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1 Introduction

Beyond formal deformation quantization; deformation quantizations of Pois-
son algebras with the formal deformation parameter (cf.[BF]), one can ask
whether the formal parameter converges. For this direction, Rieffel [R] pre-
sented a notion of strict deformation quantization; deformation quantization
with the convergence product in the C*-algebras. This suggests us oppor-
tunities of finding the various kind of notions of deformation quantizations
with the convergence product for suitable categories of algebras.

The purpose of this paper is to give a notion of deformation quantization
corresponding to the Rieffel’s work [R] in the Fréchet categories and to show
that C*-framework does not work well, if we want to exponentiate quadratic
forms.

Let F be a commutative, associative Fréchet algebra over C, i.e., F has
a metrizable complete topology defined by a family of semi-norms, and a
product operation denoted by dott - which is smooth.

F is called a Fréchet Poisson algebra if F has a bilinear operation { , }:
F X F — F (called a Poisson bracket on F) such that for any f,g,h € F,

P1 {f,¢9} = ~{yg, f} (skew symmetric)

*Department of Mathematics, Faculty of Science and Technology, Science University
of Tokyo, Noda, Chiba, 278, Japan, email: omori@ma.noda.sut.ac.jp

"Department of Mathematics, Faculty of Science and Technology, Keio University,
Hiyoshi, Yokohama, 223, Japan, email: maeda@math.keio.ac.jp

‘Department of Mathematics, Faculty of Science, Yokohama City University,
Kanazawa-ku, Yokohama, 236, Japan, email: Naoya.Miyazaki@math.yokohama-cu.ac.jp

$Department of Mathematics, Faculty of Engineering, Scinece University of Tokyo,
Kagurazaka, Shinjyuku-ku, Tokyo 162-8601, Japan, email: yoshioka@rs.kagu.sut.ac.jp




KSTS/RR-99/001
October 25, 1999

P2 ZCYCHC sum{f: {g, h}} =0 (JaCObi identity)
P3 {f,gh} ={f.g}h+g{f b} (bi-derivation)

Generally, if F is a Fréchet space and has an associative product * on
F such that the operation * : F x F — F is continuous, we call (F,*) a
Fréchet algebra.

We now give a notion of deformation quantization of Fréchet-Poisson
algebra as a family of associative product *; on F parametrized by h € R.

Definition 1.1 Let h € R. Let F be a Fréchet Poisson algebra. (F,*)
is called a deformation quantization of Fréchet-Poisson algebra F if the
following conditions hold:

(FD1) For any h, there exists an associative product 5 on F s0 that (F, *5)
is @ Fréchet algebra.

(FD2) f*r9— f-g ash— 0 for every f,g € F independent from h.

(FD3) A {f+ng—Ff-9}— 2{f,9} as h = 0 for every f,g € F independent
from .

We now give an example of the above notion, which is based on the Moyal
product for functions as follows: Let C? be the complex 2-plane, and z,y
the coordinates on C2.

Denote by P(C?) the set of all polynomials of z and y, and denote by
£(C?) the set of all entire functions on C?. £(C?) is a complete topological
vector space under the compact open topology.

For entire functions f = f(z,y) and g = g(z,y) on C?, we set

(1) (f,g} = 0cf - 0,9 — 0y f - Bog.

This gives a Poisson bracket on C?, which is canonical in the sense that the
coordinates z,y turn to be a Darboux coordinates.
The Moyal product formula is given as follow (cf.JOMY]):

-\ k
(1:2) f*hg=z(%f) L5, 7= 5. T

k

In general, f 5 g is not always defined for any f,g € £(C?), but the
following properties hold:

e *; defines an associative on the space P(C?).

e Forevery fixed p € P(C?), the left- and the right-multiplication p+y, *xp
extend to continuous linear mappings

prs, *pp: E(CH) = £(CY).



KSTS/RR-99/001
October 25, 1999

Using polynomial approximation, we see easily that the associativity

fr(g*h)=(f*rg)xh

holds, if two of f, g, h are polynomials. We call such a system (£(C?), P(C?); x1)
a P(C?)-bimodule.

We consider the following subspace of £(C?): For every positive p > 0,
set

(1.3)  &(C) ={f € EC)[IIfllps = sup [/ < o0, ¥s > 0}

where |¢] = (Jz|% + |y|?)*/2. The family {|| ||p,s}s>o0 induces a topology on
Ep(C?) and (£,(C?),-) is an associative commutative Fréchet algebra, where
the dott - is the ordinary multiplication for functions in £,(C?). It is easily
seen that for 0 < p < p/, we have a continuous embedding

(1-4) gp((CQ) C ‘(:p’ (CZ)

as a commutative Fréchet algebra (cf.[GS]).

It is obvious that every polynomial is contained in &,(C?) and P(C?) is
dense in £,(C?) for any p > 0. The Poisson bracket (??) is also well-defined
on £,(C?), and (P(C?), {, }, ") is a dense Poisson subalgebra of (£,(C?),{, }, ).
We remark that every exponential function e**+¥ is contained in &,(C?)
for any p > 1, but not in & (C?), and functions such as e +0¥’+2e2y 5po
contained in &,(C?) for any p > 2, but not in & (C?).

Our main result in this paper is as follows :

Theorem 1.2 The Moyal product formula (??) gives the following:

(i) For 0 < p < 2, the space (£,(C?),5) is a deformation quantization of

(gp((CQ), K {7 })

(ii) Forp > 2 and a fized I € R, the Moyal product formule gives a contin-
wous bi-liner mapping of

1.5 E(C?) x £5(C?) — £,(C?),
(1.5) Ep(C?) x £,(C?) = £,(CH),

or every p' such that + + L > 1.
yp P P

We remark here about the statement (ii). Since p > 2, p’ must be
p’ < 2, hence the statement (i) gives that (£, (C?); #5 is a Fréchet algebra.
So the statement (ii) means that every £,(C?), p > 2, is a topological 2-sided
&y (C?)-module.
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We remark also that if A > 0, then ethTY ¢ &,(C?) for every p > 2, but
eRTY x e R diverges. This means in a sense the above result is the best
possible.

It is obvious that &,(C?) is closed under the complex conjugation, and
in general this looks very nice property. However, this property causes some
trouble for p > 2. This is because that if & > 0 is fixed, the coordinate
function y has a right inverse %(1 - e%”’y), and a left inverse %(1 - 6"275“’)
as the complex conjugate of the right inverse given above. Here the complex
conjugate means the anti-homomorphism generated by z = z,§ = y,i = —1
etc.

If the associativity holds, then these should be the same genuine inverse.
Hence we must set i 9

gsin Emy =0
if (£,(C?); *5) were an associative algebra. We discuss such phenomena more
closely in the last section.

2 Completion of free tensor algebra

Let T be the free tensor algebra generated by X;, X;. We introduce a
topology into T so that 7 becomes a topological algebra. By definition, an
element of 7 is written in the form

T = ZCQXO, (finite sum)

where X, = X4,0X,,2 - 0X, , a = (a1,00, -+ ,a,). We call X, a word
and we denote by |a| the length n of the word X,. We define a system of
semi-norms || ||-s (7 > 0,8 > 0) by

(2.1) Tl = Z |Ca”al'r|alsfla|_

For a fixed 7 > 0, we consider a topology introduced by a system of
semi-norms {{| - ||+,s }s>0- We set 7, the completion of 7 with respect to this
topology. Then one easily sees

22 T,={T= anXa (infinite sum) ; |T||s < co for any s> 0}

Then we have

Lemma 2.1 For >0, 7T; becomes a Fréchet algebra satisfying

ITeT"|l7,s < (T llr2s 17" [l 7,25
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Proof. It follows easily from the inequality

(23) m™™n™ < (m+ n)r(m-i—n) < 27’(m+'n)m'rmn7'n

for non-negative integers m, n. O
Further, we have

Lemma 2.2 Let T = Y ¢, X, be an element of T and let N be the maxi-
mum length of words X, of T. Then el =3 %T@pk is an element of T, for
0<7< 5.

Proof . Tt suffices to see the convergence of Y 72 ﬁ(kN)’”Ns’”N under
the condition 7N < 1. Since

1 T T 1 T T
Ry = (k+ 1)'((16—}- ].)N)(k+1) NS(k+1) N/ic_'(kN)k NSk N
~((k+1DN)™N 1ogr
_ (O ey
one sees easily limg_y0o Rx = 0if 7N < 1. |

3 Subspaces of symmetric elements

Now, we consider a subspace S; C T, equipped with the symmetric product.
First we introduce a product aob = % (a®b+bea) in 7. We set (cf.[OMY])

(ao)? -c=ao(ao(-+-(aoc)---))
and
(ao)? - (bo)? -c=ao(ao(-+-(ao (bo)?-c)---)).
Using this notation, we define a linear subspace S as
8§ = {3 capp(X10) - (X20) - 1}.

We also introduce a commutative product o into S by
((X10)* - (X20)' - )o((X10)™ - (X20)" - 1)
=(X,0)F ™ . (Xp0)HH™ - 1.
For simplicity, we write
(3.1) XX = (X10)% - (X20)° - 1.

Then the set S with the multiplication o becomes a commutative associative
algebra. ‘
Let S, be the closure of S in 7. It is easy to see the following:

[e524
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Proposition 3.1 For every T > 0, the bilinear product o is continuous and
S, is a commutative Fréchet algebra.

On the space S we consider a non-commutative product #; by using the
Moyal product formula with the parameter A.

To obtain the norm estimate of the xz-product, we remark first the
following

Lemma 3.2 For every 7 > 0 and every s >> 0, we have an inequality

1%, 0%, X7 o XFlr,s < IXT"0 X [l7,om* () nl0=7)

Proof Obviously 8% 0% X7"eX3 = W%R—Tk—)!xr-k@xg—’ By the defini-
tion of semi-norms, we see

”(9];(135(2){{“@ ’g“TvS
m! n!
T (m—k)! (n— D)
<m’rkmk(l-—’r)n‘rlnl(l—f)sr(m+n—-k—-l) (m + n)T(m+n—k—1)

Sr(m+n—k—1)(m +n—k— l)‘r(m+n—k—[)

<mk(l—v’)nl(l—T)ST(m+n-k—l) (m + n)T(m+n)

The desired estimate follows easily. a
Using this estimate we have the following;:

Theorem 3.3 The product x5, extends for S; for + <1 to define (Sr,*5) a
non-commutative Fréchet algebra.
In this algebra we have also the inequality

(32) ”f * g“‘l',s < “fag”ﬂse‘h”‘r'
Proof. For f = Eak,leeXé, 9= bnX"0X7, a rough estimate gives

I *gllre 3 Janallbm,als™ ™0 (k4 7D (10 4 )74

k,l,m,n

1
x D S IAIP(h + 17070 ()P0
P

Remarking
(k + )P0~ (m 4+ 0P < (k4 1 4 m + n) 07

and
)3 l.lhlp(k 1 m 4 n)POT) = Akt mn)2 00
P
4
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we see that § < 7 gives 2(1 — 7) < 1 and hence

“f *g”‘f',s < ”feg”'r,sev"/r
O

In the above estimate, we have no need to sum up p for all non-negative
integers, but p is restricted in fact in the domain 0 < p < min(k +1, m + n).
Thus, if 0 < 7 < 7/ then we can set '

(k—l— l)T(k:-}-l)(k +l)p(1—'r) < (k+l)7'(k+l)(k +l)p(l—7")’
Now suppose 0 < 7 < % Then we have
Lemma 3.4 For 1’ such that 0 < 7 < 7 and 7+ 1' > 1, it holds
f*gllrs NI setmim gl semtsr-
Thus, we have

Theorem 3.5 If0< T < %, the product x5 gives continuous bilinear prod-
ucts

x5S, X S = 8ry #5800 XS = Sy

or every 7' with T < 7" and 7+ 7' > 1.
Y

4 Two-sided ideal of the relations

Suppose A € C. Let R be a two-sided ideal generated by the fundamental
relation of the Weyl algebra:

X10X7 — X90X, + At
Definition 4.1 We call the quotient algebra T/R = W the Weyl algebra.

An element of § is written as T = 3" cq 5(X1)%(X2)?. (From the
identity (??), we have the natural embedding

t:S—>T.

We consider now the replacement © sign in every word of an element of
T by * sign in S. For instance;
. R . M ki
X990 X10Xy — Xox X xXg = X2®()£1 *XQ)'l"EXQ = X1®X2 ——2~X2—|-~2-—X2

Obviously Xy, X7 are contained in &, and this replacement gives a linear
mapping ¢ from 7 onto §. Since the product * is defined by using the
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Moyal product formula, it is not hard to see ¢ is an algebra homomorphism
of (T,®) onto (S, *). Remarking that po((X{*eX7) = X["e X7, we see that
i o ¢ = identity.

Recall now that Weyl algebra can be naturally identified with the space
of all polynomials with the Moyal product formula (cf [OMY]). Hence, we
see that the kernel of ¢ must be the ideal R of the relations of Weyl algebra.

Thus, we have a linear splitting

T=S®R.

Now, we consider the closures of these spaces T;, S, and R,. By
Proposition?? and the inequality (?7?), we see the following:

Theorem 4.2 Suppose T > % Then, ¢ and v extend to continuous map-
pings @ : Tr — S; and v : S; = T;. Hence if 7 > %, then T, = S; ®R,.

5 Collapsing of algebras
In this section, we show the following:
Theorem 5.1 If0<T< %, then T, = R,.

The above theorem is obtained by showing R, > 1for 0 < 7 < %

Recall that for any 7 > 0, R, is a closed two-sided ideal of 7; and the
quotient algebra 7, /R, is a topological associative algebra.

Suppose 7»/R, is not a trivial algebra. 7;/R, is then an associative
Fréchet algebra. Since the Weyl algebra W is simple and is identified with
T/R, W is densely embedded in 7. /R.

Recall that W is also identified with the space of all polynomials with
the product given by Moyal product formula. Thus, it is identified with S
with the Moyal product 5.

Hence (S, *5) can be naturally embedded in 7:/R,. If a*5b = c in
T./R+, then this implies that ab = ¢ mod R in the space 7,. We also note
that the product *p is continuous in the topology 7.

Remark that for every A # 0, we see that
L 2 1.t
8 = 3 S (3 xex)

k!
k

is an element of S7 for every 0 < 7 < % and similarly,

1 -2 1
ngj(—;(l—e@hXIGXz) GSTg 0<r< 51
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where the right hand side stands for

12
ZE— —E Xlk(DXéc_l.
k=1

Since X; € S, % < 7' Xg x5 X3, X§ %5 Xy are well-defined, a direct

calculation using the Moyal product formula gives that Xy x5 X3 = 1, but
Xz*ﬁXZ-—l—Q X1®X2

Considering a polynomml approximation of X3 in 7, and using the con-
tinuity of X5 in 87, we see that X,8Xy = 1 modR,.

Taking the complex conjugate, we have TX—?@XZ =1 modR,.

Hence, we have

1
—_— Sill@(%le1®X2)a

Xo
and ,
X oX . ixioX, . 2Xxp0
X2®( ! 2)—(smg Y2 4ico osf 1@ )E’RT.
. 2X,0X 2 X 0X +3 X 0X
It follows sin2 "' "%, cos2 "' € R,. Hence wesee ey "0 € R,.
Then we have
L X,0X, —-2X,0X

Lemma521—O 06, P € R,

Proof. We first remark

, £2 X 0X
(XT*oX7)o(0%,0k,e0 "

Jo(X T oX3)
is an element of R,. This is because that dx, f can be written by using the
commutator bracket.

Zx10X
Hence, (X" o X})oeg "' °

€ R-. This implies
Z k'X{c@X}C) XIOXQ € RT-

Taking the limit of the above quantity as n — oo, we see that 1 € R., under
the assumption 7, /R, is not a trivial algebra. This is a contradiction, and
hence we see that R, 3> 1. O

6 SP(@) and S;

Let us consider an entire function f with the growth condition |f(£)] <
Cse*€l” where € € C? and s,p > 0 and a constant Cy > 0. For a positive
p > 0, we set a space of such functions

E(C?) = {f € £(C); ()] < Coe’lV,¥s > 0},
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On €,(C?) we consider a family of semi-norms || f|l,s given by

(6.1) 1 £llp.s = sup |£(€)|e™kF.
geC?

Then, the space &,(C?) becomes a Fréchet space with the system of semi-
norms {| [lp,s}s>0-

Now, we identify a polynomial on C? and an element of the symmetric
algebra S by

e*yt — XFoX].
To complete the proof of Theorem??, it sufficies to show:

Proposition 6.1 For every p > 0, S1 is linearly isomorphic to £,(C?).
P

Proof Though the well-known estimates for entire functions gives the propo-
sition (cf.[GS]), we will repeat the proof. First, we remark the following
relation between semi-norms of polynomials and the symmetric algebras:

(6.2) ||$kyl[|p,s < ||X{C®Xé||%7(sp)—1 < ||g;kyl“p,sp5 for every s >> 0,

where § = e~(1t%). To prove these inequalities, we remark the maximum
point of
|zFy' e kP, Je? = 2 + |yl

satisfies k + [ = sp|¢]P and the maximum value is
k51 e BOHD (g 50D (4 G D0HD),

It follows that . .
ek y o < (sp) "7 EF0 (& 4 12D

and hence “fl;'kyl“p,s S ”X{C(DXén;?,(sp)_l'

To obtain the next inequality, we remark 2 < e and recall the inequality
(??). Then, we have

(Sp)~ip(k+l)(k Jrl)ﬁ(kqtl) < k:gl%e—%(lﬁ-l)(spé)—%(kﬂ)(k+ 0) %—%)(kﬂ),
where § = e=(1+5), Tt follows || X oX1||L (sp)=1 = le*y! || p,sps-
'’
The inequality {??) naturally yields the embedding

Sl — 8,,((32),
P

10
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since T = Y ag; XFoX) and the corresponding t = 3~ ax z*y’ satisfy the
inequality

[Ellps < TNl o1+
Next, we show that &£,(C?) C S:.
P

Since every f € &,(C?) is an entire function, f is expressed as a con-
verging power series f = 3 ¢pna™y”. Let M(r) = maxy =, |f(z,y)|.- By
Cauchy’s integration formula, there is a constant Cs > 0 such that

M(r) <c st

7nm+'n - 6Tm+n

[emnl| <

hold for every § > 0, since every f € £,(C?) satisfies by definition that
|f(z,p)] < CkP.

Taking the minimal value of the right hand side with respect to r for a
fixed &, we have

Lmtn), L1\ l(mtn
(6.3 el € C(Bep) ) (e m4
Using (?7), we easily see that f € S, if § is sufficiently small. This gives
r
also that every f € &,(C?) is also an element of S1. Hence we see that

4

&,(C?) and 8. are linearly isomorphic. O
P

7 The product formula for e

As mentioned in the introduction, y has a right-inverse y° and a left-inverse
y* at the same time in the space £,(C?) for p > 2. Hence the associativity
of the product *y fails if i > 0:

Y ks (W *ny®) #F W *ny) xny’.

In this section, we show that if p > 2, and A > 0, then &£,(C?) is not closed
under the product *j. In fact, we see that y® xy° diverges. See also [OMMY]
for details.

Since zy is a polynomial, the product (izy) * f(z,y) is well-defined for
every &,(C?). Thus, we consider a differential equation

Lh= Gy s floy) foleoy) = (@)

By the Moyal product formula (??), this is written as the ordinary evolution
equation

4 i b 60ufs - Y0, £) + 10,0
Eft = (lzy) fi - 5(30 oSt —y yft)'H‘Z O ft.

11
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The existence of the solution does not hold in general, but the uniqueness
holds in the real analytic category in ¢t. Hence if the initial function f is a
function F(zy) of zy, we may suppose that the solution is also a function
of zy.

Under this assumption, we consider the differential equation for z = zy:

d . 'hz 1 "
() SI(2) = izfi(2) + i () + 2{(2)).

The solution with initial condition 1 may be written as the %;-exponential

function eX*#, which is given in fact by

- m € Z}.

(72) eitr — 1 ei(%tanh -’?)z, teC-— {(m + %)E’

. :
cosh %f

The exponential law €% xeit* = eX* Y% holds by the uniquness whenever
s,tys+te C—{(m+3$)%; me Z}.
Rewriting the exponential law, we obtain the product formula

. . 4i(s+t)
(7_3) ae's? beztz — -4—5—11%1-)2—-—56‘”52;2_
1°S

It is easy to check the associativity where products are defined, and the
. - . 2¢
inverse of ae'” is ‘-17{1—(4 — h25%)e™% for 4 — h2s* #£ 0. If s = +2, then etn?
are not invertible but have the idempotent property:
(7.4) 2etH7 4 2t R 7 = 2657,

2

2 . 2
However, e5* x e~ &% is not defined. We refer elements 2eth* as vacuums.

By the above argument, we see

1

1
cosh o

ity __

e e(% tanh %”)zy

is an element of £,(C?), p > 2, for t € R. If /i is fixed in a positive real, then

oo 0 .
/ ety dt, / eV dt
0 —00

are also elements of £2(C?), p > 2 and —i [;° e®Vdt, and iffoo e *Ydt are
two different inverse elements of zy, that is
0

(zy) * (-i/ eTVdt) = (zy) (z/ elt?vdr) =1
0 —00
Thus the associativity fails again: By denoting
oo 0 .
(wn)sh = =i [ e, (@t =G [ e
—00

12
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we have

((z9)5s * (29)) * (2Y)oil # (2y)oiy * ((2v) * (2y)5in)

This is because

0 .
(W) — u)l = =i [ e £0
~00
The right hand side may be written as —id«(zy) and the above identity
corresponds to a relation of hyper functions (cf. [M]).
If & > 0, then by the well-known Hansen-Bessel formula(cf.[E], p.1802),
we see that

oo 00 )
/ eitz‘ydt — / 1 e(z—r: tanh %):L‘ydt — gJo(%fo)

oo oo COsh %—t
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