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Abstract

All of the primitive trinomials over GF(2) with degree 859433
which is 33th Mersenne exponent are presented. Also examples of
primitive pentanomials over GF(2) with degree 86243 which is 28th
Mersenne exponent are presented. The sieve used is briefly described.

1 Introduction

Primitive t-nomials (¢-term polynomials) over GF(2) are useful in the ap-
plications like random number generation, coding theory, and cryptography.
Heringa et. al.[2] exhaustly listed all primitive trinomials of Mersenne ex-
ponent degree up to the 31th Mersenne exponent 216091. This note is an
extension of these works.

Let A, denote the nth Mersenne exponent (for example, Mg = 86243
and 2M2¢ — 1 is known to be a prime). As of April 20, 1998, 37 Mersenne ex-
ponents are found. 3021377 is the greatest in them. The primality test
of all exponents less than 2000000 is done at least once (it proves that
M;s = 1398269). The known Mersenne exponents greater than 2000000
are 2976221 and 3021377. In this paper, we define M3zsp = 2976221 and
M3;4 = 3021377, The sharp mark behind 36 and 37 show that the search for
Mersenne exponent p in the interval 2000000 < p < 3021376 has not been
exhaustive. See [3, 4] for the information about the current search status of
Mersenne expounents.

Table 1 lists all primitive trinomials X? + X?+1 over GF(2) with degree
p = M,(33 < n < 36#), ¢ < |p/2]. Table 2 lists examples of primitive
pentanomials X? + X% + X% + X® 4 1 over GF(2) with degree p = \as.
In Tables 1 and 2, only the exponents of the terms are listed.

2 Test for Primitivity

2.1 Primitivity of trinomials

Let f(X) = X? 4+ X%+ 1 be a trinomial of degree p = AM,. Our aim is
to find such ¢ that X” + X7+ 1 is primitive. By considering the reciprocal
polvnomial, we may assume that 1 < ¢ < |p/2] holds. If 2? —1 is prime, then
the primitivity is equivalent to the irreducibility. The test for the primitivity
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comprises the following three sieves. The first two of these are only necessary
condition test, but they reject about 90% of the candidates. The third sieve
is a necessary and sufficient test. The third sieve can determine whether
f(X) is irreducible or not with O(p?) computation.

Let k, denote 2* — 1. Sieves I and II are based on the well-known
theorem[6, p.48]: let ¢(XX) be an irreducible polynomial over GF(2) of de-
gree m. Then o(X)|(X'** — X) if and only if m[n. Thus by computing
ged(f(X), X* — 1) we know whether f(X) has a factor of degree m|n.

Sieve I: mod & test.  Omne can determine easily whether ged(f(.X), X*—1)
equals 1 or not for small & as follows. If it equals 1, then f(X) goes forward
to the next sieve. ,

Let I be a finite set of positive odd numbers. Let & be an element of i
Then ged(f(X), X* —1) = ged(X? + X9+ 1, X* — 1) = ged(X (P (mod k) 4
Xte (mod k) 1 X% _ 1) holds. Thus we can obtain the set

R={(k.q)| k€ K, g€ Z/kZ st. X?+ X9+ 1 is reducible}.

Hence for 1 < ¢ < |p/2]. if there exists k € K such that (k,q (mod k)) € R,
the number should be rejected. We put XK' = {k | k is odd, 3 < k <
k1o + 2} U {ky3, k14, k15} This test rejects about 89% of the candidates.

Sieve II: direct ged test.  Let f(X') be a trinomial which passed Sieve
I. By computing ged( f(X), X** —1) (n = 16,17, 18) we can eliminate some
candidates. Sieves I and II reject about 91% of the candidates.

Sieve IIT is a necessary and sufficient irreducibility test based on the
Theorem 1(see below). The following description is quoted from [7].

Let 8> denote the GF(2) -vector space of all infinite sequences of 0.1.
That is,
S*i={\ = (-, x5, 24,23, 22,21,20) | ;: € GF(2)}.

Let D (delay operator) and H (decimation operator) be linear operators
from & to §* defined by

D(-- - x4, 03,29, 01,00) = (- -, 15,04, 73, T2, L1),
H( - 24,23, 02,21, 20) = (- -, T10, Ts. T¢, T4, T2, Tp).
Let »(.X') be the characteristic polynomial of a linear recurrence, and \ be
an element of §°. Then, \ satisfies the recurrence if and only if ¢(D)y = 0.
Note that (D) is a linear operator and 0 denotes the zero sequence.
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It is easy to check that
DH = HD?.
Since the coefficients are in GF(2), we have o(X?) = ¢(X)2, and thus if
H(D)y = 0 then

A(D)H\ = Hp(D?)x = He(D)*x = 0,
i.e., H\ also satisfies the same recurrence. The following theorem holds[7].
Theorem 1 Let o(X) be a polynomial over GF(2) whose degree p is a

Mersenne exponent. Take \ € S such that ¢(D)x = 0 and Hy # \.
Then o(t) is primative if and only if HP\ = \.

In the above theorem, put p(X) := XP+X9+1. Let T = (- -+, t4,t3,t2.t1. tg)
be an element of S such that o(D)T =0, i.e.,

tp+i = tq+i -+ t;,

holds for all non-negative integer ¢.

Sieve III: final test.

(1) Determine an initial vector Ty = (tp-1,....t;,...,to) such that H(Tp)
dose not equal Tp. It is easy to satisfy this assumption. For example ¢5; =1
for a certain i(2i < p—1),and t; = O(for all j # 2;, 0 <7 < p—-1)is

sufficient.
(2) Compute successively the sequences S;, T; as follows. S; := Extend(T;),
Tip1 := H(S;). Extend(T;) means to compute the sequence based on the

recurrence formula. Remark that the first 2p — 1 values of S; are sufficient
to know the first p values of H(S;).
(3) If T, equals Ty. f(a) is primitive, and otherwise not primitive.

2.2 Primitivity of pentanomials

Basically, the necessary test for primitivity of pentanomials is similar to that
of trinomials.

The necessary and sufficient irreducibility test is different from that of
trinomials. Let f(X) = X? + X% 4+ X% 4+ X% 4+ 1 be a pentanomial of
degree p. We compute X~ mod f(X), where N = 27 — 1. The pentanomial
is irreducible if and only if the result equals 1. In the actual procedure, we
compute successively the sequence X; from X to X, where X; = X2, mod
F(X) over GF(2) and Xy = X. See [5] for more information.
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3 Results

Concerning the trinomials. we tried searching primitive trinomials whose
degree is M3z, M3y, M35 and M3zex. We did not search primitive trinomials of
degree Mszp and Mg74.

For p = Mjy. Ms3; and Msgy, nonexistence of primitive trinomials is
proved as follows: Swans's Corollary[1, p.170] guarantees that the X?+X7+1
is reducible over GF(2) if p = &3 mod 8 and if ¢ # 2. Next by Sieve III, we
show that X7 + X2 + 1 is reducible, where p = M34, Mss and Msgy.

In case of p = Ads3, 40656 candidates passed Sieves I and II. For the
computer search. we used an SGI POWER Challenge 10000 GR parallel
computer with 20 processors and 2.5 GB RAM. After minor architecture-
specific optimizations, we were able to test approximately one candidate
parameter per an hour. Hence, checking all 40656 candidates consumed a
total accumulated time of 4.6 years; using 19 of the available processors, the
search was completed in about 3 months.

Table 1
primitive trinomaials
n M,mod8 p=>M, ¢

32 -1 756839 the search is not done
33 1 859433 288477

34 3 1257787 none

35 -3 1398269 none

36# -3 2976221 none

374 1 3021377 the search is not done

The non-exhaustive search for primitive pentanomials was done in the AIST
computer center (RIPS), Tsukuba. We succeeded in finding two primitive
pentanomials whose degree is Mg.

Table 2
primitive pentanomials
n p=2.M, 0 q2 q3

28 86243 62833 50942 11754
64043 41667 19434
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