m+1 defined by (I03)-({I04) satisfy
6}6 le=0 - zk"‘l’
We also say that the initial data u'™ and giln satisfy the compatibility conditions up to m — 1 if

they satisfy the compatibility conditions at order k for k=0,1,...,m — 1.

Remark 15. The local existence theorem given below requires that the compatibility conditions
are satisfied at order m — 1 with m > 2. In the case m = 2, the compatibility conditions are

by = and  — g(0,¢™),_, = ke + —((C““) +2ho¢™)

Ein

4.4. Local well-posedness. We can now state the main result of this section, which shows the
local well-posedness of the wave-structure interaction problem presented in §4.11

Theorem 11. Let m > 2 be an integer. If the initial data (¢™, 7)Y € H™(R,) and 2 € R
satisfy

inf (y/g(ho +¢"(@) — [7"()]) >0

zeR

and the compatibility conditions up to order m — 1 in the sense of Definition[7, then there exist
T > 0 and a unique solution ((,7,z) to @8)-@9) with (¢,v) € W™(T) and x € H™2(0,T),
and ¢ given by (@T).

Proof. The proof is a small variant of the proof of Theorem [l We define the phase space U of

u:(C76)T
U={u= (1T eR?|Vglho+ () — [7] > 0}.

Then, we can readily check that all the conditions in Assumptlon are satisfied with x(u) =T
and v = (0,1)T. Moreover, once u™ = (¢",7")* € W™(T) is given so that

{(8fu")t_o =ul for k=0,1,...,m—1,

(105) ; i
™ lwm 1y + [u™, _olm,7r < M1,

we can check that the data u™ and g"(t) = G(v" - u™,_,) for the problem
O+ A(u, 0p)0,u =0 in Qp,

U,y = ul®(z) on Ry,
v, =9g"(t) on (0,7,
izz'u‘z:07 z‘t:() = 07

satisfy the compatibility conditions up to order m — 1 in the sense of Definition B and we
can apply Theorem [ to show a unique existence of the solution v = (¢,7)T € W™(T}) and
x € H™"1(0,T}) to this problem for some T3 € (0, T] depending on M. We denote by u”+1 this
solution u. Furthermore, we see that u"*! satisfies (Ofu"*!) =y for k = 0,1,. -1
and

lt=0 —

[ g () + (w1 o lmm < CLIG@ " 0™, ) momy))-
Here, by Lemma [l we have
Gt - u™, a0y < C(Mi,Th).
On the other hand, we have
m+1

Gt u, ) om) < VT Y 2P+ TG - u™,_) e o1),

j=1
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where we used (9FG (v ™)) = 2y for k=0,1,...,m. Therefore, for any fixed My > 0
if we define My > 0 by M; = C1(Mp) and choose T7 = T1(My) sufficiently small, then we have

G(v* " ) Emom) < Mo,

so that u™*! satisfies ([[05]) with T replaced by T;. Now, we can iterate the above procedure to
construct a sequence of approximate solutions {(¢", 7", 2™)},, which satisfy the uniform bounds.
As in the proof of Theorem Ml we can prove the convergence of these approximate solutions to
the solution (¢,7,z) to (I0I)-(I02). This solution satisfies & = G(v+ - u,_,) € H™1(0,T1), so
that we have the regularity =z € H™*2(0,T1). O

5. SHALLOW WATER MODEL WITH A FLOATING BODY ON THE WATER SURFACE

We turn to analyze other examples of wave-structure interaction in which the fluid occupies
an infinite canal and a floating rigid body is placed on the water surface. We follow the approach
proposed in where the free surface Euler equations are reformulated in terms of the free
surface elevation and of the horizontal water flux. Under this approach, the pressure exerted
by the fluid on the floating body can be viewed as the Lagrange multiplier associated to the
constraint that, under the body, the surface of the fluid coincides with the bottom of the body.

As shown in [Lanl7], this approach can be used also in the shallow water approximation,
replacing the free surface Euler equations by the much simpler nonlinear shallow water equations.
This is the framework that we shall consider here, addressing three cases; the floating body is
fixed, the motion of the body is prescribed, and the body moves freely according to Newton’s
laws under the action of the gravitational force and the pressure from the air and from the
water. The case of a floating body moving only vertically and with vertical lateral walls has
been considered in in 1D, in for a 2D configuration with radial symmetry,
and numerical computations have been proposed in [BEKER]. For such configurations, the
horizontal projection of the portion of the solid in contact with the water is independent of
time. We consider here the more complex situation of nonvertical lateral walls: even in the case
of a fixed object, determining the portion of the solid in contact with the water is then a free
boundary problem that is difficult to handle; in the numerical study [GPSMW] for instance, the
authors use a compressible approximation of the equations in order to remove this issue. The
configuration under study here is described in Figure 2

FIGURE 2. Waves interacting with a floating body

5.1. Presentation of the equations for the water. We consider the two-dimensional water
waves over a flat bottom with a floating body on the water surface under the assumption that
there are only two contact points where the water, the air, and the body meet. These contact
points at time ¢ are denoted by z_(t) and x(t), which satisfy x_(t) < x4 (t). Let Z(t) and £(t)
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be the projections on the horizontal line of the parts where the water surface contacts with the
floating structure and the air, respectively, that is,

{I(t) = (z—(t), 24 (1)),
E(t) = E_(t)UEL(H), E-(t) = (—o0, (1)), E_(t) = (x4 (t),00).

The corresponding water regions to Z(t) and £(t) will be called the interior and the exterior
regions, respectively. We consider the case where overhanging waves do not occur and suppose
that the surface elevation of the water in the exterior region is denoted by Z,(t,z) and that the
underside of the floating body is parameterized by Z;(t,x), where z is the horizontal coordinate.
Let hg be the mean depth of the water, so that the water depth in the interior and exterior
regions are given by H;(t,z) = ho+ Zi(t, z) and He(t,z) = ho+ Ze(t, x), respectively. We denote
by V(t,z) the vertically averaged horizontal velocity and put @Q = HV, which is the horizontal
flux of the water. The restrictions of () to the interior and the exterior regions will be denoted by
Q; and Q., respectively. Let P;(t,x) be the pressure of the water at the underside of the floating
body. This pressure is an important unknown quantity and should be determined together with
the motion of the water. In the case where the floating body moves freely, the body interacts with
the water through the force exerted by this pressure. The shallow water model was derived from
the full water wave equations by using the assumption that 0, ( f_ChO Vit z, z)Zdz) ~ O, (H 72),
where V(t,x, z) denotes the horizontal component of the velocity field in the fluid, and that the
pressure P(t,z,z) can be approximated by the hydrostatic pressure, that is,

_ Patm - Pg(z - Zc(t7 l‘)) in g(t)7
Pl = {ﬂ(m) ~pgle — Zita) i T(0),

where p is the density of the water, g the gravitational constant, and P,, the atmospheric
pressure (see [Lanl7]). Then, the shallow water model for the water has the form

04 Ze+ 0:Qc=0 in 5(t),
Qe + ax(g—ﬁ +1gH2) =0 in &),
in the exterior region, while under the object we have
07 + 0,Q: = 0 i Z(t),
OQs+ 0y (% + 1gH?) = —LH0,P, in I(t)
1 T\ 'H; 58115 priiYra )
with transmission conditions
(108) He=H;i, Qe¢=Qi, Pj=DPum on [I(f),

where I'(t) = 0Z(t) = 0E(t) denotes the contact points. We also need to prescribe equations of
the motion of the floating body. Such equations will be given in the following sections according
to the cases where the floating body is fixed, the motion of the body is prescribed, or the body
moves freely.

(106)

(107)

5.1.1. Basic structure of the equations. Once the equations of the motion of the floating body
are given, as we will see in the following sections, we can solve the equations in the interior
region (I07) and the problem will be reduced to the type considered in §Z5 with U = (Z,, Q..
We note that (I06]) can be written in the matrix form

U + A(U)d,U = 0.

As was explained in Example [I], the eigenvalues AL (U) of the coefficient matrix A(U) and the
corresponding unit eigenvectors e, (U) are given by

_ Q oy (1
MlU) = Vel £ 30, exlU) = s <iAi<U>>'
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Moreover, the unit vector jo defined in Remark [[I] is in this case given by ug = (1,0)T, so
that the condition g - e+ (U) # 0 is automatically satisfied. As was explained in §2.5] the
discontinuity of 9,U at the contact points plays an important role to determine the contact
points z. Concerning this discontinuity condition, we have the following proposition.

Proposition 9. Suppose that Uy = (Ze, Qo), Ui = (Z;,Q1)T, P;, and x+ satisfy (106])-(I08).
Then, the condition 0,Us — 0,U; # 0 on T'(t) is equwalent to 0y Ze — 0:Z; # 0 on T'(t).

Proof. Differentiating the boundary condition Z.(t,x4(t)) = Zi(t,z+(t)) with respect to t, we
obtain

O Zo + 240,72 = O Zi + 040, 7Z;  on F(t)
By the continuity equations in the interior and the exterior regions, we have 0;Z, = —0, Q. and
0 Z; = —0,Q), so that

T4 (0pZo — OnZy) = 0,Q0 — 0,Q; on  T'(t).
This gives the desired result. O

5.2. The case of a fixed floating body. In the case where the body is fixed, we impose the
condition

(109) Zi = Zlid on I(t),
where Z;q = Zjiq(x) is a given function defined on an open interval If.

5.2.1. Reformulation of the equations. We begin to solve the equations in the interior region
(I07). It follows from (I09) that Hi(t,z) = ho + Ziq(x) does not depend on t, so that the
continuity equation in ([I07) yields 9,Q; = 0. This means that @; does not depend on z, so that
we can write Qi(t,x) = ¢;(t). Plugging this into the momentum equation in (I07]) we have

: ¢ 1 1

which is equivalent to

Therefore, P; satisfies a simple boundary value problem

0. P; = —p(q‘ + 0, (2H2 +gH;)) in Z(t),

P, = Pym on [I'(t).
Notation 5. For a function F = F(t,x), we put [F] = F(t,z_(t)) — F(t,z4+(t)).

(110)

Integrating the first equation in (EDIID and using the boundary condition, we obtain

(1) if [y + gt =0

which is a solvability condition of the boundary value problem (II0]) for P;. Conversely, once ¢
and x4 are given so that (11 holds, we can resolve ([I0) for the pressure P; explicitly as

Pi(t,x) = Pagm — p {ql / H

1 1
+560° (g - Hi(x_(t))2> +glHi(a) - Hi(o-(0) )

Therefore, the equations in the interior region (I07) are reduced to a scalar ordinary differential

equation (IIIJ).
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We turn to reformulate the equations in the exterior region (I06]). As in §2.5] we will use a
coordinate transformation to reduce the equations on the unknown region £(¢) to those on a fixed
region £. Let z'™ and g‘}; be the initial contact points at time t = 0 such that z'* < glf and put
E_ = (—o00,2M), &, = (2", 00), and € =E_UE,. We use a diffeomorphism ¢(t,-) : £ — E(t)
and put (¢ = Zc o, he = Ho o, ge = Qc 0, and (; = Z; o . Such a diffeomorphism ¢ can be
constructed as in [{9]), that is,

(=

(112) o(t,x) =

=

r—zx'

x+ (=) (e (t) —2p) for ze By,

+

{az—kw(x_f‘ Jz_(t) —2) for z€E_,

with an appropriate choice of ¢ = ¢y and a cut-off function ¢ € C§°(R) satisfying ¢ (z) = 1 for
|z| < 1. As before, we will use the notation 95 and 97 which were defined by (7). Now, the
problem under consideration is reduced to

8204.0—1_8}0%3:0 in &,
(113) OF ge + 24202 e + <ghe - %%)afge —0 in &,
Ce =G, Ge=ai on €,
with the interior value g; of the horizontal water flux given by
1 1 ¢?
(114) G =573 +&Hil].
Jze) m 2H?

We impose the initial conditions of the form
(115) (Core)jimg = (€M) in & wy_ =2, g, ="

5.2.2. Local well-posedness. The equations in (II3)) can be written in the matrix form
Ofu+ A(u)dfu = 0,

where u = ((o,qe)", so that (II3)-(IIH) is almost the same type as the problem (7I)-(72)
considered in §2.5.41 Therefore, the compatibility conditions for (II3])-(II5]) can be defined in

the same way as Definition Bl in §2.5.51 Here, we calculate fj;’l = (Opw+)),_, in terms of the
initial data. Differentiating the boundary condition {, = (; with respect to ¢, we have 0;(. = 9,
on &, which is equivalent to 97 (e + #4105 (e = 0 ¢ + 2405 ¢ on OE. By using 97 ¢ = —I% qe
and 9f¢; = 0, we see that (95 (. — 97 ()4 = 05 qe on OE. Therefore, we obtain

: Opqi™ >
116 P = —— .
( ) =+l <8xgén a:(:Zlid |6§:ﬁ:

In view of this and the consideration in §5.1.1] we impose the following assumption on the data.

Assumption 13. The data (¢I*,¢l"), 2P, and Zyq satisfy the following conditions.

oz <z,
ii. infxe]f(ho + Zhd(a;)) > 0, infxeg(ho + Cén(a;)) > 0,
. infoee (Vo + @) — fhditl) > 0,
- (Velho + &) — [lhgm —221]),, > 0.
V. (0uZiia — 0 pe # 0
We can now state one of our main result in this section, which shows the well-posedness of
the shallow water model with a fixed floating structure on the water surface.

i

<
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Theorem 12. Let m > 2 be an integer and Iy an open interval. If the initial data (¢in, gim) €
H™(E), 21t € It, g™ € R, and Zyg € W™ (I¢) satisfy the conditions in Assumption [13, where
111,1 is defined by ([II6l), and the compatibility conditions up to order m — 1, then there exist

T > 0 and a unique solution (Ce,qe,T+,qi) to (IIB)—IID) with ¢ given by ([I12) in the class
C67Qe € QT:_(]lcj([()?T]va_J(é)); T4 € Hm(()?T)) and gi € Hm+1(07T)'

Proof. Given ¢ € W™(0,T), (II3) forms the same type problem in each exterior regions
£ _and £, as the problem considered in §2.5] so that we can apply Theorem [B to show the
existence of the solution ((e,¢e,z+) to (II3) under the initial conditions in (IIH]) satisfying
xy € H™(0,T7) for some Ty € (0,T]. Conversely, given x4 € H™(0,T), we can easily show the
existence of the solution ¢; € H™1(0,71) to ([I4) under the initial condition in (1)) for some
Ty € (0,T]. Tterating this procedure as in the proof of Theorem [G] we can construct a sequence
of approximate solutions, which converges to the desired solution. O

5.3. The case of a floating body with a prescribed motion. Since the floating body
is allowed only to a solid motion, its motion is completely determined by (zg(t),2c(t)) the
coordinates of the center of mass and 6(t) the rotational angle of the body. Without loss of
generality, we have ¢|,_; = 0. Suppose that the underside of the floating body is initially
parameterized by Zjq(z) on an open interval I, that is, Zi| —o = Z1ia- Consider a point of the
underside of the body and denote the coordinates of the point at ¢ = 0 by (X, Z). Let the
coordinates of the point at time ¢ be (z,z). Then, it holds that

7 = Zya(X), 2z = Zi(t,x),
(22220) = (ot itt) (2220
Therefore, we obtain

(117) (Zi(t,x) — 2g(t)) cos 0(t) — (x — x(t)) sinB(t) + 2¢(0)
= Zia((x — 26(8)) cos0(8) + (Zi(t, ) — 26(1)) sin 0(0) + 2(0)).

and that

This is the equation for the motion of the body and gives an expression of Z; implicitly in terms
of xg, 2q,0, and Z)q.

5.3.1. Reformulation of the equations. Proceeding as in §5.2.1] it is possible to reformulate the
equations in compact form. Due to the various degrees of freedom of the solid, the computations
are a bit technical and are postponed to Appendix[Al It is shown there that the surface elevation
and the horizontal water flux in the interior region are given by

Zi(t, ) = Yua(z — za(t),0(t)) + 2a(t),

Qilt.) = (‘fji)“) Tlra(t2)) +,(0)

for some smooth enough function ¢4 and some function g;(¢) of ¢ solving an ODE of the form
8tqi - F(qh TGy 2G, 07 UG7 W, atUGu atw7 xr—, ‘T-i-)

with F' in the class W™ under the assumption Zjq € W™ (I). As in the previous section,
we use the same diffeomorphism ¢(t,-) : £ — £(t) defined by (I12]) to transform the equations
in exterior region ([I00) and put (, = Zeow, he = Heop, ge = Qoo p, (G = Ziop, and ¢; = Q;0 .
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Now, the problem under consideration is reduced to

Of e+ 0%¢. =0 in &,
(118) OF o+ 2420840 + (ghe — ) 08¢ =0 i &,
=G, Ge=gi on 0E,
and
(119) oq;, = F (G, z¢, 26,0, Ug,w, 0y Ug, Ow, x_, xy).

We also impose the initial conditions of the form
(120) (Cere)jmp = (G ge") In &, wy_ =2P G, =T

5.3.2. Local well-posedness. ([18])—(120) is again almost the same type as the problem (71)—(72])
considered in §2.5.41 Therefore, the compatibility conditions for (II8])-(I20]) can be defined in
the same way as Definition Bl in §2.5.51 Here, we calculate fj;’l = (Opw+)),_, in terms of the
initial data. Differentiating the boundary condition Z,(t,z4(t)) = Zi(t,z+(t)) with respect to ¢
and using the equation 0;Z, + 9,Q. = 0, we obtain (0, Z, — amzi)‘aéi Ory = (0:Qe + atzi)bgi,
so that

(121) 2 = <—Ziiznl + 0o )
o 8%{(1;1 - 8.CUled ;p:{[i7
where Zlui = (0:Z1)),_, s given by

7 () = < in i <Zf?ix1;§;§>> _ <—6m2111d(:17)> .

with (z, 2%, U8, w™) = (z¢, 2¢, Ug, w)|,_,. Here, we used ([[33). We can now state one of our
main result in this section, which shows the well-posedness of the shallow water model with a
floating body on the water surface whose motion is prescribed.

Theorem 13. Let m > 2 be an integer and It an open interval. If the data ( n gimy e H™(E),
2 e I, " € R, th.l € Wm(It), and xq,2q,0 € H™2(0,T) satisfy the conditions in
Assumption[13, where x4 1s defined by (I21), and the compatibility conditions up to order m—1,

then there exist Ty € (0,T] and a unique solution (o, e, T+,q;) to (IR)—[@2Q) with ¢ given by
(m) in the class CO?QO € ﬂ;n:_olcj([ole]aHm_](é)); Tt € Hm(ole)} and q € Hm+1(07T1)‘

5.4. The case of a freely floating body. Finally, we consider the case where the floating
body moves freely according to the Newton’s laws under the action of the gravitational force and
the pressure from the air and from the water. Let m and ig be the mass and the inertia coefficient
of the body. Then, Newton’s laws for the conservation of linear and angular momentum have
the form
(122) moUg = —mge. + [7, (25 — Patm) Niia,
ig@tw = — f_’[(t) (Bl - Patm)ré : Nlid7
which together with (II7) constitute the equations of motion for the floating body.

5.4.1. Reformulation of the equations. Proceeding as in §5.2.1] and §5.3.1] and with the same
notations, the problem under consideration can be reduced to

8f€e+8}0Qe:0 in ¢,
(123) Of o+ 200840 + (ghe — ) 08¢ =0 in &,
Ce = Cis Qe = i on 0¢,
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and with W = (¢;, z¢g, 26, 0, Ug,w) solving an ordinary differential equation of the form
(124) oW =FW,z_,z)

with F' in the class W™ under the assumption Ziq € W™ (If) (see ([45)—(I46]) for more
precisions). The details of this technical reduction, which takes advantage of the so-called added
mass effect, are postponed to Appendix [Bl We also impose the initial conditions of the form

(125) (Ce7 QG)|t:(? - (C«ian7 qén) in §7 ‘T:I:‘t:() : 2117 . .

gi‘t:o - qinu (.Z'G, ZG7 07 UG7 w)‘t:() - (xgl, Zg’lu 07 U1n7 wln)'
5.4.2. Local well-posedness. Therefore, (123)—([125) is again almost the same type as the problem
([[I)-(22) considered in §2.5.41 Therefore, the compatibility conditions for ([23)-(I23)) can be
defined in the same way as Definition [{ in §2.5.51 Moreover, z' | = (Orz+)),_, can be given by
(I21). We can now state one of our main result in this section, which shows the well-posedness
of the shallow water model with a freely floating body on the water surface.

Theorem 14. Let m > 2 be an integer and It an open interval. If the data (*, ¢*) € H™(E),
2P e Iy, (qiin_,x?;l, Zin UL win) € RS, and Zyq € W™ (Iy) satisfy the conditions in Assumption
13, where Py s defined by (I2II), and the compatibility conditions up to order m — 1, then
there exist T > 0 and a unique solution ((e,qe,T+,Gi, Ta, 2¢,0) to (I23)-128) with ¢ given
by [I12) in the class (e, qe € ﬂ;”:_Ole([O,T];Hm_j(Q), vy € H™0,T), g € H™(0,T), and
xg,ZG,H € Hm+2(0,T).

6. SEVERAL EXAMPLES OF TRANSMISSION PROBLEMS

We present here several applications of the results proved in Section [3] on transmission prob-
lems. The first one, in 6.1 is a transmission problem with a fixed interface: it corresponds to
a conservation law with a flux which is discontinuous across the interface. A typical example
of application is given by the propagation of shallow water waves over a step-like discontinuous
topography. The second application, in §6.2] is a very classical free boundary transmission prob-
lem: we show how the issue of the stability of one-dimensional shocks for 2 x 2 conservations
laws falls in the general framework of §34l This provides an elementary proof of these results,
with an improved regularity threshold. The case of classical (Lax) shock is considered in §6.2.T]
while nonclassical, undercompressive, shocks are dealt with in §6.2.2]

6.1. Systems of conservation laws with discontinuous flux. Let us consider here a system
of two conservation laws, with a flux depending on the position. For instance, let us consider a
flux f on R™, and f on R, that is,

du+0,f(u)=0 in (0,T)xR_,
Ou+ 0, f(u)=0 in (0,7) xRy,

(126)

where f: U — R? and f : U — R? are smooth mappings defined on open subsets U and U of
R2. In addition, p transmission conditions are given at x =0 (p = 1,2, 3),

(127) N;(t)u|z:+o - N;)(t)U|z:70 = g(t)7
where N;}, and N, are p X 2 matrices.

Remark 16. A natural condition is to impose the continuity of the fluzes at the interface,
f(ul‘xzo) = f(u'|,_,), which is a nonlinear transmission condition. One can in general use a
nonlinear change of variables as in §2.9 or §6.2 to reduce to the case of a linear transmission
condition.
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Denoting A(u) = f'(u) and A(u) = f’(u), and using the same notations as in §3.2) the system
takes the form (82]), namely,
ou+ Au)d,u=0 in Qp,

(128) uj,_, = u(v) on R,,
Ny(t)u,_, = g(t) on (0,7),

and Theorem [§ can therefore be applied.

Example 4 (Shallow water equations with a discontinuous topography). Let us consider the
shallow water equations with a depth at rest hg for x <0 and hg for x > 0. The configuration

ho

7,

FIGURE 3. Shallow water with a discontinuous topography

under study here is described in Figure[3. This is a particular example of ([I26]) with

FCd) = (6 + 2o+ 0T and  F(Coq) = (a.
ho +¢ 2

1 2 1 2\T
+ Zg(ho + 0.
ho+Cq 28(0 ¢)7)

If A (ud) = y/g(ho + ¢ + = qucl >0 and Ay (u") = \/g(ho + (") = #J:Cr > 0, then one has p = 2
0
in Assumption [I] and two transmission conditions are needed; they are naturally given by the

continuity of the surface elevation ¢ and of the horizontal water flux q, that is,
1
U ‘z:O = ur‘z:O'

In order to apply Theorem [8, we need to check the invertibility of the Lopatinskii matriz (third
point in Assumption [I0), which is given here by

L(u\z:o) = (_g—(ul|x:0) e+(ur|x:o)) )

where 6_(u) denotes a unit eigenvector associated to the eigenvalue —\_(u) of A(u) and e (u)
a unit eigenvector associated to the eigenvalue Ay (u) of A(u). Using the expression for the
eigenvectors provided in Example [, the invertibility of the Lopatinskit matriz reduces to the
condition |A_(u'|,_)) + Ay(u'|,_,)| > 0, which is always satisfied. One can therefore apply
Theorem [8.

6.2. Stability of one-dimensional shocks. Let us consider again a system of two conservation
laws

(129) 9 fo(U) + 02 f(U) = 0,

where fo, f : U4 — R? are smooth mappings defined on an openset I/ in R? and a 2 x 2 matrix
f4(U) is assumed to be invertible. The problem of showing the stability of shocks for (I29)
consists in finding a curve z : [0,7] — R and U such that U is C' and solve (IZ9) on {(t,z) €
(0,7) x Ry z < z(t)} and {(t,z) € (0,T) x R; 2z > z(t)}, and satisfy the Rankine-Hugoniot
condition

(130) Z(fO(U|z:£(t)+O) - fO(U'z:g(t)fo)) = f(U‘:c:g(t)+O) - f(U|z:§(t)70)’
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This condition can be split into a nonlinear transmission condition
. I
(U0 Ulsaiyeg) = 0 with — ®(ul,u’) = [f(w") = f(u))] - [fo(u") = fo(u')]

and the evolution equation = = X(U|z:z(t)70, U|z:z(t)+0) with

Jo(ur) — fo(u')

131 ' ut) = [f(uh) = f(u)] - .
Denoting A(U ( ) ! f/(U), we are therefore led to consider the transmission problem
8tU+A(U)8 U=0 in  (—oo,z(t)) for te(0,7),
U+ AU)0,U =0 in  (z(t),+00) for te(0,T),
Uppoy = u™(2) on R,

(U|x:g(t)70’ U|x:§(t)+o) =0 on (07 T)

As for ([@0), we use the diffeomorphism (@2) to recast this transmission problem as an initial
boundary value problem

ou + A(u,09)0,u =0 in Qp,
(132) up,_, = u" on Ry,
) =0 on (0,T)
with x given by the resolution of
where x given by (I31]).

There are several kinds of shock. The most famous are the so-called Lax shocks which move
at a supersonic speed; more precisely, the number of positive eigenvalues for A(u, dy) in [I32)) is
equal to one and one boundary condition is needed; it is provided by the condition (IJ(u|z:O) =0
in (I32). There are also undercompressive shocks that travel at a subsonic speed. The number
of positive eigenvalues for A(u, dp) in (I32)) is then equal to two and two boundary conditions

are therefore necessary. One needs therefore an additional boundary condition to the condition
®(u|,_,) = 0 that comes from the Rankine-Hugoniot condition.

6.2.1. The stability of Lax shocks. As said above, for Lax shocks, the number of positive eigen-
values for A(u, dp) in ([I32)) is equal to one; this correponds to p = 1 and condition b) or ¢) in
Assumption The Kreiss—Lopatinskii condition in the third point of Assumption [I2]is there-
fore scalar. It is explicited in the assumption below for right-going and left-going Lax shocks
where for all function g defined on U, we use the notation

[9] = g(u) — g(u').
Assumption 14. Let U and U be open sets in R? and put U = L{ X U representing a phase
space of w. Let U CU and Uy C U be also open sets and put Uy = U x Uy representing a phase
space of w|,_,. The following conditions hold:

i. A(u) = diag(—A(u!), A(u")) € C®(MU) and @,X e C™Uy).

ii. For any u = (u',u")T € U, the matriz A(u™*) has eigenvalues Ay (ub") and —A_(u'F)
with A+ (ub") > 0. Moreover, one of the following conditions for all u = (u',u*)" € U;
holds:

- Right-going Lax shock

{Ai(ul) Tx(w)>0 and A(u')—x(u) <0,
| (Fo(uhe—(uh)) - [fo]*| > 0.
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- Left-going Lax shock

{A—(ul) +x(w) <0 and  Ag(ut) Fx(u) >0,
| (f5(ut)es (uh) - [fol*| > 0.

iii. There exists a C>®-mapping © : U — R* such that it defines a diffeomorphism from U
onto its image and for any u = (u',u")T € U; we have

O(u) = (®(u), x(u), ur)T.

Remark 17. Up to shrinking U and U , the third point is always satisfied. Indeed, as remarked
n [Mét01l], this follows from the local inversion theorem since ©'(u) is invertible at any point u
satisfying ®(w) = 0. In order to check this point, it is enough to prove that the partial derivative
of the mapping u — (®(u), x(u)) with respect to u' is invertible. Denoting by W(u) a 2 x 2
matriz defined by

WP = (F- [0 s P [A])
this partial derivative is given by the linear mapping
i (dg W (W) [@])[f] = W () f (ul)id
= x()(du W (w)[d)[fo] = W () f(u") Au' )i
observing by differentiating the identity W (u)[fo] = (0,1)T that
W (w)[i][fo] = W (u) fo(u')id,

the partial derivative can be written as
Wl =W () fo (uh) (x(w)ld — A(uh)) @,
which is invertible by the second point of Assumption [I2.

We can now state the following stability result for Lax shocks.

Theorem 15. Let m > 2 be an integer. Suppose that Assumption is satisfied. If u™ €
H™(R,) takes its values in ICO X Ko with ICO - Z/IO and Ko C Uy compact and conver sets, if
u'™(0) € Uy, and if it satisfies the compatibility conditions at order m — 1, then there ewists
T > 0 and a unique solition (u,z) to [(B32)-33) with w € W™(T) and z € H™1(0,T), and ¢
given by (@2)). Moreover, u,_, € H™(0,T).

Remark 18. The stability of multidimensional shocks was proved in [Maj83al, [Maj83b|, Maji2],
with improvements in [MétO1]. In space dimension one, this result shows the stability in W™ (T)
for m > 3 provided that the data is in Hm+1/2(]R+). Our proof, which takes advantage of the
specificities of the one-dimensional case, is much more elementary and provides an improvement
of these classical results since we only need m > 2 (and therefore one compatibility condition
less) with data in H™(R4.) (and therefore no loss of regularity).

Proof. There are two steps in the proof. We first transform the problem (I32]) into an initial
boundary value problem with a linear boundary condition, and we then prove that Assumption
is satisfied so that we can conclude with Theorem Using the third point of Assumption
[[4] it is equivalent to solve the initial boundary value problem satisfied by v = ©(u), namely,

ov + .Aﬁ(v, 0p)0,v =0 in Qp,
(134) V), = V" on Ry,
el v, =0 on  (0,7),
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with z given by the resolution of
(135) p=ef v, z(0)=0,

where (eg, eg, eg, eﬁ) denotes the canonical basis of R* and

Al (v,0¢) = (4,0 (v)) L AO 7 (v),00) (dy© " (v)).

In particular, the eigenvalues of LA*(v,d¢) are the same as those of A(u,dp) and if E is an
eigenvector of A(u,d¢p), the corresponding eigenvector of A%(v,d¢p) is Ef = ©/(u)E. By
the second point of Assumption [[4] the system (I34]) satisfies therefore condition b) or ¢) in
Assumption [I2] and the Lopatinskii matrix reduces to a scalar denoted Lﬁ(v‘zzo),

Li(v,_,) =€} - B (v),_,),

where E (v) is the eigenvector of A¥(v, d¢p) associated to its unique positive eigenvalue. From

out
the discussion above, one has Egut('v) = O'(u)Eout (u), where Eqy(u) is the eigenvector associ-
ated to the unique positive eigenvalue of A(u,d¢p). We have therefore

Li(v) = ©'(u)e! - Eoy(u),
= Vu®(u) - Egyi(u).

Let us assume for instance that the first condition holds in the second point of Assumption
4 (the adaptation if the second condition holds is straightforward). One then has Equ(u) =

0
A(uh)) and, with computations similar to those performed in Remark [[7, we obtain
L¥(v) = [fol " - fo(u)(x(w)ld — A(u'))e_(u')
= (x(w) + A (u)[fol - fi(u)e—(u);

the second point of the assumption implies that this quantity is nonzero, and we can therefore
conclude with Theorem [0l O

1
< e—(u) > (where as usual e_(u!) is the eigenvector associate to the eigenvalue —\_(u!) of

6.2.2. The stability of undercompressive shocks. In some applications, one can encounter shock
waves that violate Lax’s conditions. This is for instance the case for magnetohydrodynamics,
or phase transitions in elastodynamics, or van der Waals fluids. In the particular case of un-
dercompressive shocks, Lax’s conditions are violated but condition a) is satisfied in Assumption
This means that p = 2 (the number of positive eigenvalues for A(u,dy) in ([32) is equal
to two) and therefore that the system of equations (I32)—(I33]) is now underdeterminated. An
additional boundary condition is therefore necessary.

This additional condition requires some additional modeling and depends on the context: it
often comes from considerations based on the theory of viscosity-capillarity, see for instance
[STe83L for isothermal phase transitions or [AK91] for elastic rods. If such an additional
boundary condition is provided and if it satisfies an appropriate stability condition as in §3.4]
then the undercompressive shocks are stable. This extension of Majda’s work on Lax’s shock was
proposed in [Fre98, [Fre98], and studied in [CC99] in the one-dimensional case. The extension
to several dimensions was performed in (derivation of the Kreiss—Lopatinskii condition),
(linear estimates) and [Cou03] (nonlinear estimates). We show here that the framework
developed in 3.4 can be used to improve these results for the stability of one-dimensional
undercompressive shocks.

We shall consider here an general framework where the additional boundary conditions we
use to complement ([32)—(I33)) is of the form

(136) U(u,_,) =0,
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where ¥ is a smooth function satisfiying the assumption below. Note in particular that for
undercompressive shocks, the Lopatinskii matrix in the third point of Assumption [I2]is a 2 x 2
matrix; its invertibility corresponds to the condition stated in the second point of the assumption
below.

Assumption 15. Let U and U be open sets in R? and put U = Z/{ X U representing a phase

space of w. Let Z/{I cU and Ur C U be also open sets and put Uy = Z/{I X Ur representing a phase
space of w|,_,. The following conditions hold:

i. A(u) = diag(—A(u!), A(u")) € C®°WU) and ®,¥,x € C®U).

ii. For any uw = (u',u")T € U, the matriz A(u*) has eigenvalues Ay (ub") and —\_(ul")
with A+ (ub™) > 0. Moreover, for any w = (ul,u")T € U; the following conditions hold:

Ae(u) Fx(u) >0 and  Ae(u’) F x(u) >0

and the Lopatinskit matriz

< (x(w) + A=) (fo(uhe—(u)) - [fol = —(x(w) = A (u)) (fo(u)er (u)) - [fo]* >
V¥ -e_(uh) Vur V- eq(u")

1s invertible.

iii. There exists a C®-mapping © : U — R* such that it defines a diffeomorphism from U
onto its image and for all uw = (u',u")T € U; we have

O(u) = (P(u), ¥(u),0(u) "
with a mapping 0 : U — R2.

Remark 19. Up to shrinking U and U , the third point is always satisfied. Indeed, the second
point of the assumption shows that dy(®, V) has rank 2 so that u — (®(u),¥(u)) can be
completed to form a local diffeomorphism.

An easy adaptation of the proof of Theorem [I3] yields the following stability result for under-
compressive shocks. The same improvements as those described in Remark [I8 hold with respect
the result obtained by considering the one-dimensional case in [Cou03].

Theorem 16. Let m > 2 be an integer. Suppose that Assumption [[3 is satisfied. If u™
H™(R,) takes its values in ICO x Ko with ICO - Z/[(] and Ko C Uy compact and conver sets, zf
u'™(0) € Uy, and if it satisfies the compatibility conditions at order m — 1, then there exists
T > 0 and a unique solition (u,z) to (I32)—([I33]) complemented by [I30), with uw € W™(T) and
z € H™0,T), and ¢ given by @2). Moreover, u,_, € H™(0,T).

APPENDIX A. REFORMULATION OF THE EQUATIONS OF MOTION IN THE CASE AN OBJECT
WITH PRESCRIBED MOTION

We will begin to show that (II7) determines Z;(¢, ) under the assumptions that the center of
mass is close to its initial position, that the rotational angle is small, and that Z;q € W™ (I}).
By extending Zj;q outside of the interval Iy appropriately, we can assume that Zj;q € W"*°(R).
Then, we have the following lemma.

Lemma 18. Let m > 1 be an integer and suppose that Zyq € C' N W™>®(R). There exist
b0 € (0,%) and Yyq € C* N W2 (R X [89,00]) such that as long as |0(t)| < by we can solve
[II7) for Zi(t,x) uniquely in the form

(137) Zi(t,x) = Yua(z — za(t),0()) + za(t).
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Proof. We consider an auxiliary function
U(z,2,0) = zcosf — xsinh + 25(0) — Zyjq(x cos @ + zsin @ + x(0)),
which belongs to the class C* N W, v (R?). For § € (—%, %), we see that
0,V (z,2,0) = cos € — (0, Z1q)(x cos O + zsinf + x;(0)) sin 6
> (1 = (|02 Zal| Lo () tan |0]) cos 6.

In view of this we take 0y € (0,5) such that [0, Zdllpe(®)tanfp < 1. Then, it holds that

0,V(z,x,0) > 0 as long as |#| < 6y. Therefore, the 1mp1101t functlon theorem gives the desired
result. O

We proceed to solve the equations in the interior region (I07]). Let N; be a normal vector on
the underside of the floating body and rg(¢,z) a position vector of the point on the underside
of the body relative to the center of mass, that is,

it = (*407) ren = (0200

Here, we have eré = N;. Denoting
il
-r
T(rg) = G >
( ) <%|FG|2 ’
we have

(138) 9, T(rg) = (%NN) .

Let Ug(t) = (ug(t),wg(t))T and w(t) be the velocity of the center of mass and the angular
velocity of the body, respectively, that is, ug = Oixq, wg = dizq, and w = 0. Differentiating
([II7) with respect to ¢t and x, we see that

(139) Z?t (UG — wrG) N = —8 <<Ii;G> . T(I‘G)) .
which together with the continuity equation in (I07)) yields that there exists a function g;(t) of
t such that

(140) ait) = (254)) - Tlwte. ) + a0

Plugging this into the momentum equation in (I07), we see that P; satisfies a simple boundary
value problem

(141) 0Py = —4 (07 + F' + FU + F') in Z(1),
P = Pogm on TI'(t),

where

Fl(t,z) = 0, (G + Seh?

FU(t, ) (atUG > “T(r
Z?tw
FU(t z) = < () ) O T(ra(t, ).

0 T(ra(t,x)) = M(ra(t,z), Nia(t, z)) <Ii)c€g)> :

In view of
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where
e; Nig O —15 - Nia
M(rg(t,x), Nya(t, z)) = 1 0 0
-5 Nig 0 —(e.-1e)(rg - Nua)

with e, = (1,0)T and e, = (0,1)", we can rewrite F' and F'I as

1_ 2, (1 _(Uc) , (T(xc)
(142) + (UG) : <8x<T(rG) > T(rG)>> (UG> T g0, (H2),
w H; w 2
FI — <8tUG> T(rg), FW= <UG>  M(re, Nia) <UG> .
Orw w w
Notation 6. For a function F = F(t,x), we put (F) = f% fz(t) L and F* = F — (F).
I(t) H; !

We see easily that the boundary value problem (I4I)) for P; is solvable if and only if §; saisfies
0; = —((F') + (F1) + (F'))

(o)) -5 (%) ((52)
() (o (P2 ) ) () - Jetontany

Thanks of Lemma [I8], this can be written in the form

og = F (@, 76, 26,0,Ug,w, 0 Ug, Qw, v, 24)
with F' in the class W™ under the assumption Zjq € W™ (I). As in the previous section,
we use the same diffeomorphism ¢(t,-) : £ — £(t) defined by (II2]) to transform the equations
in exterior region (I00) and put {; = Zeop, he = Hoop, g = Qecop, G = Ziop, and ¢ = Qjop.
We remind here that Z; and Q; are given by (I37)) and (I40]), respectively. Now, as claimed in
g5.3.1] the problem under consideration is reduced to

ange + 8360Qe =0 in ¢,
aﬁﬁ4%%%+@m—%ym;=onlg
=G, Q=i on 0€&,

and
Ogy = —((F"y + (F') + (F"™).

APPENDIX B. REFORMULATION OF THE EQUATIONS OF MOTION IN THE CASE OF A FREELY
FLOATING OBJECT

As before, we can solve the equations in the interior region (I07). Thanks of Lemma [I8 we
can express Z; in terms of zg,2g,0, and Zyq as (I317). By the continuity equation in (I07]),
there exists a function @;(t) of ¢ such that @; is expressed as ([40). Then, by the momentum
equation in ([I07), the pressure P; satisfies the boundary value problem (I41), whose solvability
is guaranteed by (II9]). Then, P; satisfies

p * * *
axgiz—E((FI) + (FI* 4 (F1"),
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On the other hand, by using (I38]) and integration by parts we can rewrite (122]) as

(45 (%)= () f oo

where we used the boundary condition P; = Py, on I'(¢). Eliminating the pressure P; from
these two equations, we have

(mIC(l)sz 12) 9, <[i)G> _ <—ﬂ‘(l)gez> _p/z(t)((FI)* L (Fy 4 (FIII)*)(T(;;[%W'

Here, we see that

/z(t)(FH)*(T(rG))* _ /Z(t) (T(rg))* ® (T(rc))*at (Uc;) ,

H; H “
w0 (5 9. -, [ Do
N P (‘ff) (("52)

. @G) | <8x<T(rG) iT(rG)»* <‘qu> + 802"

(P = (‘ff) - (M(rg, Nia)) (‘fj’) .

Remark 20. We note that the matric M,(H;, r¢) is symmetric and nonnegative, so that Mo+
M. (Hi, rg) is positive definite and invertible. Expressing the contribution of the force F™' under

the form M,(H;,rq)0: ( ) plays therefore a stabilizing effect which corresponds to the added-

mass effect of paramount importance for the study of fluid-structure interactions (see for inctance

[CGNO3, [GMS14]).

As before, we use the diffeomorphism ¢(¢,-) : £ — £(t) defined by ([II2)) to transform the
equations in exterior region (I06]) and put (¢ = Ze o @, he = Heo @, e = Qe 0 @, (i = Zjo ¢, and
gi = Qi o . We remind here that Z; and @; are given by (I39) and (I40), respectively. Now,
the problem under consideration is reduced to

820Ce+8360Qe:0 in ¢,
(144) OF e+ 2420800 + (ghe — )06 =0 i &,

=G Ce=a on 0¢,
(145) g = —((F") + (F1) + (F'1)),

)2, () = o Mutatre () < [ty SR
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