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OSCILLATION RESULTS FOR »n-TH ORDER
LINEAR DIFFERENTIAL EQUATIONS WITH
MEROMORPHIC PERIODIC COEFFICIENTS

SHUN SHIMOMURA

Department of Mathematics, Keio University

ABSTRACT. Consider n-th order linear differential equations with meromorphic peri-
odic coefficients of the form w(™) + R, _1(e*)w(™ =1 ...+ Ry (e®)w’ + Ro(e*)w = 0,
n > 2, where R, (¢) (0 < v < n — 1) are rational functions of ¢. Under certain as-
sumptions, we prove oscillation theorems concerning meromorphic solutions, which
contain necessary conditions for the existence of a meromorphic solution with finite
exponent of convergence of the zero-sequence. We also discuss meromorphic or entire
solutions whose zero-sequences have an infinite exponent of convergence, and give a
new zero-density estimate for such solutions. In the proofs, we utilize asymptotic ex-
pressions of solutions of associate equations. Our theorems and their corollaries are
extensions or improvements of previously known results concerning linear equations
with entire periodic coefficients.

1. INTRODUCTION

Consider equations of the form
(1.1) w™ 4+ A, 1 ()Y 4 4 A () 4+ Ag(eH)w =0, n>2

('=d/dz), where A, (t) (0 < v <mn — 1) are rational functions of ¢ admitting poles
at most at t = 0, oo only. The coefficients of (1.1) are entire periodic functions, and
every solution is entire. In the case where n = 2, the zero distribution of solutions
was first examined by [8]. Extension studies concerning (1.1) have been carried on
by several authors, and various oscillation theorems have been obtained ([2], [4],
12], [14], [15], [16).

In this paper we extend such results to meromorphic solutions of linear equa-
tions with meromorphic periodic coefficients. Some of our results, even in the
case restricted to entire solutions, are also improvements of previously known ones
concerning equations with entire periodic coefficients. We treat n-th order linear
differential equations of the form

E) 0w+ R, 1()w™ Y + ... 4 Ri(e*)w + Ro(e*)w =0, n > 2.

Here R,(t) (0 < v < m — 1) are rational functions of ¢ which may admit poles
other than ¢ = 0 or oo, and hence the coefficients R, (e*) are meromorphic on C.
Throughout this paper we suppose the following conditions on (E):
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(a) around t = o,

(1.2) Ro(t) =t at™ — qeN, ag#0,
k=0
(1.3) R, (t) :tq”Za,,,kt_k or =0, 1<v<n-1,
k=0

qv € Z7 Q.0 7£ 07
where
(1.4) @ <qgn—-1—-v)/n forl<v<n-2, Gn-1 < 0;

(b) around t =0,

(1.5) Ro(t)=t""Y bpth,  peZ, by#0,
k=0
(1.6) R,(t) =t bt* or=0, 1<v<n-—1,
k=0

Py € Z; bu,O 7& 07

(1.7) po<pn—1—v)/n for1<v<n-—2, p,_1<0, ifp>1,
(1.8) p, <0 for1<v<n-—1, if p <0;

(c) equation (E) possesses at least one solution which is nontrivial and mero-
morphic on the whole complex z-plane C.

We put

n—1

(1.9) P=|JP cc—{o},

v=0

where each P, is the set of all the distinct poles of R, (t) other than ¢ = 0 or occ.
Clearly P is a finite set. If (E) possesses a meromorphic solution with poles, then
P is not empty. By the change of the variable t = €*, (E) is taken into the equation

(aE)  9"w+ R, 1 ()" w + - + Ry (t)9w + Ro(t)w = 0, 9 = t(d/dt),

which is called the associate equation of (E). For an arbitrary solution ¢(z) of (E),
there exists a solution ®(t) of (aE) such that ¢(z) = ®(e?) at least around a point
z = 2o at which ¢(z) is analytic. Then, ®(¢) is continued meromorphically to R,
if and only if ¢(z) is meromorphic on C. Here R denotes the universal covering of
C — {0}, namely the Riemann surface of logt. In general, solutions of equations of
the form (aE) have a branch point at t = £ € P. In the case which we are going to
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treat, the coefficients of (aE) need to satisfy suitable conditions under which (aE)
possesses a nontrivial solution meromorphic on R. For example, if every & € P
is an apparent singular point, namely a regular singular point at which all the
characteristic exponents are integers and the series expansion of every solution
does not contain a logarithmic term, then every solution of (aE) is meromorphic
on R. Such conditions for n = 2 are found in [9], [21; Chapter 6], [22]; see also
examples in Section 3.1.2.

Our main results and their corollaries are stated in Sections 2 and 3. Theorem
2.1 is an extension of oscillation results for the entire periodic coefficients cases ([8;
Theorem 1], [12; Theorem 2|), which gives necessary conditions for the existence
of a meromorphic solution of (E) satisfying A\(¢) < +oo. Here A(f) denotes the
exponent of convergence of the zero-sequence of a meromorphic function f, namely

Af) = limsup 2 N1/ 1)

r—00 log r

in which N(r,g) denotes the counting function (see [18], [20], [21]). Theorem
2.3 gives a zero-density estimate for every meromorphic solution of (E) satisfying
A(¢) = +oo. For (1.1) with entire periodic coefficients, it is known that a result cor-
responding to Theorem 2.1 is also valid under the condition log N(r,1/w) = o(r)
instead of AM(w) < 400 ([2], [4], [12]). Theorem 2.3 enables us to replace this by a
weaker condition of the form liminf, ., r~*log N(r,1/w) < Cy for some Cy > 0
(Remark 2.3). Furthermore, combining this theorem with Corollary 3.3 which fol-
lows from Theorem 2.1, we estimate the zero-density of solutions of the Hill equation
(Proposition 3.4). Theorem 2.2 or Corollary 3.5 contains the affirmative answer to
the conjecture by Chiang and Wang [15] that every nontrivial solution of

w(”)+(ez+Ko)w:0, n>3 KyeC

satisfies A(¢) = +oo (Section 3.2). For (E) with entire periodic coefficients, The-
orem 2.4 gives a sufficient condition under which arbitrary linearly independent
solutions xo(2), x1(2), -+, Xn—1(2) satisfy max{A(xo0),...; A(xn—1)} = +o0; it is an
extension of [7; Section 3, Fact (B)] (see also [10; Theorem 1], [11], [13; Theorem
4], [23]). In the proofs of these results, our main idea is to examine the asymp-
totic behaviour of solutions of (aE) near the singular points ¢t = oo and ¢ = 0.
The asymptotic integration has been used in the study of the zero distribution of
solutions of linear equations ([5], [6], [17], [19]). In Section 4, we give asymptotic
solutions of (aE) and sectorial domains in which the expressions of them are valid.
In Section 5, we define a zero-ample solution at ¢ = oo (or at ¢t = 0) of (aE), and
show that it admits infinitely many zeros in some sectorial domain. Furthermore
we give a characterisation of a solution which is not zero-ample. In Section 6, we
prove Theorems 2.1 and 2.3. In the proof of Theorem 2.3, in addition to the zero-
density estimate in Section 5, we employ the Wiman-Valiron theory. In Sections 7
and 8, observing the relation between solutions of (aE) near ¢ = oo and near ¢t = 0
carefully, we prove Theorems 2.2 and 2.4.

Throughout this paper, in addition to the standard notation of the Nevanlinna
theory such as T'(r, f), N(r, f), A(f), we use the notation below:
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(1) We write ¢(r) < 9(r) or ¥(r) > ¢(r) as r — oo, if p(r) = O(¢(r)) as
r — 00.

(2) For a set A, §A denotes the cardinal number of A.

(3) For 0 € C and for m € Z — {0}, O[t?]; /., denotes a formal series expressed

as t7 >, oo ckt*/™ (e € C). When f(t) admits a convergent series expression of
the form f(t) = 7>, ~, cxt®/™ around ¢*/™ = 0, we also write as f(t) = O[t]1/m-

2. MAIN THEOREMS

We define oy, (k> 0) by
1/n
{—tq > akt_k} =19/" > " ayt ™, ap = (—ag)'/",
0<k<gq/n k>0
near t = co. When p € N, we define 5 (k > 0) by
1/n
{(—D”“t‘p > bkt’“] =P Bttt By = —(=bo)"/",
0<k<p/n k>0

near ¢ = 0. Here ax, by (kK > 0) are the coefficients of (1.2) and (1.5). When

q/n €N, t4/" > 0<k<q/n axt~F is the approximate n-the root of [1], [7]. Put

— a/n Xk -k
(2.1) Vao(t) =1t > q/n_kt :
0<k<g/n
_ B
2.2 = ¢~p/n R 4k N).
(2.2) O R D D e A )
0<k<p/n

If p <0, then we put Vy(t) = 0.

Theorem 2.1. Suppose that (E) possesses a meromorphic solution w = ¢(z) (# 0)
satisfying A(¢) < +oo. Then ¢(z) is expressible in the form

5(2) = 0(c”)
23 o) = ([~ )Pt explon Vi) + b)),
Eep

and one of the following must hold:

nls(P) = (n—1)(q¢+p)/2 = (Rn—1(00) — Rp—1(0)) € N U {0};
(ii) ¢/n € N, p/n € N, and

Iy(P) = (n=1)(q+p)/(2n) = (Rn-1(00) = Bn—1(0)) /1 +Woo tg/n +woBp/m € NU{0};
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(iii) ¢/n ¢ N, p <0, and, for some m € Z satisfying m < nl,(P),
pm = (2m — (n — 1)q — 2Rn_1(00))/(2n)

s a root of the equation

n—1

(2.4) Pt 4> R(0)p” =0
v=0

(iv) ¢/n € N, p <0, and, for some m € Z satisfying m < I4(P),
pm =m — (n—1)q/(2n) — Ryp—1(00) /1 + wectg/n

is a root of (2.4).

Here,
(a) (&) € {0} UN, Io(P) = > cep 1(8);
(b) (woo,wo) s some pair of n-th roots of 1;
(¢) K is a constant given by

(n—1)p/(2n) — R,—1(0)/n in case (i),
L (n —1)p/(2n) — Ry—1(0)/n — wofBy/n in case (ii),

Pm in case (iii),

Dm in case (iv);

(d) P(7) is a polynomial in T which satisfies P(0) # 0 and is not divisible by
"¢ for every € € P satisfying (&) € N, and in particular, when q/n € N, P(t'/™)
is a polynomial in t such that P(€'/™) # 0 for every € € P satisfying 1(&) € N.

Remark 2.1. In the theorem above, for each solution ¢(z) such that A(¢) < +oo,
the integer I4(P) is uniquely determined. If P = (), then every solution is entire,
and hence I4(P) = 0. There exists a case where P # () and every solution is entire
(see Section 3.1.2).

Remark 2.2. When P = (), by (1.4) and (1.7) (or (1.8)), we have R,,_1(t) = C €
C. Then, by the transformation w = e~ ¢*/™v, our problem is reduced to one
concerning (E) with R,,_1(t) = 0.

In the special case where q/n ¢ N, p < 0, we have the following:
Theorem 2.2. Suppose that q/n ¢ N and that p < 0. Put n = nody, ¢ = qodo,
where dy is the greatest common divisor of n and q. If there exists a meromorphic
solution w = ¢(z) (£ 0) of (E) satisfying \(¢) < +o0, then

(1) ¢;(2) = ¢(z+2jmi) (j =0,1,...,n0 — 1) are linearly independent solutions
of (E) satisfying A(¢;) < +o0;

(2) the equation

n—1

(2.5) ph 4D gV R(0)p" =0
v=0

admits ng distinct roots expressed as —(n—1)qo/2— Ry—1(00)/do+m; withm; € Z
(7 =0,1,...,n0 — 1) satisfying mo < nglg(P), mo < mq < -+ < Myy_1.

For the zero-density of solutions, we have the following:
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Theorem 2.3. Let ¢(z) be an arbitrary meromorphic solution of (E) satisfying
A¢) = +00. Then we have

(2.6) log N(r,1/¢) = O(r)
and
(2.7) log N(r,1/¢) > (mo(p,q)/n)r + O(logr)

as r — 0o, where

min{p,q}  ifp>1,
mo(p, q) = {

if p < 0.

Remark 2.3. This theorem implies that the condition A(¢) < +oo of Theorem 2.1
or 2.2 can be replaced by

h’rIEiOIOlfTil 1Og N(Irv 1/¢> < mO(p7 Q)/n

Theorem 2.4. Suppose that P =0, R,,_1(t) = 0, and that either of the following
holds:

Hp=>1

(ii) p < 0, ¢/n € N, and a g, (w! — wi') & Z for every pair (j,5') of integers
satisfying 0 < j < j' < n — 1, where w = exp(27i/n).
Then, for arbitrary linearly independent solutions xo(2),x1(2),..-s Xn—1(2) of (E),
we have max{A(xo), A\(x1)---s A(Xn-1)} = +00.

3. COROLLARIES AND EXAMPLES

3.1. Corollaries of Theorem 2.1. From Theorem 2.1, we can derive sufficient
conditions under which a meromorphic solution of (E) satisfies A(¢) = +oc.

Corollary 3.1. Let ¢(z) = ®(e*) (#Z 0) be a meromorphic solution of (E) such
that ©(t) [[eep(t — €)Y ©) s analytic on R, where 1*(&) € NU{0}, £ € P. Suppose
that, for 15(P) = ccp t"(§), one of the following holds:

(i) ¢/n €N, p/n ¢ N, p>1, and

nly(P) —(n—1)(qg+p)/2 — (Rn-1(c0) — Rp—1(0)) € NU{0};
(ii) ¢/n € N, p/n € N, and, for every (ji,j2) € Z2,
I5(P)—=(n—1)(g+p)/(2n) = (Rn—1(0) = R —1(0)) /n+w arg n+w”? B, 1 & NU{0},

where w = exp(2mi/n).

Then \(¢) = +o0.

Corollary 3.2. Suppose that q/n ¢ N, p/n € N, or that q/n € N, p/n & N, p > 1.
Then every nontrivial meromorphic solution of (E) satisfies A(¢) = +oc.

Observing that every entire solution ¢(z) of (E) satisfies I;(P) = 0 in Corollary
3.1, we have the following:
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Corollary 3.3. Suppose that p > 1, R;,—1(00) — R,,—1(0) > 0, and that either of
the following holds:

(i) ¢/n ¢ N or p/n ¢ N;
(i) ¢/n € N, p/n € N, and, for every (ji1,j2) € Z2,

—(n = 1)(q+p)/(20) ~ (Ru1(00) = Rues(0))/m + &7 gy + w95, & N U0},

Then every nontrivial entire solution of (E) satisfies A(¢) = +oo; under the addi-
tional conditions P =0, R,_1(t) =0, every nontrivial solution of (E) is entire and
satisfies A\(¢p) = +o0.

3.1.1. Hill equation. Consider the Hill equation
2

(HE) % + (@0 +201 cos(22) + -+ 20, cos(2g2) ju =0, O, £0.

By the change of the variable s = 2iz, (HE) is taken into

d?w s
el + Ro(e®)w = 0,
1
Ro(t) = — (60 +O1(t+t7) o+ Ot + t—‘I)).

For every odd integer ¢, it is known that every solution ¢(z) of (HE) satisfies
A(¢) = 400 ([8]). When ¢ is even, we put

1 1/2
[Z > @q_kt—k} =172 "t g =0}%/2.

k>0

Note that ag/o = B4/2. For example, if 041 =60y 2 =--- =0, =0,1> q/4,

then ag 0 = B2 = Gq/2®(;1/2/4. By Corollary 3.3 and Theorem 2.3, we have the
following;:

Proposition 3.4. Suppose that (HE) has either of the following properties:
(i) ¢ is odd;
(ii) q is even, and £2aq/2 — q/2 ¢ N U {0}.

Then every solution ¢(z) of (HE) satisfies

log N(r,1/¢) > qr + O(logr), log N(r,1/¢) = O(r)

as T r — OQ.

3.1.2. Meromorphic coefficients cases. Consider equations of the form
(Eq) w” + Ry (e*)w’ + Ro(e*)w =0

with

(3.1) Ri(t)=0,  Ro(t)= g + (),
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t
(3.2) Ri(t)=-1,  Ro(t)=-7—7 -1
and with
(3.3) Ri(t) = i R(t)_2_t2_1
. 1 - r_ 17 0 - t :

The associate equations of (Eq) with (3.1), (3.2), (3.3) possess linearly independent
solutions given by

(3.4) 1(t) =T "1+ 0[T"1), @3i(t)=T*(1+O0[T)),
®3(t) =T(1+ O[T), ®3(t) = 1+ O[T]; + ®3(t)log T,
(3.6) di(t) =1+ O[3, 3(t) =T?(1+ O[T1)

(T =t — 1), respectively, around the regular singular point ¢ = 1. By (3.4), every
solution ¢(z) (£ 0) of (Eg) with (3.1) is meromorphic. By Corollary 3.1 with
I3 (P) = 1, we have A(¢) = +oo. Equation (Eg) with (3.2) possesses a one-parameter

family of entire solutions {¢c(z) = CP(e?) | C € C}. (Note that every solution
of the associate equation is analytic around ¢t = 0.) By Theorem 2.1, (iii), we have
AMpc) = 400 for every C € C — {0}. Although R;(e*) with (3.3) is meromorphic,
every solution of (Ey) with (3.3) is entire. By Corollary 3.2, it satisfies A(¢) = +o0.

3.2. Corollaries of Theorem 2.2. From Theorem 2.2, we immediately have the
following:

Corollary 3.5. Suppose that ¢ and n are relatively prime, and that p < 0. If the
characteristic equation

n—1
(3.7) ph A+ N VR, (0)p” =0
v=0

has a multiple Toot or has a root p. such that p, + (n—1)q/2+ R,,—1(c0) € Z, then
every meromorphic solution ¢(z) of (E) satisfies \(¢) = +00.

Corollary 3.6. Under the same supposition as in Corollary 3.5, if (E) possesses a
meromorphic solution ¢(z) (# 0) such that A\(¢) < 400, then ¢;(z) = ¢(z + 2jmi)
(j=0,1,...,n—1) are linearly independent solutions of (E) satisfying A\(¢;) < +o0.

Consider an equation of the form

(3.8) w™ 4+ Kjw' + Ry(e*)w = 0, n >3,
Ro(t):thq—l—'-'—i—th—FLo, Lq%O, L, eC (nggq),
K1€C—{x}x<0},

where n and ¢ are relatively prime. Equation (3.7) is written in the form

(3.9) P+ n" " Kip+n"Ly=0.
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Since n > 3, (3.9) has a root p = p, such that Im p, # 0, or has a multiple root
p = 0. Hence every solution of (3.8) satisfies A\(¢) = +oo. This result is an extension
of [15, Theorem 3.2].

In the case where n = 2, Ry (t) =0, Ry(t) = t+ Kj or in the case where n = 3,
Ro(t) =0, Ry(t) = K1, Ro(t) =t + Ko, a result corresponding to Corollary 3.6 is
known ([10], [15; Theorem 3.1]). For example, as is shown in [15], when K; = —7/9,
the equation
(3.10) w® + Kjw' + (e —2/9w =0, K, e€C
has the linearly independent solutions

do(2) = (1 + (3/2)e*/3) exp(—3e*/3 — (2/3)2),
¢1(2) = do(z +2mi),  ¢2(2) = ¢go(z + 4i)

satisfying A(¢;) < +oo (j = 0,1,2). The characteristic equation corresponding to
(3.10) is given by

(3.11) p® +9Kip—6=0.

When K; = —7/9, (3.11) has the roots —2, 1,3 € Z. For every K; € C—{-7/9},

(3.11) has a root p = p, ¢ Z. Hence by Corollary 3.5, every solution of (3.10) with
Ky # —7/9 satisfies A\(¢) = +o0.

4. ASYMPTOTIC SOLUTIONS OF (aE)

4.1. Propositions. Formal solutions of (aE) are given by the following:

Proposition 4.1. Near t = oo, equation (aE) possesses formal solutions of the
form

W;(t) = Y;(t) exp(w! Vo (t) + K; log t), j=0,1,...,n—1,

w = exp(2mi/n),

T fa/n &N,

! —(n—1)q/(2n) — Rp—1(00)/n + w ay/p if ¢/n € N.
Here Vo (t) is the function given by (2.1) and Y;(t) (0 < j < n —1) are formal
power series of the form
Yi(t) =Y e(t"" ¢(0) = 1.
h>0

In particular, when q/n € N,

Yi(t) =3 ¢j(mh)t "

h>0

Let M., be a sufficiently large positive constant and 6 a sufficiently small
positive constant. For each p € Z, in the universal covering R of C— {0}, we define
the sector S, by

Sy={teR|ur—68<(g/n)argt < (u+ 1)m, [t| > M}
Then U,ez Sy = Roo = {t € R | [t] > Moo}
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Proposition 4.2. For each sector S, (u € Z), equation (aE) possesses linearly
independent solutions ¢, 0(t), ..., oun—1(t) which admit the asymptotic representa-
tions

(4.1) o, (t) ~ W;(t), j=0,1,..,n—1,

as t — oo through the sector S,. Furthermore these solutions are uniquely deter-

mined by (4.1).
When p € N, we also have the following:
Proposition 4.3. Suppose that p € N. Neart = 0, equation (aE) possesses formal
solutions of the form
WO t) =Y, (t) exp(wi Vo (t) — 2logt),  j=0,1,..,n— 1,

0 { —(n—=1)p/(2n) + R, -1(0)/n if p/n ¢ N,

J —(n—1)p/(2n) + Rp—1(0)/n+w'B,/,  ifp/n € N.

Here Vy(t) is the function given by (2.2) and Yj(o) (t) (0 <j<mn-—1) are formal
power series of the form

0 n
YO =Y Syt 8(0) = 1.
h>0

In particular, when p/n € N,

h>0
For each p € Z, denote by Sﬂ the sector given by

Sh={teR|ur < (p/n)argt < (n+1)w+6, |t| <eo},

where 0 and g( are sufficiently small positive constants.

Proposition 4.4. Under the supposition p € N, for each sector SB (n € Z),

equation (aE) possesses linearly independent solutions goi%(t), ~~~7905321_1(t) which
admit the asymptotic representations

(4.2) POt ~ WO, j=01.,n -1,

ast — 0 through the sector Sg. Furthermore these solutions are uniquely determined
by (4.2).

Propositions 4.3 and 4.4 are obtained from Propositions 4.1 and 4.2 by putting
t =1/7 and using (1.5).



KSTS/RR-99/002
Opstber BRENTIAL EQUATIONS WITH MEROMORPHIC PERIODIC COEFFICIENTS 11

4.2. Proofs of Propositions 4.1 and 4.2. Let w be an arbitrary solution of
(aE). Then the column vector function

w
Jw
w = D(t) : ,  D(t) = diag[1,t79/",...,t 79"~/
9" L

satisfies a system of the form

(S) dw = A(t)w,
A(t) = DOE(MDE) " — D)D) )
0 1 0 ... 0
. o )
=(t) = ' 0
: : .. 1 0
0 0 - .. 0 1
-Ry —Ry -+ -+ —Ry_o —R,_

Observing (1.4), we can verify that

n—2
A(t) =93 Apt™F 4 Y T N AR Dy,
vr=0

k>0 k>—quv/n
o 1 0o --- 0
. 0 1 . .
Ay = : ~ ol, Do=(¢/n)diag0,1,....,n —1].
0 0 0 1
_aO 0 “ .. 0

Note that Ay has the distinct eigenvalues w’(—ag)'/"™ = wiag (j = 0,1,...,n — 1).
When ¢/n € N, system (S) admits a formal fundamental matrix solution of the
form

U(t) exp(tq/" > AP+ AL log t>, Ut)=> Ut

0<k<g/n k>0

Here Uy (k > 0) are n by n matrices, and Ay (0 < k < ¢/n), A, are diagonal matri-
ces; in particular Ag = (ao/(g/n)) diag[l,w, ...,w™ ], and Uy € GL(n, C) satisfies
Uy P AgUp = g diag[l,w, ...,w™ '] (see [26; Sections 10, 11]). Hence equation (aE)
has formal solutions of the form

(43) W) =i exp(t/" ST dut Tt + Ry logt ),
0<k<g/n

Yi(t) =) ént™", EGo=1, dj0=
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In the case where ¢/n ¢ N, putting 7 = t*/™ in (S), we have
Iw = nA(T")w, 0 = 7(d/dr)
with

nA(t") = 74 Z nApT " 4 Z Ajrk,

0<k<gqg/n k>0

From this we obtain formal solutions of (aE) expressed as

(44)  W;(t) =Y, (t)exp (tq/” N Gt Ry log t),
0<k<g/n
~ - N - J
Vi)=Y &ut ™" Go=1 ajo= YN w<j<n-1).
h>0 qa/n

It is known that, for each sector S, there exist uniquely determined linearly
independent solutions ¢, o(t), ..., un—1(t) of (aE) admitting the asymptotic rep-
resentations

Cuit) ~W;t) (or ~W;(t), j=01,...,n—1

as t — oo through the sector S, ([3; Theorem A}, see also [24], [25]).
By the facts above, it is sufficient to show that (4.3) (or (4.4)) coincides with

the formal solution W;(t) of Proposition 4.1. We write W;(t) in the form

W](t) = eXp(Qj (t))a Qj (t) == tq/n Z djyk;t_k + '%j 10gt + O[t_l]_l.
0<k<g/n

By induction on v € N, we can verify that

v v—1

d
,191/ — ty_ NV tu—l
g vt g

d
+ - 4+ Nyt N/ =v(v—1)/2,

aa
and that
(exp( (1)) ™)/ exp(€ (1)) = Q(£)" + NY_, ()2 (&) + Ot~/ .

Using (1.4) and observing ¢/n € N, we have

(4.5) W)~ (19” + Ry (09" 4+ Ry(8)9 + Ro(t)) W;(t)
=W, (£) "L (0" + Rt ()9" "YW, (t) + Ro(t) + O[tn—D9/m=1]_,
=t (t))" + %n(n —1) <(tQ;-(t))”_2(tQQ;-’(t)) + (19} (t))”‘l)

+ Ry 1 (00) (1% (1)) + Ro(t) + O[t" D4/ =1,
=0.
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Note that t(t) = w/agt¥™(1 + O[t™]_1), and that

(4.6) (45 (6))" 2 (5 (1) + (¢ (£)"
= wl(g/n)ap~ e Va/m L Q[p(n—Da/n=1)

By the definition of V. (),
(4.7)  —Ro(t) = (tVL ()" + nag ™~ agt" 9™ 4 Ot He/n=1]
Substitution of these into (4.5) yields

(£€25(1)" — (V. ()"

—nw™’ (wjaq/n —(n—1)q/(2n) — Rn_l(oo)/n) af~n=ba/n

+ O[t(n—l)q/n—l]_l — O,
from which we obtain

tQ}(t) = VIV () + (wjaq/n —(n—1)q/(2n) — Rn_l(oo)/n> +O[t™ 1.

This implies that W;(t) coincides with W;(t). In case ¢/n & N, replacing O[t~']_1,
Ofttn=Ya/n=1]_, by O[t=Y/"]_, ,, Oft(n—Da/n=1/n] | respectively, in the argu-
ment above, and using

(#5 ()" 2 (29 (1)) + (¢t ()"

— Wi (g/n)ap— D/ QpnVa/n1/
— Ro(t) = (tVL, ()" + Ofttn=Da/n=t/m_,

instead of (4.6), (4.7), respectively, we can verify that V:f/j(t) = W;(t). Thus the
propositions are proved.

5. ZERO-AMPLE SOLUTIONS OF (aE)

Recall the sector S, and the corresponding linearly independent solutions
©u,0(t)s ey oun—1(t) of (aE) given by Proposition 4.2. Let x(¢) be an arbitrary
nontrivial solution of (aE). In each sector S, it is uniquely expressed as

(5.1) X() = Yu,00u,0(t) + -+ Yun—1Pun—1(t), Vu,j € C.

We call x(t) a zero-ample solution at t = oo, if, for some p (€ Z), there exist at
least two distinct indices 7,5’ (0 < j < j' <n —1) such that v, ;v # 0.

Proposition 5.1. Let x(t) be a zero-ample solution at t = oo. Then, for some
sector S,

gt e S, | x(t) =0, Mo < Jt| <1} > rt/m
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as T — OQ.

Proof. There exists a sector S, such that expression (5.1) of x(¢) contains at least
two non-vanishing coefficients. Since the opening of S, is larger than nm/q, there
exist a pair (j1,j2) (j1 # j2) of indices and the direction argt = 0y = 6y(j1,j2) in
the interior of S,, with the properties:

(1) ’y/i,jlryﬂ»jz % 07

(2) Re((wj2 — wjl)aotq/”) = 0 on the ray argt = 6p;

(3) for every j satisfying j # ji1,j2 and v, ; # 0, Re((w’ — w)apt?™) < 0 on
the ray argt = 6.
Then, for a sufficiently small positive constant £, we have

x(t) =Vp,g2 Pr.j (t) [Vu,h/’ﬁt,jz T Ppja (t)/%wd (t) + 0<1)]
~inga Pins (O [Tinis inza + exp((@ = ) (no /@)t (14 0(1)) + 0(1)]

as t — oo through S(fp,e) = {t € S, | |argt — 6p| < e}. This yields
ﬁ{t € S(0o,¢) ! X(t) =0, My < |t| < 7“} > ra/m,

from which the desired estimate follows. [

Proposition 5.2. Suppose that 1(t) (£ 0) is not a zero-ample solution at t = oo.
Then, in every sector S,,, we have

P(t) = v0pp.4. (1),
where the constant vy (# 0) and the index j. are independent of L.

Proof. By definition, 1(t) is expressed as ¥(t) = () Pu,j(uw) () Fujw) # 0) in
each S,. By Proposition 4.2,

V() ~ V(Wi (@),  and () ~ Vg1 ey Wit (8)

as t — oo through S, N'S,+1 # 0. Viewing the asymptotic behaviour, we have
J(u) = j(p+1) and 7, j(u) = Vu+1,j(u+1)- Repeating this procedure, we can verify
the assertion. [J

Proposition 5.3. For each (u,j) (n € Z,0 < j < n—1), the solution ¢, ;(t) of
Proposition 4.2 is not zero-ample at t = 0o, if and only if the formal series Y;(t) is
convergent around t = oo.

Proof. 1f Y;(t) is convergent, then, clearly, ¢, ;(t) = W;(t) (t € Rs) is not zero-
ample. Suppose that ¢, ;(t) is not zero-ample, and that ¢t € S,,. Note that e2nmit ¢
S)i4+24- By Propositions 5.2 and 4.2,

(5.2) Spu,j(eznmt) _ ¢M+2q,j (e2n7rit) ~ Wj (e2n7rit) _ eZm@ijj (t)

as €2"™'t — oo through S, 124, namely as ¢ — oo through S,,. On the other hand,
by the monodromic property, there exist constants Cy, ..., (), _1 such that

(53) Pu,j (€2nﬂit) = COSD;L,O(t) + Cn—l(Pu,n—l(t)v
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and hence, by Proposition 4.2,
(5.4) @u,j(e%mt) ~ CoWo(t) + -+ Cpnoa Wia(t)

as t — oo through S,,. Since the opening of S, is larger than nm/q, from (5.2) and
(5.4) it follows that C; = e?"*i™ C; =0 (I # j). Hence, by (5.3), we have

O <€2n7rz't) — 62nnjm90,u,j (t),
which implies that ¢.(7) = 77", ;(T™) satisfies ¢.(e*™'7) = ¢.(7), and that
pulT) ~ T () = V(1) exp(w! Veo (7))

around 7 = oco. Therefore Y;(t) converges around ¢t = oco. Thus the proof is com-
pleted. [

Remark 5.1. In the case where p € N, we call a solution x(°) () of (aE) a zero-ample
solution at t = 0, if x(9)(1/7) is zero-ample at 7 = oo. By Propositions 5.1 and 4.4,
there exists a sector 520 such that

t{t € 520 | O =0, 1/r<|t| < 0} > rP/m

as r — o0o. Furthermore, by Propositions 4.4, 5.2 and 5.3, we have the following;:
(1) if YO (t) (£ 0) is not zero-ample at t = 0, then, for every u € Z,

O (1) = 1900 (1)

in 527 where 7 (# 0) and the index jEk*) are independent of p;
0

(2) for each (i, j), the solution ¢,

(t) is not zero-ample at ¢ = 0, if and only
if Yj(o)(t) is convergent around t = 0.
Remark 5.2. Suppose that p < 0. Then ¢ = 0 is at most a regular singular point

of (aE). For convenience’ sake, in this case, we regard an arbitrary solution y(? ()
(£ 0) of (aE) as non-zero-ample at ¢t = 0.

6. ProOOFs oF THEOREMS 2.1 AND 2.3

6.1. Solution of (aE) which is zero-ample neither at co nor at 0. Suppose
that (aE) possesses a meromorphic solution ®(t) (# 0) which is zero-ample neither
at t = oo nor at ¢ = 0. Then, by Propositions 4.1, 5.2 and 5.3, around ¢t = oo,

(6.1) B(t) = YO (1)15(%) exp(wee Voo (1)),
oy = { 200 D) Rl ita/ngN.
—(n—1)q/(2n) — Rp—1(00) /N + weotg/n if ¢/n € N,

in which Y()(t) = O[1]_y, (if ¢/n ¢ N), = O[1]_1 (if ¢/n € N) satisfies
Y () (00) # 0 and converges near t = 00, and ws is an n-th root of 1. Furthermore,
when p > 1, by Proposition 4.3 and Remark 5.1, around ¢ = 0,

(6.2) O(t) = YO (1)t exp(woVo(t)),
4(0) = { (n —1)p/(2n) — Ry —1(0)/n if p/n ¢ N,
(n—1)p/(2n) — Ry—1(0)/n — wofBy/n if p/n € N,
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in which Y (¢) = O[1]y,, (if p/n & N), = O[1]; (if p/n € N) satisfies Y9 (0) # 0
and converges near t = 0, and wy is an n-th root of 1. There exists an integer 1o € N
such that the multiplicity of every pole of ®(¢) in R does not exceed . This fact
is verified by substituting a Laurent series expansion of ®(¢) into (aE) around each
pole. We can choose non-negative integers ¢(£) (£ € P) as small as possible in such
a way that ®(¢) [[ecp(t — €)49) is analytic on R.

6.1.1. Case p > 1. Consider the function

(6.3)  F(t)=a(t) (H (t— €)L(5))t‘“(°) exp(—woVo(t) — weo Vao (1)),

EepP

which is analytic on R. Then we have

(6.4) F(t) =Y () (H (t— 5)“5)) exp(—woo Voo (1))
EepP
=Y9(0) [[(=9"® + O[t""]1
EepP

near t = 0, and

(6.5) F(t) =Y™)(t) (H (t— 5)““)%“"*“0) exp(—woVo(t))

£epP
=Y (c0)t™ (1L + OtV 1/m),

K*=1(®,P) +r(cc) —k(0),  I(@,P) = u(€),
£epP

near t = 0o0. By (6.4), F'(7™) is entire with respect to 7 and satisfies F'(0) # 0. Hence,
by (6.5), F(t™) = P(7) is a polynomial in 7, and nx* = n(I(®, P)+ (o) — k(0)) €
N U {0}. This implies that ®(t) is written in the form (2.3) with x = x(0). By the
definition of ¢(§), P(7) is not divisible by 7™ —¢ for every £ € P satisfying ¢(£) € N.
In particular, if p/n € N, then we see that F(t) is a polynomial in ¢, and that
k* = I(®,P) + k(o) — k(0) € N U{0}. Suppose that ¢/n & N, p/n € N. Then,
by (6.2), ¥(t) = ®(t)t~*( is single-valued on C — {0}. On the other hand, around
t = oo,

W(t) = YOI (1)t O+ oxp ((weonao /g)t™ (1 + Ot ).

Since q/n ¢ N, U(t) is not single-valued around ¢ = oo, which is a contradiction. In
a similar way, we can show that ¢/n € N and p/n ¢ N do not hold simultaneously.
Thus we have proved that either of the following cases occurs:

(a) ¢/n ¢ N, p/n ¢ N, p =1, =(n — 1)(¢ + p)/2 = (Rn-1(00) — Ry—1(0)) +
nl(®,P) e NU{0};

(b)g/ne N, p/neN,p=>1, —(n=1)(¢+p)/(2n) — (Rn-1(0) = Ry —1(0))/n+
Wooltg/n +woBp/m +1(®,P) € NU{0}.
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6.1.2. Case p < 0. We put

6(6) = a(0)(T[ (0~ 19 )2 expl-wn V).

§EP
Then G(t) is analytic on R. Consider the case where ¢/n ¢ N. Since

(6.6) Gty =Y () [[(t-9"® =t"*P o]y,
Eep

converges near t = oo, the function G(7") is analytic on C — {0}, and 7 = oo is at
most a pole of G(7"). Hence, observing that t = 0 is a regular singular point, we
have

(6.7) (1) = G (1) (H (t - §>L<f>> exp (e Voo (8)

gep
Ztm/n(60+0[t]1/n), co #0

near t = 0 for some m € Z. This implies that, for the solution ®(t), p,, = m/n +
k(o0) = (2m—(n—1)q)/(2n)—R,,—1(00)/n is a characteristic exponent at ¢t = 0, and
hence p,, is a root of (2.4). By (6.7), t~™/"G(t) = P(t'/™) = O[1]1/n, P(0) # 0,
and hence P(7) is a polynomial in 7. Furthermore, by (6.6), m/n < I(®,P). When
g/n € N, the function G(t) is analytic on C — {0}, and ¢ = oo is at most a pole
of G(t). By an analogous argument, we verify that, for some m € Z satisfying
m < I(®,P), pm = m+ k(c0) =m — (n—1)q/(2n) — Ry—1(00)/n + weotg/p is a
root of (2.4), and that t~"*G(¢) is a polynomial in ¢.
Summing up the facts above, we have the following:

Proposition 6.1. Suppose that there exists a meromorphic solution ®(t) (£ 0) of
(aE) which is zero-ample neither at t = oo nor at t = 0. Then ®(t) is expressible in
the form (2.3), and one of the cases (i), (ii), (iii), (iv) of Theorem 2.1 with I(®,P)
in place of 1,(P) occurs.

6.2. Proof of Theorem 2.1. Concerning the zero-density we have the following:

Lemma 6.2. Let ¢(z) = ®(e*) be a meromorphic solution of (E). If ®(t) is zero-
ample at t = oo, then N(r,1/¢) > r—1el@/™7 If p > 1, and if ®(t) is zero-ample
att =0, then N(r,1/¢) > r~le®/m)r,

Proof. Suppose that ®(t) is zero-ample at ¢t = oco. Let S, be a sector such that
Proposition 5.1 is valid for x(t) = ®(¢). Note that, by ¢ = e?, the strip log M, <
Rez < 7', (n/q)(pm — ) < Imz < (n/q)(u + 1)m is conformally mapped onto the
region {t € S, ‘ My < |t] < erl}. By Proposition 5.1 the number of zeros of
#(2) = ®(e?) in |z| < r is estimated as n(r, 1/¢) > e(@/™M+O0/T) 5o that

N(r,1/¢)> /1 L (1(021/6)  n(0.1/6))dor > £ el0/ "

The second assertion is verified in a similar way. [

Suppose that ¢(z) = ®(e*) (£ 0) is a meromorphic solution of (E) satisfying
A(¢) < +o0. Then, by Lemma 6.2, ®(t) is zero-ample neither at ¢ = co nor at ¢t = 0.
Combining this fact with Proposition 6.1, we obtain Theorem 2.1.
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6.3. Proof of Theorem 2.3. Suppose that a meromorphic solution ¢(z) = ®(e?)
of (E) satisfies A(¢) = +o00. Then, ®(t) is zero-ample at ¢t = 0 or t = co; otherwise,
by Proposition 6.1, we have A(¢) < +oo. For example consider the case where ®(t)
is zero-ample at t = co. Then, by Lemma 6.2, N(r,1/¢) > r~'e(?/™)" The other
cases are treated in a similar way. Thus we obtain (2.7).

Take a polynomial of the form II(t) = [[;cp(t — €)% 5(¢) € NU{0} in such
a way that n(z) = ¢(2)l(e*) = ®(e*)II(e?) is entire. It is easy to see that n(z)
satisfies an equation of the form

(E) 1™ + Quo1(e*)n" ™M + -+ + Q1(e*)n + Qo(e*)n = 0.

Here Q(t) (h = 0,1,...,n — 1) are rational functions of ¢t whose poles belong to
P. All the poles of the coefficients of (E’) are written in the form (4, = 24 + 2,
et e P (d=1,..,dy <P, € Z). Consider the domain

do
A=C-— U U{Z ‘ ‘Z_Cd,l’ < (l” +1)_2}.

d=11€Z

All the radiuses of the circles I',. : |z| = r satisfying I', ¢ A constitute the set
Ey C Ry = {r|r > 0} of finite linear measure. If r € R4 — Ej, then I', C A. Note
that |l| < (g, as |I] — oco. Hence

(6.8) log |Qn(e®)]| < T, h=0,1,...n—1,

as v — o0, 1 € Ep. For the entire function n(z) =}, cp2®, we put

p(r,m) = max{]ck]rk ‘ k> O}, v(r,n) = max{k ‘ p(r,m) = |ck|7’k}.

Then, by the Wiman-Valiron theory (]20], [21]),

h
(6.9) n(h)(z) = (@) (I+o(W))n(z), r=lz|, h=1,.,n

for z satisfying |n(z)| = M(r,n) = max{|n(¢)| ! I¢| =7}, |2| € Er, where E; is a
set of finite logarithmic measure. Substituting (6.9) into (E’), and using (6.8), we
have logv(r,n) < rasr — oo, r ¢ F = EyU E;. By [20; Satz 4.4],

log M (r,n) < log (,u(r, n)(v(2r,n) + 2)) < v(r,n)logr + logv(2r,n)

as r — oo, and hence logT(r,n) < r, as r — oo, r ¢ F. Note that [.dz/z =
up < +oo, and that, for every r > 0, fUOT dz/z = 2uy (Uy = exp(2ug)). There

,
exists ' = r/(r) satisfying » < v’ < Ugr and r’ ¢ F. Observing that logT(r,n)
is monotone increasing, we have logT(r,n) < logT(r',n) < v’ < Uyr for r > o,

where rg is a sufficiently large positive constant. Therefore
log N(r, 1/6) < log T(r, 1) + log T(r, TI(€")) < 1

for r > rg, which implies (2.6). Thus the proof is completed.
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7. PROOF OF THEOREM 2.2

By definition, ng = n/dy and gy = q/dy are relatively prime. Since ¢/n ¢ N,
we have dy < n, so that ng > 1. By the change of the variable e*/™ = s, equation
(E) is transformed into

(aE*)  0"w 4 ngRu_1(s™)0" w4+ - + 0T Ry (s™)Jw + nf Ro(s™)w = 0,
= s(d/ds), where
npRo(s™) = ni(ags®™ + ays Ym0 4.4 gps@RImo Loy

Observing that gng/n = qo € N, we write

1/n oo 00
[—ngsqno g aks_”ok] = g E Qs 0k = g9 g Ays™!
k=0 =0

0<nok<qo
Since qo/no ¢ N,
(7.1) Agno/m = Agy = 0.

Suppose that (E) possesses a meromorphic solution ¢(z) = ®(e?) (£ 0) satisfying
AM¢) < +oo, where ®(t) is a meromorphic solution of (aE). Note that ¢(¢) =
P(no¢) = Do(ef) (¢ = z/ng) also satisfies A\(¢) < +o0 as a function of ¢, where
®g(s) is a solution of (aE*). Then, by Theorem 2.1 with gng (instead of q), ®o(s)
is written in the form

(7.2) Do(s) = ( II - s’>—“<f’>)a<s>sﬁo exp(woo V5 (5)),
gep’
* — g% Al gt
- ( ) OSZZ<CI0 9 — l

where wo is some n-th root of 1, P/ = {¢’ € C — {0} | &™ € P}, and /(¢') €
N U {0}. Note that case (iv) of Theorem 2.1 with gng occurs. For some mgy € Z
satisfying mo < I,(P') = Y ereps V' (),

ko =mgo — (n—1)gno/(2n) — Ry—1(00)ng/n =mo — (n — 1)qo/2 — Ry—1(00) /dy

(cf. (7.1)), and Py(s) is a polynomial in s satisfying P, (0) # 0 and P, (&) # 0 for
every ¢ € P’ such that //(¢') € N. Observing that ®¢(s) = ®(s™) (cf. (2.3)), and
that, for each £ € P,

no—1

(s™ — 5)*L(€) — H (s — @jgl/no)ﬂ(ﬁ)’ &

J=0

exp(2mi/ng),
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we have ((§) > /(¢'), if £ = ¢, & € P Hence mg < I(P') < nolg(P). By
Theorem 2.1, (iv) (with (c)), Ko is a characteristic exponent of ®¢(s) at s = 0, and
®(s) is expressed as

(7.3) Do(s) = 5™ Y co(k)s®,  co(0) #0

k>0

near s = 0. To derive other characteristic exponents, we note the fact that equation
(aE*) remains invariant under the replacement of s by @’s (j € Z). Hence, ®¢(@7s)
(j =0,1,...,n9 — 1) are solutions of (aE*). Furthermore these solutions are linearly
independent, because the leading terms of VZ (&7s) and V (@"s) coincide with
each other, only when (h — j)qo/no € Z, which is equivalent to (h—j)/ng € Z. It is
easy to see that ¢;(2) = ¢(z + 2jmi) = Bg(eFT2™)/m0) (j = 0,1, ...,n9 — 1) satisfy
A@;) < +o0. By (7.3), we have, for j =0,1,...,n9 — 1,

= Bo(@s) = 5™ ¢;(k)s*,  ¢;(0) =@ co(0) # 0.
k>0

From these solutions, we derive the linearly independent solutions

Yo = 5™ (co(0) + O(s)),

by — @Iy = s (el (0) + O(s)), 1(j) €N, ¢j(0)#0, 1<j<ng—1.

Thus we obtain the sequence
ko < k1 = ko +1(J1) < ko +1(j2) < - < ko + U(Jno-1),

which contains at least two distinct characteristic exponents kg, k1. Repeating this
procedure within (ng — 1) times, we obtain ng distinct characteristic exponents
kj=ko+1; (0<j<ng—1),l;€Z,ly=0<1l; <---<ly,—1. Hence they satisfy
equation (2.5). Thus the proof is completed.

8. PROOF OF THEOREM 2.4

Suppose that there exist linearly independent entire solutions x;(z) = ®;(e?)
(7=0,1,...,n — 1) satisfying A(x;) < +oo.

8.1. Case p > 1. Under the assumptions P = ), R,_1(t) = 0, the case (i) of
Theorem 2.1 does not occur. It is sufficient to treat the case where ¢/n € N, p/n €

N. Then, each ®,(t) is zero-ample neither at t = oo nor at ¢ = 0. Using Propositions
4.1, 4.3, 5.2 and 5.3, we have, for j =0,1,....,n — 1,

®;(t) = t" Y, (1) exp(w Vi (1)), w = exp(2i/n)
(the indices of ®q(t), ..., ®,_1(t) are suitably rearranged if necessary), and

®;(t) = OV (1) exp(w Vo (0)).
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Here Y(Oo)( t) = O[1]-1 and Yj(o) (t) = O[1]; converge near t = oo and near t = 0,
respectlvely, e(7) (j =0,1,...,n — 1) are integers satisfying 0 < e(j) <n — 1, and

iy = —(n—1)g/(2n) + Wy, 1;(0) = (n— Dp/(2n) — D5, .

By the same argument as in the proof of Theorem 2.1 (cf. Section 6.1.1), we have,
for j=0,1,...n—1,

(8.1.5) (n—1)(p+q) = 2n(—m); + W agm + W B,m),
where m/ € N U {0} (Iy,(P) = 0). Note that (j) # &(j') for j # j’, because

Do (t), ..., Pr—1(t) are linearly independent solutions of (aE). Summing (8.1.7) over
0 <j<n—1,wehaven(n—1)(p+q) = —2n 23 _o m; < 0, which is a contradiction.

8.2. Case p < 0. By Theorem 2.1 with P = 0,
®;(t) =t Pj(t)exp(w Vo (), 7=0,1,...,n—1,
where Pj(t) (j =0,...,n — 1) are polynomials in ¢ and

ki =mj — (n—1)q/(2n) + W agm, mf <O0.

Hence
n—1

(8.2) Zm]: (n—1)g/2+ ) _ m/ <O0.
7=0

On the other hand, by assumption, x; (0 < j <n — 1) are n distinct characteristic
exponents at ¢ = 0. Then, from (2.4), we have Z;L:_Ol kj = 0, which contradicts
(8.2). Thus the proof is completed.
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