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VALUE DISTRIBUTION OF PAINLEVÉ

TRANSCENDENTS OF THE FIRST AND THE SECOND KIND

Shun Shimomura

Abstract: We examine value distribution properties of the first and the second
Painlevé transcendents. For every transcendental meromorphic solution φ(z) (resp.

ψ(z)) of the first (resp. second) Painlevé equation, the deficiency δ(g, φ) (resp.

δ(g, ψ)) of a small function g(z) does not exceed 1/2. Furthermore, for φ(z), the
ramification index satisfies ϑ(g, φ) ≤ 5/12.

1. Introduction
Consider the first and the second Painlevé equations

w′′ = 6w2 + z,(I)

w′′ = 2w3 + zw + α(II)

(′= d/dz), where α ∈ C. All the solutions of these equations are meromorphic
in the whole complex plane ([1]). It is easy to see that every solution of (I) is
transcendental. Equation (II) admits a unique rational solution, if and only if
α ∈ Z ([5]). For transcendental meromorphic solutions of these equations, the
deficiency δ(a,w) and the ramification index ϑ(a,w) (a ∈ C ∪ {∞}) were exam-
ined by [2], [6], [7], [10]. Throughout this paper we use the standard notation
of the value distribution theory concerning a meromorphic function f(z) such as
m(r, f), N(r, f), N1(r, f), T (r, f), S(r, f), δ(a, f), ϑ(a, f) (r > 0, a ∈ C∪{∞}) ([3]).
Furthermore, for a meromorphic function g(z), we say that g(z) is small with re-
spect to f(z), if T (r, g) = S(r, f). Define the deficiency and the ramification index
of a small function g(z) by

δ(g, f) = lim inf
r→∞

m(r, 1/(f − g))
T (r, f)

, ϑ(g, f) = lim inf
r→∞

N1(r, 1/(f − g))
T (r, f)

.

The purpose of this paper is to estimate these quantities for transcendental
meromorphic solutions of (I) and (II). Let φ(z) (resp. ψ(z)) be an arbitrary tran-
scendental meromorphic solution of (I) (resp. of (II)). Our main results are stated
as follows:

Theorem 1.1. If g(z) is small with respect to φ(z), then δ(g, φ) ≤ 1/2.

Theorem 1.2. If g(z) is small with respect to ψ(z), then δ(g, ψ) ≤ 1/2.
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2 SHUN SHIMOMURA

Theorem 1.3. If g(z) is small with respect to φ(z), then ϑ(g, φ) ≤ 5/12.

Remark 1.1. In particular, for every complex number a ∈ C, ϑ(a, φ) ≤ 1/6 (see [6],
[7], [3]).

Our results are proved in Sections 3, 4 and 5. The auxiliary functions H(z)
and K(z) in the proofs of Theorems 1.1 and 1.2 are due to [9]. In the proof of
Theorem 1.3, we need to choose a different type of auxiliary function Ω(z). In these
proofs, we use the additional notation as follows: for a set A ⊂ C,

N(r, f)|A =
∫ r

0

(
n(ρ, f)|A − n(0, f)|A

)dρ
ρ

+ n(0, f)|A log r,

N1(r, f)|A =
∫ r

0

(
n1(ρ, f)|A − n1(0, f)|A

)dρ
ρ

+ n1(0, f)|A log r,

n(ρ, f)|A =
∑

σ∈A,|σ|≤ρ
f(σ)=∞

µ(σ, f), n1(ρ, f)|A =
∑

σ∈A,|σ|≤ρ
f(σ)=∞

(µ(σ, f)− 1),

where µ(σ, f) denotes the multiplicity of the pole z = σ of f(z).

2. Lemmas
Substituting the Laurent series expansion of the solution φ(z) (or ψ(z)) into

(I) (or (II)), we have the following.

Lemma 2.1. Around a movable pole z = z∞ of φ(z),

φ(z) =
1

(z − z∞)2
− z∞

10
(z − z∞)2 − 1

6
(z − z∞)3 + γ(z − z∞)4 +O((z − z∞)5),

and, around a movable pole z = z∞ of ψ(z),

ψ(z) =
±1

z − z∞
∓ z∞

6
(z − z∞) +

(∓1− α)
4

(z − z∞)2 + γ(z − z∞)3 +O((z − z∞)4),

where γ is a parameter depending on the initial condition.

The following is a lemma of the Clunie type (cf. [3; Lemma 2.4.2 and Remark
1 in §2.3]).

Lemma 2.2. Let f be a transcendental meromorphic function such that

fnP (z, f) = Q(z, f), n ∈ N,

where P (z, u) and Q(z, u) are polynomials in u and its derivatives with meromorphic
coefficients

{
aµ(z)

∣∣ µ ∈M}
. If the total degree of Q(z, u) as a polynomial in u and

its derivatives is at most n, then

m(r, P (z, f)) = O
( ∑

µ∈M

m(r, aµ)
)

+ S(r, f).

The following lemma is due to [4; Theorem 6] (see also [3]).
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Lemma 2.3. Let F (z, u) be a polynomial in u and its derivatives with meromorphic
coefficients

{
bν(z)

∣∣ ν ∈ N}
. Assume that u = f is a transcendental meromorphic

solution of the differential equation F (z, u) = 0, and that F (z, 0) 6≡ 0. Then

m(r, 1/f) = O
(∑

ν∈N

T (r, bν)
)

+ S(r, f).

3. Proof of Theorem 1.1
We put Φ(z) = φ(z)− g(z). It is easy to see that

(3.1) Φ′′(z) = 6Φ(z)2 + 12g(z)Φ(z) +G(z),

where
G(z) = 6g(z)2 + z − g′′(z).

If G(z) 6≡ 0, then, by Lemma 2.3, we have

m(r, 1/Φ) = O(T (r, g) + log r) + S(r,Φ) = S(r, φ),

which implies that δ(g, φ) = 0.
We may suppose that G(z) ≡ 0. Write (3.1) in the form

(3.2) U ′(z) = −2Φ(z)

with

(3.3) U(z) = Φ′(z)2 + 2g′(z)Φ′(z)− 4Φ(z)3 − 12g(z)Φ(z)2 − 2(6g(z)2 + z)Φ(z).

Furthermore, by (3.2),

(3.4) U(z) = U(c)− 2
∫ z

c

Φ(t)dt

for c satisfying U(c) 6= ∞. Consider the function

(3.5) H(z) = U(z)/Φ(z).

From (3.3), (3.1) and Lemma 2.2, we have

m(r,H) = O
(
m(r,Φ′/Φ) +m(r,Φ) + T (r, g) + log r

)
(3.6)

= S(r,Φ) = S(r, φ).

The supposition G(z) ≡ 0 implies that g(z) is also a solution of (I). By Lemma 2.1,
every pole of Φ(z) is double, and, by (3.4), it is a zero of H(z). Hence, using (3.6),
we have

(3.7) (1/2)N(r,Φ) ≤ N(r, 1/H) ≤ T (r,H) +O(1) ≤ N(r,H) + S(r, φ).

It is easy to see that every pole of H(z) is a zero of Φ(z). By (3.5) and Lemma 2.2,

N(r,H) ≤ N(r, 1/Φ) = T (r,Φ)−m(r, 1/Φ)+O(1) ≤ N(r,Φ)−m(r, 1/Φ)+S(r, φ).

Substituting this into (3.7), and using N(r,Φ) ≤ N(r, φ) + N(r, g) ≤ T (r, φ) +
S(r, φ), we obtain

m(r, 1/Φ) ≤ (1/2)T (r, φ) + S(r, φ),

which implies δ(g, φ) ≤ 1/2.
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4. Proof of Theorem 1.2
The function Ψ(z) = ψ(z)− g(z) satisfies

(4.1) Ψ′′(z) = 2Ψ(z)3 + 6g(z)Ψ(z)2 + (6g(z)2 + z)Ψ(z) + G̃(z),

where
G̃(z) = 2g(z)3 + zg(z) + α− g′′(z).

When G̃(z) 6≡ 0, by the same argument as in Section 3, we can show that δ(g, ψ) = 0.
Hence, in what follows, we suppose that G̃(z) ≡ 0, namely, that g(z) is a solution
of (II). It is easy to see that (4.1) is equivalent to

(4.2) V ′(z) = −Ψ(z)2 − 2g(z)Ψ(z)

or

(4.3) V (z) = V (c)−
∫ z

c

(
Ψ(t)2 + 2g(t)Ψ(t)

)
dt, c ∈ C, V (c) 6= ∞,

where

V (z) = Ψ′(z)2 + 2g′(z)Ψ′(z)−Ψ(z)4 − 4g(z)Ψ(z)3(4.4)

− (6g(z)2 + z)Ψ(z)2 − (4g(z)3 + 2zg(z) + 2α)Ψ(z).

Put
K(z) = V (z)/Ψ(z).

From (4.4) and Lemma 2.2, it follows that

(4.5) m(r,K) = S(r, ψ).

By Lemma 2.1, every pole of Ψ(z) = ψ(z)− g(z) is simple and belongs to

either P =
{
σ

∣∣ ψ(σ) = ∞, g(σ) 6= ∞}
or P ′ =

{
σ

∣∣ g(σ) = ∞}
.

Especially, around z = z∞ ∈ P, Ψ(z) = ±(z − z∞)−1 +O(1). Using this expression
and (4.3), we have

(4.6) K(z∞) = ±1 for every z∞ ∈ P.

As will be shown later, K(z) satisfies

(4.7) K(z) 6≡ ±1.
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4.1. Derivation of the conclusion under (4.7). Note that

N(r,Ψ) =N(r,Ψ)|P +N(r,Ψ)|P ′ ≤ N(r,Ψ)|P +N(r, g)

≤N(r,Ψ)|P + S(r, ψ).

By (4.5), (4.6) and (4.7), we have

N(r,Ψ)|P ≤N(r, 1/(K + 1)) +N(r, 1/(K − 1)) ≤ 2T (r,K) +O(1)

≤2N(r,K) + S(r, ψ).

Hence

(4.8) N(r,Ψ) ≤ 2N(r,K) + S(r, ψ).

By the definition of K(z), each pole of K(z) belongs to either Z =
{
σ

∣∣ Ψ(σ) = 0
}

or P ′. By (4.3) and Lemma 2.1, if σ ∈ P ′ \ Z, then σ is a pole of Ψ(z) and is not
a pole of K(z). Hence every pole of K(z) belongs to Z and is not a pole of V (z).
Using this fact and Lemma 2.2, we have

N(r,K) ≤N(r, 1/Ψ) ≤ T (r,Ψ)−m(r, 1/Ψ) +O(1)(4.9)

≤N(r,Ψ)−m(r, 1/Ψ) + S(r, ψ).

From (4.8), (4.9) and N(r,Ψ) ≤ N(r, ψ) + N(r, g) ≤ T (r, ψ) + S(r, ψ), it follows
that

m(r, 1/Ψ) ≤ (1/2)T (r, ψ) + S(r, ψ),

which implies δ(g, ψ) ≤ 1/2.

4.2. Verification of (4.7). It remains to verify (4.7). To do so, we suppose the
contrary

(4.10) K(z) ≡ ±1.

Then we have the following.

Lemma 4.1. The functions g(z) and ψ(z) are solutions of the Riccati differential
equation

(4.11) w′ = ∓(w2 + z/2).

Proof. From (4.3) and (4.10), we have

V (z) = V (c)−
∫ z

c

(
Ψ(t)2 + 2g(t)Ψ(t)

)
dt = ±Ψ(z),
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which implies

(4.12) Ψ′(z) = ∓(Ψ(z)2 + 2g(z)Ψ(z)).

On the other hand, by (4.4),

Ψ′(z)2 + 2g′(z)Ψ′(z)−Ψ(z)4 − 4g(z)Ψ(z)3(4.13)

−(6g(z)2 + z)Ψ(z)2 − (4g(z)3 + 2zg(z) + 2α)Ψ(z) = ±Ψ(z).

Substitution of (4.12) into (4.13) yields

(4.14) F∓(z)Ψ(z)± F ′∓(z) = 0, F∓(z) = −2g(z)2 ∓ 2g′(z)− z.

If F∓(z) 6≡ 0, then T (r, ψ) = O(T (r, g)), which contradicts the condition T (r, g) =
S(r, ψ). Hence, F∓(z) ≡ 0, which implies that g(z) satisfies (4.11). Putting Ψ(z) =
ψ(z)− g(z) in (4.12), we can verify that ψ(z) is also a solution of (4.11). ¤

Simple computation shows that every solution of (4.11) is expressible in the
form

(4.15) χ(z) = ±h′(z)/h(z), h(z) = A(−z/ 3
√

2),

where A(s) is a solution of the Airy equation

(4.16)
d2y

ds2
− sy = 0.

Consider the sectors defined by

S0 : −π/3 < arg s < π, S1 : π/3 < arg s < 5π/3, S2 : π < arg s < 7π/3.

For each Sj (j = 0, 1, 2), A(s) admits an asymptotic expression

A(s) = cjs
−1/4(1 + o(1)) exp(−2s3/2/3) + c′js

−1/4(1 + o(1)) exp(2s3/2/3),
(4.17,j)

(cj , c′j) ∈ C2 \ {(0, 0)}
as s→∞ through the sector Sj ([8; §§8, 21]). Then, we have

T (r, χ) = O(T (r, h)) = O(r3/2).

Furthermore, by (4.17,0), if c0c′0 6= 0, then

A(s) = c′0s
−1/4(1 + o(1)) exp(−2s3/2/3)

(
(c0/c′0) + o(1) + exp(4s3/2/3)

)

as s→∞ through S0. This implies that A(s) possesses a sequence of simple zeros

(4.18) sm = (3π/2)2/3m2/3(1 +O(m−1))eπi/3, m = 1, 2, ...

in S0. Hence
N(r, χ) ≥ Cr3/2

for some C > 0. In the case where c0 = 0 or c′0 = 0, we obtain the same estimate.
For example, if c0 6= 0, c′0 = 0, then c1c′1 6= 0, and there exists a sequence analogous
to (4.18) in S1 (see [8; §22]). Thus we have the following.
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Lemma 4.2. For every solution χ(z) of (4.11), we have

C1r
3/2 ≤ T (r, χ) ≤ C2r

3/2,

where C1, C2 are some positive constants.

From this lemma, it immediately follows that T (r, ψ) = O(T (r, g)), which is a
contradiction. Thus the proof of the theorem is completed.

Remark 4.1. Every solution of (4.11) satisfies (II) with α = ∓1/2. Let η1, η2 be
solutions of (4.11) such that η1−η2 6≡ 0. Since they are expressible in the form η1 =
±h′1/h1, η2 = ±h′2/h2, where h1, h2 are linearly independent solutions of (4.16), we
have N(r, 1/(η1 − η2)) = 0. Therefore, equation (II) with α = ∓1/2 admits a
one-parameter family of solutions

{
χc(z)

∣∣ c ∈ C ∪ {∞}} with the properties:
(1) C1r

3/2 ≤ T (r, χc) ≤ C2r
3/2 for some positive constants C1 = C1(c), C2 = C2(c);

(2) if c1 6= c2, then N(r, 1/(χc1 − χc2)) = 0.

5. Proof of Theorem 1.3
We may suppose that g′(z) 6≡ 0 (cf. Remark 1.1). Recall that Φ(z) = φ(z) −

g(z) ( 6≡ 0) satisfies (3.1).

5.1. Case I. First consider the case where

(5.1) G(z) ≡ 0.

Then we have the following.

Lemma 5.1. Suppose that Φ(z0) = 0. If g(z0) 6= ∞, then z = z0 is a simple zero
of Φ(z). If g(z0) = ∞, then it is a quadruple zero of Φ(z).

Proof. Suppose that g(z0) 6= ∞. If Φ(z0) = Φ′(z0) = 0, then, by (3.1) with G(z) ≡
0, we have Φ(z) ≡ 0, which is a contradiction. Hence z = z0 is a simple zero of
Φ(z). Suppose that g(z0) = ∞. Since g(z) satisfies (I), by Lemma 2.1, we have
Φ(z) = γ′(z − z0)4 +O((z − z0)5), γ′ 6= 0, which implies the second assertion. ¤

Put Z0 =
{
σ

∣∣ Φ(σ) = 0, g(σ) = ∞}
. By Lemmas 2.1 and 5.1,

N1(r, 1/Φ) = N1(r, 1/Φ)|Z0 ≤ 2N(r, g) = S(r, φ),

which implies ϑ(g, φ) = 0.

5.2. Case II. In what follows we suppose that

(5.2) G(z) 6≡ 0.

We write (3.1) in the form

(5.3) W ′(z) = −12g′(z)Φ(z)2 − 2G′(z)Φ(z)
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or

(5.4) W (z) = W (c)−
∫ z

c

(
12g′(s)Φ(s)2 + 2G′(s)Φ(s)

)
ds, W (c) 6= ∞,

where

(5.5) W (z) = Φ′(z)2 − 4Φ(z)3 − 12g(z)Φ(z)2 − 2G(z)Φ(z).

We put

(5.6) Ω(z) =
W (z)2

g′(z)2Φ(z)3
.

5.2.1. The following lemmas are used in the proof.

Lemma 5.2. Suppose that, for some k ≥ 2, Φ(z0) = Φ′(z0) = · · · = Φ(k)(z0) = 0.
Then G(z0) = G′(z0) = · · · = G(k−2)(z0) = 0.

Proof. Consider the case where g(z0) = ∞. Comparing both sides of

(3.1) Φ′′(z) = 6Φ(z)2 + 12g(z)Φ(z) +G(z), G(z) = 6g(z)2 + z − g′′(z)

around z = z0, we see that z = z0 is a double pole of g(z). By supposition, Φ(z) =
O((z − z0)k+1) around z = z0. Differentiating (3.1), we have

(5.7,j) Φ(j+2)(z) = 6(Φ(z)2)(j) + 12(g(z)Φ(z))(j) +G(j)(z)

for j = 0, 1, ..., k − 2. Substitution of z = z0 into (5.7,j) yields G(z0) = G′(z0) =
· · · = G(k−2)(z0) = 0. In the case where g(z0) 6= ∞, we can derive the same
conclusion from (5.7,j) by the same argument. ¤

Lemma 5.3. If Φ(z0) = Φ′(z0) = 0 and g(z0) 6= ∞, then W (z0) = W ′(z0) =
W ′′(z0) = 0.

Proof. This lemma immediately follows from (5.5), (5.3) and

W ′′(z) = −12g′′(z)Φ(z)2 − 24g′(z)Φ(z)Φ′(z)− 2G′′(z)Φ(z)− 2G′(z)Φ′(z). ¤

Lemma 5.4. (i) If z = z∞ is a pole of Φ(z) satisfying g(z∞) 6= ∞ and g′(z∞) 6= 0,
then Ω(z∞) = 16.

(ii) Ω(z) 6≡ 16.

Proof. By assumption and Lemma 2.1, Φ(z) = (z − z∞)−2 +O(1) around z = z∞.
Substituting this into (5.6) and using (5.4), we obtain Ω(z∞) = 16. To show the
second assertion, suppose that Ω(z) ≡ 16, namelyW (z)2 = 16g′(z)2Φ(z)3. By (5.5),

(5.8)
(
Φ′(z)2 − 4Φ(z)3 − 12g(z)Φ(z)2 − 2G(z)Φ(z)

)2= 16g′(z)2Φ(z)3.
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On the other hand, by (5.4)

(5.9) W (z) = W (c)−
∫ z

c

(
12g′(s)Φ(s)2 + 2G′(s)Φ(s)

)
ds = ±4g′(z)Φ(z)3/2.

Differentiating (5.9), we have

Φ′(z)2 = 4
(

Φ(z)± g′′(z)
3g′(z)

Φ(z)1/2 +
G′(z)
6g′(z)

)2

Φ(z).

Substituting this into (5.8), we see that Φ(z) satisfies an algebraic equation whose
coefficients are rational functions of z and g(j)(z) (0 ≤ j ≤ 3). By Valiron and
Mohon’ko’s theorem ([3; Theorem 2.2.5]), T (r,Φ) = O(T (r, g)), which is a contra-
diction. ¤

5.2.2. We put P0 =
{
σ

∣∣ Φ(σ) = ∞}
, Z∗ =

{
σ

∣∣ g′(σ) = 0
}
, P∗ =

{
σ

∣∣ g(σ) = ∞}
.

By Lemma 2.1, we have

N(r,Φ) ≤ N(r,Φ)|P1 +N(r,Φ)|Z∗∪P∗(5.10)

≤ N(r,Φ)|P1 + 2(N(r, 1/g′) +N(r, g))

≤ N(r,Φ)|P1 + S(r, φ),

where
P1 = P0 \ (Z∗ ∪ P∗).

Applying Lemmas 2.2 and 2.3 to (3.1) with (5.2), we have m(r,Φ) = S(r, φ),
m(r, 1/Φ) = S(r, φ), and hence

(5.11) m(r,Ω) = O
(
m(r,Φ′/Φ) +m(r,Φ) +m(r, 1/Φ) + T (r, g)

)
= S(r, φ).

Note that every pole belonging to P1 is double. By Lemma 5.4 and (5.11),

N(r,Φ)|P1 ≤ 2N(r, 1/(Ω− 16)) ≤ 2T (r,Ω) +O(1) ≤ 2N(r,Ω) + S(r, φ).

Substitution of this into (5.10) yields

(5.12) N(r,Φ) ≤ 2N(r,Ω) + S(r, φ).

5.2.3. The set of all the zeros of Φ(z) is expressible in the form

Z = Z1 ∪ Z2 ∪ Z3

with

Z1 =
{
σ

∣∣ Φ(σ) = 0, Φ′(σ) 6= 0
}
, Z2 =

{
σ

∣∣ Φ(σ) = Φ′(σ) = 0, Φ′′(σ) 6= 0
}
,

Z3 =
{
σ

∣∣ Φ(σ) = Φ′(σ) = Φ′′(σ) = 0
}
.
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To estimate N(r,Ω), we note that every pole of Ω(z) belongs to the set Z ∪ P0 ∪
Z∗ ∪ P∗, and that

N(r,Ω) ≤ N(r,Ω)|Z\(Z∗∪P∗) +N(r,Ω)|Z∩(Z∗∪P∗)(5.13)

+N(r,Ω)|(Z∗∪P∗)\(Z∪P0) +N(r,Ω)|P0 .

Furthermore,

N(r,Φ)|Z∗∪P∗ ≤ 2(N(r, 1/g′) +N(r, g)) = S(r, φ),(5.14)

N(r, 1/Φ)|(Z1∪Z2)∩(Z∗∪P∗) ≤ 2(N(r, 1/g′) +N(r, g)) = S(r, φ),(5.15)

N1(r, 1/Φ)|(Z1∪Z2)∩(Z∗∪P∗) ≤ N(r, 1/g′) +N(r, g) = S(r, φ),(5.16)

N(r, 1/Φ)|Z3 ≤ 3N(r, 1/G) = S(r, φ),(5.17)

N1(r, 1/Φ)|Z3 ≤ 2N(r, 1/G) = S(r, φ),(5.18)

where (5.17), (5.18) are derived from Lemma 5.2. By Lemma 5.3, Ω(z) is analytic
at z = σ ∈ Z2 \ (Z∗ ∪ P∗). This implies

N(r,Ω)|Z\(Z∗∪P∗)(5.19)

≤3N(r, 1/Φ)|Z\(Z∗∪P∗) − 6N1(r, 1/Φ)|Z1∪Z2\(Z∗∪P∗)

≤3T (r,Φ)− 6N1(r, 1/Φ)|Z1∪Z2\(Z∗∪P∗) +O(1).

Using (5.16) and (5.18), we have

N1(r, 1/Φ)|Z1∪Z2\(Z∗∪P∗)

=N1(r, 1/Φ)−N1(r, 1/Φ)|Z3 −N1(r, 1/Φ)|(Z1∪Z2)∩(Z∗∪P∗)

=N1(r, 1/Φ) + S(r, φ).

Combining this with (5.19), we have

(5.20) N(r,Ω)|Z\(Z∗∪P∗) ≤ 3T (r,Φ)− 6N1(r, 1/Φ) + S(r, φ).

Futhermore, by (5.15) and (5.17),

N(r,Ω)|Z∩(Z∗∪P∗)(5.21)

= O
(
N(r, 1/Φ)|(Z1∪Z2)∩(Z∗∪P∗) +N(r, 1/Φ)|Z3 +N(r, g) +N(r, 1/g′)

)

=S(r, φ),

N(r,Ω)|Z∗∪P∗\(Z∪P0) = O
(
N(r, 1/g′) +N(r, g)

)
= S(r, φ).(5.22)

Since Ω(σ) = 16 at σ ∈ P0 \ (Z∗ ∪ P∗) (cf. Lemma 5.4), by (5.5)

N(r,Ω)|P0 =N(r,Ω)|P0∩(Z∗∪P∗)(5.23)

=O
(
N(r,W )|P0∩(Z∗∪P∗) +N(r, 1/g′)

)

=O
(
N(r,Φ)|Z∗∪P∗ + T (r, g)

)
= S(r, φ).

Substituting (5.20), (5.21), (5.22) and (5.23) into (5.13), we have

(5.24) N(r,Ω) ≤ 3T (r,Φ)− 6N1(r, 1/Φ) + S(r, φ).
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5.2.4. From (5.24)and (5.12), it follows that

N(r,Φ) ≤ 6T (r,Φ)− 12N1(r, 1/Φ) + S(r, φ).

Hence,

12N1(r, 1/Φ) ≤ 6T (r,Φ)−N(r,Φ) + S(r, φ)

= 5T (r,Φ) +m(r,Φ) + S(r, φ) = 5T (r,Φ) + S(r, φ),

which implies ϑ(g, φ) ≤ 5/12. Thus the proof is completed.
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