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ABSTRACT. Our purpose is to characterize “factor analysis” and “principal components anal-
ysis” from the system theoretical point of view. We believe that our characterization is clearer
than the conventional one since our approach is mechanical, and therefore, ambiguous con-
cepts are automatically clarified in terms of mechanics.

1. INTRODUCTION

We have an opinion that the fundamental spirit of “system theory” is the mechanical
world view, that is, to understand “all” phenomena by an analogy of mechanics. Thus
our present purpose is to describe “factor analysis” and “principal components analysis”
in terms of mechanics.

Usually dynamical system theory is formulated in the following form:

{ D = F(Z(t), @ (t),t), F(O0)=Fo --- ( state equation ),

g(t) = g(Z(t), @2(t), 1) .-+ ( measurement equation )

(1.1)

where 4; and @ are external forces. It is natural to consider that system theory is mod-
eled on mechanics. Thus, we assume that the state equation is motivated by Newtonian
equation. On the other hand, there seems to be no firm opinion for the source of the
measurement equation. What fundamental theory is in hiding behind the measurement
equation ¢  Recently, in [2,3] we proposed a foundation of measurements, which was
called “fuzzy measurement theory”, or in short “measurement theory”. Also, motivated
by quantum mechanics, i.e., “quantum mechanics” = “Heisenberg’s kinetic equation” +
“Born’s measurement axiom”, we proposed the following new frame of “system theory”:

“system theory” = “the rule of time evolution” ( or more generally, ”the rule of

the relation among systems” ) + “measurement theory”, (1.2)

which, of course, includes the conventional system theory (1.1).

We are convinced that the system theory (1.2) is quite rich. It is not too much to
say that “all” phenomena can be analized in the frame of (1.2). For example, we proposed
the fine ( system theoretical ) formulations of several statistical inferences, e.g., maximal
likelihood method, Bayes’s method, regression analysis, Kalman filter and so on ( cf. [3,5,6]
). Also, in [ 4 ], we asserted that the system theory (1.2) has great power of expression. In
other words, there is a good hope that we can obtain a proper translation from “natural

This preprint will be published in the proceedings of EUFIT’98 ( The 6th European Congress on Intelligent
Techniques and Soft Computing, September ( 1998 ), in Aachen )
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language” into “system theoretical language”. The translation is regarded as a kind of
system theoretical modeling problem in a broad sense. We believe that the translation is
the essence of “fuzzy logic” ( = “fuzzy set theory” ). That is, we believe that Zadeh’s
original aim [ 8 ] is precisely the translation. Also, we consider that “fuzzy system theory”
is characterized as the study concerning grade quantities ( i.e., membership functions ) in
the system theory (1.2).

2. PRELIMINARIES: FUZZY MEASUREMENT THEORY

The theory of operator algebras is a convenient mathematical tool to describe both
classical and quantum mechanics. Thus, the system theory (1.2) is described in terms of
C'*-algebras since our theory is essentially mechanics.

Let A be a C*-algebra, i.e., a Banach *-algebra satisfying the C*-condition, An
element F in A is called self-adjoint if it holds that F' = F*, where F™* is the adjoint
element of F. A self-adjoint element F in A is called positive ( and denoted by F > 0
) if there exists an element Fy in A such that F' = FjFy. Let A* be the dual Banach
space of A. That is, A* = {p : p is a continuous linear functional on A} with the norm

Il las ( = sup{|p(F)|: |IF|la < 1}). ( The linear functional p(F') is sometimes denoted

by L. <p, F>A. ) Define the mized state class @™(A*) such that G™(A*) = {p € A*:
[lollas =1 and p(F) > 0 for all F > 0 }. A mixed state p ( € &™(A*) ) is called a pure
state if it satisfies that “p = 0p; + (1 — 8)ps for some py,p2 € G™(A*) and 0 < 6 < 17
implies “p = p; = py”. Define &P(A*) = {p? € &™(A*) : p? is a pure state }, which is
called a state space.

As a natural generalization of Davies’ idea [ 1] in quantum mechanics, a C*-observable

( or in short, observable, fuzzy observable ) O = (X, R, F) in a C*-algebra A is defined
such that it satisfies that

(i). X is a set, and R is the subring of the power set P(X) (= {Z: ),

(ii). for every = € R, F(ZE) is a positive element in A such that F(0) = 0, and there
exists a sequence {Z;}$2, in R such that =;, C Z;, (if i3 <42 ), UR E; = X and
lim; 0 p™(F(Z:)) = 1 (Vo™ € G™(A*) ),

(iii). for any countable decomposition {Z1,Zs,...,Ey,...} of E, (£,Z, € R), it holds that

pm (F(E)) = Hmy 0 p™ (z,’le F(Z.)) (¥p™ € 6™(A%)).

{1
N

X}

Our starting point is as follows.

AXIOM 0. [ Fundamental concepts |. With any system S, a C*-algebra A can be
associated in which the fuzzy measurement theory ( or more generally, the system theory
(1.2) ) of that system can be formulated. A state of the system S is represented by a pure
state p? (€ GP(A*)), an observable is represented by a C*-observable O = (X, R, F) in the
C*-algebra A. Also, a quantity ( or, mechanical quantity ) is represented by a self-adjoint
element in the A. ( It will be generalized by several ways. For example see Remarks 2.1
and 3.1 later )  The measurement of the observable O for the system S with the state
p? is denoted by M. (0, S[pp]) in the C*-algebra A. We can obtain a measured value
(€ X) by the measurement M 4(O, S[,,p]).

The axiom presented below is analogous to ( or, a kind of generalizations of ) Born’s

probabilistic interpretation of quantum mechanics. We, of course, assert that the axiom
is a principle for all measurements, i.e., classical and quantum measurements. Cf. [2,3].
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AXIOM 1. [ Measurement axiom |. Consider a measurement M4(O = (X, R, F), Sipr})
formulated in a C*-algebra A. Assume that the measured value z (€ X) is obtained by
the measurement M 4(O, Si,»)). Then, the probability that the z (€ X) belongs to a set

Z (€ R) is given by p?(F(2)) ( = .. (s, FE)). ).

Of course it corresponds to “measurement theory” in (1.2). Also in this paper we
omit to state Axiom 2, which says “the rule of the relation among systems” in (1.2). For
the precise description, see [6,7].

Since our present concern is classical systems, we add the following remark.
Remark 2.1. ( Commutative C*-algebras ). When A is a commutative C*-algebra,
that is, F1 - F, = F, - F; holds for all F;, F; € A, by Gelfand theorem, we can put A
= C5(f), the algebra composed of all continuous complex-valued functions vanishing at
infinity on a locally compact Hausdorff space Q. It is well known that Co(Q)* = M(Q),
i.e., the Banach space composed of all regular complex-valued measures on £ ( with the
Borel o-field Bg ). And therefore, ™(M(Q)) = {p € M(Q) : p 2 0,]|pllpme) = 1},

which is denoted by M_1(€2). Also, it is well known that GP(M(Q)) = {JW € M(Q) :

., is a point measure at w € Q, i.e., M(n)<5“’f>co(n) = f(w) (Vf € Co(R), Yw € ) },
which is denoted by M?%, (). And therefore, we have the identification: 2 3 w +— 4§, €
Mﬂ_l(Q). Thus the locally compact Hausdorff space £ may be also called a state space. A
quantity may be generalized as a real-valued continuous function on Q. Let O = (X, R, F)
be an observable in a commutative C*-algebra A (= Cy(2) ). Note that, for any fixed =
(€ R), the F(Z) is a membership function on {2, i.e., a continuous function on  such that
0 < [F(E)(w) <1 (Yw € Q). Thus, the F(-) will be sometimes denoted by F{.), that is,
[F(Z)](w) = Fz(w) (VZ,Vw). And therefore, (X, R, F) is often denoted by (X, R, F(y) in
a commutative C*-algebra Co(Q).

Example 2.2. ( Gaussian observable ). Put Q@ = R, the real line. And let o be any
positive real. Define the Gaussian observable Og- = (R, B3, Gf’,)) in Co(R2) such that

1

V2ro?

where B}’{d = {B: B is a bounded Borel set in R }. Also, define the finest “observable”
Oy = (R, Blﬁd,x( ;) in Co(R), which x : @ — {0,1} is the characteristic function of
= (e Bﬁd). The finest observable Oy should be understood as the Ogo for sufficiently
small o.

3. A SYSTEM THEORETICAL APPROACH TO FACTOR ANALYSIS

Let €2 be a compact Hausdorff space. Consider quantities fi, fz,...,fn in C(Q)
(= Co(€2)). For example, we may consider that the 2 represents the set of persons (
or precisely, the state space representing the states of persons ) with the discrete topology,
and the height [ resp. weight, etc. ] of a person w is represented by fi(w) [ resp. fo(w),
ete. ].

Define the ( real ) linear space Span([{f1, ..., fn}] of C(§) such that Span[{fi, ..., f~}]
= {211:;1 anfn i an € R}. The Span[{fi, ..., fnv}] may be called the “theoretical factor
space” ( concerning {fi,...,fn} ). And the linear basis {e,€e2,...,en,} (1 < 3Ny < N)
of Span[{fi, ..., fn}] may be called the “theoretical factors”. However, it is, of course, too

GZ(u) =

/ e mT dy (V2 € Br, Yue=R),

3



KSTS/RR-98/008
June 27, 1998

theoretical. Our concern is the “practical factor analysis” presented below.

Let v € M41(R). This normalized measure v is assumed to be induced by some
sequence {wi}f_; in Q ( with sufficiently large K ) such as v =~ (1/K) Z,{;l Sp- In
this sense, the v may be called a weight ( or, mized state ). Of course, the uniqueness
of the {wx}fL, is not guaranteed in general. For each n (1 < n < N), consider an
observable O.» = (R, BY, €y) in Co(R) such that Jrzel,(u) =u (Vu € R), and A[O,x]
[fr |z — u|*e%,(w)]*/? is independent of u. In most cases, it suffices to consider that O¢n
Ogon) ( cf. Example 2.2).

Now we define the observable O, = (R, By, "0 f,) in C() such that (€0 f,)z(w) =
€2(fn(w)) (VE € BY,Vw € Q). Note that the A[O,n] is interpretated by the measurement
error of the measurement M¢(q)(Onr, Sjs,)) for the quantity fn (cf. Definition 4.12 in [3] ).
And furthermore, define the product observable O = X n=1 On = (RN BRN, n—15 "0 fn)
in C(Q), that is, (X2_,€" 0 fn)z, x..xzy(w) = IIN_| €& (fn(w)). Thus, we have the
measurement M) (O, S[ka]) And assume that, for each k (1 £k £ K), a measured

value #F = (zF,2%, ..., 2%) (€ RY) is obtained by the measurement Mgy (O, S[(;wk]).

i

Axiom 1 says that P, (1 x---xZp), the probability that the Z* belongs to 5y x - - - x =y,

is given by (x2_ €0 fn)z, x-. XuN(wk) Put P, (Z1 %+ -xEN) = fo Pu(Er % HN)u(dw),
which is considered to be the “averaging probability” of P,(Z; x -+ x Zy) concerning the
weight v. ( Also, see Method 1, or its objective view, in [3]. ) A simple calculation shows

the following equahtxes
Z:c N/ 2o Py(dzy - -dan) = E,

for all n such that 1 <n < N, and

—Azx /RNmm-»cn y(dzy - dzn) = Vinn

for all m and n such that 1 <m,n < N, if K is sufficiently large.
We may denote that E, = En(fn, Oc) and Vinn = Vi o ({Fu}eq, {0 }_;). And

we introduce the following equivalence relation =, :

[{fn n~1?{of"}n— ] ~v [{fn =1 {06"}11—1]
if and only if

Eo(frn,Ocn) :En(fna O¢) and Vp, n({fn 1,{0€n —1) = mn({fn n_1v{0é" nN=])

for all m and n such that 1 < m,n < N. Under the above preparation, we can characterize
“factor analysis” in what follows:
[f] For given data [z : 1 < n < N,1 < k < K], an integer Ny (1 < Ny, < N)

and a weight v, find the pair {1, {0}, such that EX = E,(fn,Oen)
(1 <Vn < N), VE, = Vioul{fa}ll1, {0a ) (1 € Ym,¥n < N), and the
dimension of Span [{f,}].,] is equal to Ny. Or, under the same situation, find the
smallest Ng.

The Span[{fa}3_,] (€ L*(Q,v) ) is called the “factor space” ( concerning the data [z£] ).

And the ( orthonormal ) basis of Span[{f,})_,] is called “factors”,

4
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Also we can consider another characterization of “factor analysis”, which is mathe-
matically equivalent to the above.

Remark 3.1. ( Another characterization of “factor analysis”). For each n, define fn :
Q = M4 1(R) such that [fn(w)](E) = (" o fn)z(w) (V= € BY, Vw € Q), which may be
called “Markov quantity” or “quantity with a noise”. Also, the value A[O.n] is called the
“noise part in ]?n ”. Consider a statistical ( or, average ) measurement Mc,(r)(Opm =
(R, Bﬁd,xik)), S(ﬁ,(w)) ), which is equaivalent to the measurement Mg (q)(On, Sis,1) (
cf. Method 1 in[3], or [7] ). Thus, the above [f] is also valid, and therefore, we can also
understand “factor analysis” in terms of “quantity with a noise” ( and not “measurement

with an error” ). This may be rather acceptable for statisticians. Of course we may also
consider the mixed idea of both “quantity with a noise” and “measurement with an error”.

Remark 3.2. ( Principal components analysis ). The “principal components analysis”
may not be misleading even in the conventional formulation of statistics. However, it
should be noted that the concept of “measurement error” ( or, “noise in Markov quantity”
) is not clear in the conventional formulation but in the system theory (1.2). Thus, from
the system theoretical point of view, we can add that “principal components analysis”
must be used under the situation that the measurement error A{O,x] can be ignored, i.e.,
A[O»] & 0. Under the hypothesis, the system theoretical characterization is easy. Thus,
details are left to the reader.

4. CONCLUSIONS

In this paper we proposed a mechanical ( i.e., system theoretical ) formulation of
“factor analysis” and “principal components analysis”. It should be noted that we started
from the mechanical terms, e.g., state, observable, quantity, measurement, measurement
error, etc., and not the non-mechanical concepts, e.g., Kolmogorov’s mathematical prob-
ability space, random variable, common factor, unique factor, etc. Note that “unique
factor” is regarded as “measurement error” or “noise in Markov quantity” in our formula-
tion. Thus, our assertion can be immediately understood in mechanics. Therefore, it is a
matter of course that our proposal is clearer than the conventional one. And furthermore,
we added the remark on “principal components analysis”, that is, it must be used under
the situation that the A[O.»] can be ignored.

We hope that our mechanical world view will be examined and investigated from
various view points.
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