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STATISTICS IN MEASUREMENTS*

SHIRO ISHIKAWA™**

ABSTRACT. Recently we proposed “measurement theory”, i.e., the foundation of measure-
ments. This is a general measurement theory for both classical and quantum systems. The
purpose of this paper is to give a foundation to statistics in terms of measurements, that is,
to characterize or understand statistics as one of aspects of measurement theory. Studying
several statistical examples in the light of measurement theory, we show that Fisher’s and
Bayes’s methods are described in terms of measurements. Also, we characterize “estimation
under loss function in statistics” in measurement theory. Therefore, we may conclude that
statistics is a certain aspect of measurements. This viewpoint is important since it clarifies
the relation between statistics and the other aspects of measurements.

keywords: Probability, Data Analysis Methods, Statistical Methods, Measurements, Fuzzy
Logic.

1. INTRODUCTION

Recently in [6] and [7] we proposed the foundation of measurements, which was
called “fuzzy measurement theory”, or in short, “measurement theory”. This theory is a
general measurement theory for both classical and quantum systems. Also, it is composed
of two parts, that is, “objective measurement theory” and “subjective measurement

theory”. The former is fundamental, and the later is rather methodological.

Most statisticians consider that statistics is closely related to “measurements”, or,
statistics is the study to analyze measured data for some purpose. Therefore, if a founda-
tion of measurements has been proposed, the proposal should be immediately examined
in comparison with statistics. The purpose of this paper is to execute it, in other words,
to propose a measurement theoretical formulation of statistics. In Section 2 we review
the measurement theory that was proposed in [6] and [7], and add an example concern-
ing “at random”. In Section 3 we study “statistical inferences for states” in objective
[ resp. subjective | measurement theory, which should be compared to Fisher’s method
[ resp. Bayes’s method ] in statistics. In Section 4 we study “approximate measure-
ments for quantities” in measurement theory, which corresponds to “estimation under
* This paper was accepted in Fuzzy Sets and Systems. It will be published soon.
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loss function” in statistics. Since two main topics in statistics, i.e., “Fisher’s and Bayes’s
methods” and “estimation under loss function”, can be described in terms of measure-
ments, we may conclude that statistics is a certain aspect of measurement theory. This
viewpoint is important since it bridges the gap between statistics and the other aspects
of measurements. For example, from the viewpoint, we can understand the relation be-

tween “fuzzy logic” and statistics. ( Throughout this paper, the word “fuzzy logic” is
used in the meaning of Remark 4.6 in Section 4. )

For completeness, we again note that our purpose is “to formulate statistics in
measurement theory” and not “to apply statistics to measurements”. We believe that
“measurement” is the most fundamental concept in science. Therefore, we always start

from “measurement”.
2. MEASUREMENTS AND “AT RANDOM?”

According to [6] and [7], in this section we introduce the foundation of measure-
ments. Kolmogorov’s probability theory is of course a useful mathematical theory for
analyzing measured data. However we are concerned with measurements as well as
measured data. Therefore, we must prepare the theory of operator algebras, which is
indispensable for a mathematical formulation of measurements, or more generally, “sys-
tem theory”. However it should be noted that “mathematics” is only used as a tool to
represent the concept of “measurement”. In fact this paper does not include theorems

but only examples.

Let A be a C*-algebra, i.e., a Banach *-algebra satisfying the C*-condition, cf. (6],
[7], [15). Throughout this paper, we always assume, for simplicity, that A has the identity
I. An element T in A is called self-adjoint if T = T* holds. Also, a self-adjoint element
T in A is called positive ( and denoted by T > 0 ) if there exists an element Ty in A such
that T = T¢To where Ty is the adjoint element of Tp. A positive element T is called a
projection if T = T? holds. Let A* be the dual Banach space of A. Thatis, A* ={p : p
is a continuous linear functional on A} with the norm ||-|| 4« ( = sup{|p(T)|: ||T]la < 1}
). ( The linear functional p(T) is sometimes denoted by . <p,T>A. ) Define the
mized state class ™ (A*) such that &™(A*) = {p € A*: |pllax = 1 and p(T) = 0
for all T > 0 }. A mixed state p ( € &™(A*) ) is called a pure state if it satisfies that
“p = Ap1 + (1 — A)pz for some py1,pz € G™(A*) and 0 < A < 1” implies “p = py = p2”.
Define GP(A*) = {pP € G™(A*) : pP is a pure state }, which is called a state space.

When A is a commutative C*-algebra, that is, Ty - T, = T3 - T} holds for all Ti,
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T, € A, by Gelfand theorem ( cf. [15] ) we can put A = C(2), the algebra composed
of all continuous complex-valued functions on a compact Hausdorfl space 2. It is well
known that C(Q)* = M(Q), i.e., the Banach space composed of all regular complex-
valued measures on §2. And therefore, 8™ (M(Q)) = {p € M(2) : p > 0,]|pll M) = 1},
which is denoted by M41(R2). Also, it is clear that GP(M(§2)) = {&, EM(Q): 6, isa
o = (@) (¥f € C(9), Yw € ©) }, which
is denoted by M’il(Q). And therefore, we have the identification: £ > w +— 6, €
MZE (). Thus the compact Hausdorff space {2 may be also called a state space.

point measure at w € 2, i.e., M(ﬂ)<5w’f>

As a natural generalization of Davies’ idea in quantum mechanics ( cf. [2]), a C*-
observable ( or in short, observable, fuzzy observable ) O = (X,F,F) in a C*-algebra A
is defined such that it satisfies that

(i) X is a set, and F is the subfield of the power set P(X) (= {Z: 2 C X}),

(ii) for every = € F, F(Z) is a positive element in A such that F() = 0and F(X) =1
( where 0 is the 0-element in A ),

(iii) for any countable decomposition {Z;,Zs, ...,Z,,...} of Z, (,Z, € F), it holds that
o (F(E)) = limpy oo p™ (zi"zl F(En)) (Vp™ € &™(A*)).
Also, if F(Z) is a projection for every = (€ F), a C*-observable (X, F, F) is called a

crisp C*-observable.

Remark 2.1. ( Sample space ). Let p™ be a mixed state, i.e., p™ € &G™(A*). Applying
Hopf extension theorem, we can get the measure space (X, F,p™(F(-)) ) such that
p™(F(Z)) = p™(F(E)) for all = € F where F is the smallest o-field that contains F.

For simplicity, the p™(F(-)) is also denoted by p™(F(:)) or . <p”, F(-)>A. Also Axiom
1 ( or Method 1 ) proposed later makes us call the measure space (X, F, p™(F(-)) ) a

sample space or a probability space.

Let O = (X,F,F) be an observable in a commutative C*-algebra A (= C(Q)
). Note that, for any fixed = (€ F), the F(Z) is a membership function on , i.e., a
continuous function on  such that 0 < [F(Z)](w) < 1 (Vw € Q). Thus, the F(-) will be
usually denoted by Fi.), that is, [F(Z)](w) = Fg(w) (VE,Vw). And therefore, (X, F, F)
is often denoted by (X, F, F.)) in a commutative C*-algebra C(£2).

Let O = (X, F,F) be an observable in a C*-algebra A. Let Y be a set with the
field G. Consider a measurable map h : X — Y, ie, h™ (') € F (V' € G). Then we
have the observable Oy = (Y, G, Foh™!) in A where (Foh™!)(I') = F(h~(T)) (VT € G).
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This Oy, is called the image observable of O concerning the map h.

For each k = 1,2, ..., n, consider an observable Oy = (X, F, Fi) in a C*-algebra A.
Define the X p_; Fx such as the smallest field ( on X =1 Xx ) that contains X —, Ek,
Zr € Fr. An observable O = (x?_, Xk, X} Fx, F) in A is called the quasi-product
observable of {Of : k = 1,2,...,n} if it holds that Oy, = Oy (Vk = 1,...,n), where Op,
s

zr € Xi. Note that the existence and the uniqueness of the quasi-product observable of

is the image observable concerning the k-th coordinate map, i.e., X ;;1 X2 (7)<
{Ok : k = 1,2,...,n} are not guaranteed in general. However, when Oy, k = 1,2,...,n,
commute, i.e., Fx(Z¢) Fr(Zp) = Fi(Er) Fir(Ek) for all Zx € Fi, Zpr € Fpr such that
k # k', we can construct F such that F(Z; x Zp X - - X Zy,) = F1(E1)F2(Z2) - - Fr(En).
This kind of quasi-product observable is called a direct product observable, ( or in short,
product observable ), and denoted by X:.__l Oy ( or, (Xo1 Xk, Xy Fy X1 Fr) ) In
this paper we always deal with direct product observables. However it should be noted

that various quasi-product observables play important roles in measurement theory. Cf.
(6], [7] and [8].

With any system S, a C*-algebra A can be associated in which the fuzzy measure-
ment theory ( or more generally, the system theory ) of that system can be formulated.
A state of the system S is represented by a pure state p? (€ GP(A*)), a quantity is
represented by a self-adjoint element @) in the C*-algebra A. Also, an observable is
represented by a C*-observable O = (X, F, F') in the C*-algebra A. The measurement
of the observable O for the system S with the state pP is represented by M 4 (O,S[Pp])
in the C'*-algebra A. In particular, the measurement of a quasi-product observable [
resp. direct product observable | is called a simultaneous measurement [ resp. iterated

measurement .

The axiom presented below is analogous to ( or, a kind of generalizations of ) Born’s
probabilistic interpretation of quantum mechanics. We of course assert that the axiom

is a principle for all measurements, i.e., classical and quantum measurements. Cf. [6]
and [7].

AXIOM 1. [ Measurement axiom |. Consider a measurement M4(O = (X, F,F),
S[pp]) formulated in a C*-algebra A. Assume that the measured value z (€ X) is
obtained by the measurement M 4(O, S[pp]). Then, the probability that the z (€ X)

belongs to a set = (€ F) is given by p?(F(Z)) ( = . <p”7F(E)>A ). ( Cf. Remark 2.1).
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We introduce the following classification in measurement theory (cf. [6,7]):

classical measurement theory ( for classical systems )
measurement theory

quantum measurement theory ( for quantum systems )

where a C*-algebra A is commutative or non-commutative. Note that quantum mea-
surement theory is well known as a principle of quantum mechanics (cf [2,3]). Our
interest in this paper is mainly concentrated to classical systems. Therefore, in most
cases, it suffices to consider that 4 = C(Q).

Remark 2.2. ( Several results derived from Axiom 1, cf. 6, 7, 8] ). We believe
that this axiom dominates all measurements, i.e., classical and quantum measurements.
In fact, as consequences of Axiom 1 ( or, Methods 1 and 2 mentioned later ), in [6]
and [7] we clarified several fundamental facts, for example, the Jjustification of “standard
syllogism”, ergodic problem ( i.e., the principle of equal weight in statistical mechanics
), the subjective foundation of Shannon’s entropy, the errors in Heisenberg’s uncertainty
relation and so on. And furthermore, the relation between Kolmogorov’s probability
theory and Axiom 1 ( or, Methods 1 and 2 mentioned later ) was well discussed in [7].
In one word, the probability space (X,F, pP(F(-))), for the first time, acquires a reality
under Axiom 1. Also, in [8] we asserted that measurement theory, i.e., Axiom 1, had
great power of expression. Therefore, a good translation from “natural language” into
“system theoretical language” can be expected. We believe that this is the essence of

“fuzzy logic” ( cf. Remark 4.6 later ).

Let M4(O = (X, F, F),S'[pp]) be a measurement formulated in a C*-algebra A.
Assume that

(§) we get the measured value zo (€ X) by the measurement M4(O, S[pp]).

Then, we may also say that “zq is the value of an observable O for the system S with a
state pP 7. Let O' = (X, F', F') be a observable in A such that F' C F and F(E)y=F'(Z)
(VZ € F'). That is, O is finer than O’. Then, under the assumption (), we may also
say that “zq is the value of an observable O for the system S with a state p?”. Define
the equivalence relation ~, T2 (21,22 € X) such that 7, € £ <= 2, € = (V= e 7.
When 2o ~_, zy, it is natural to consider that “zo is the value of the observable O for
the state pP” <= “ry is the value of the observable O’ for the state p?”. For any = € X,
define [z]5 (C X) such that [z]7 = {z' € X : 2 ~,, z'}. Then we may also say that

“zolr is the value of the observable O' for the state pP”. Also consider a measurable
£

5
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map from X into Y ( with the field G ). Thus, we get the field 7' = {h™}(T") : " € G}
(C F). Note that “h(z1) = h{z3)" implies that “z; ~
above assumption (f), we may say that “h(zq) is the value of the image observable Oy
(=(Y,G,F(h72(:)) ) for the state pP”.

- z2”. Therefore, under the

Remark 2.3. ( Measurement theory and statistics ). As mentioned in Remark 2.1,

a measurement M4 (O = (X, F, F), S[pp]) always determines the sample space (X,?,
A <pP,F(-)> 4 ) Here note that the mathematical structure of the sample space

{ » <pp’ F(E)>A } (A 2T is the same as that of the conventional formulation of
pPEGP(A*),E€E

statistics ( ie, {P(E, 9)}9 0zcF’ where, for each 6 in a parameter space ©, P(-,8) is a
€6,E¢€

probability measure on a measurable space (X, F), cf. [16] ) Therefore, there is a good
hope that statistics can be described in terms of measurements. Also, this is precisely
our motivation in this paper. Note that measurement theory has a principle, i.e., Axiom
1, in which the relation between “measurement” and “probability” is declared. On the
other hand, the meaning of “probability” is not clear in the conventional formulation

of statistics since “mathematics” can be always interpretated by various ways. ( Also,

see the arguments appearing below Method 1 later. ) Following the common knowl-
edge of quantum mechanics, we believe that any scientific statement including the term

“probability” is not meaningful without the concept of “measurement”.

Remark 2.4. ( Possibility ). In most cases of measurements, we do not have the
information concerning the state p? of the systems S. Note that one of main topics
in statistics is to infer the unknown state from the measured value ( cf. Section 3 ).
Therefore, the MA(O,S[pp]) is sometimes denoted by M 4 (O,S’M) when we want to
stress the situation that the state p? is unknown. The following statement (i) is clearly

equivalent to Axiom 1.

(i) Assume the fact that the measured value obtained by M4(O = (X, F, F),S[*])
belongs to = (€ F). Then we can assert the following statement: if [] = p? (
ie., Ma(O,S) = Ma(O, Sy,r)) ), then the probability that the fact ( i.e., the

measured value belongs to = ) occurred is given by . <pP, F(E)>A.
This statement (i) is usually represented as follows.

(ii) Assume the fact that the measured value obtained by M 4 (O, S[*]) belongs to =
(€ F). Then the possibility that [x] = p? is given by ,, <p”, F(E)>A.

This (ii) should be read as the abbreviation of the above (i). In other words, the definition
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of “possibility” is given in the above (i). Therefore, three statements ( i.e., Axiom
1, the statements (i) and (ii) ) are equivalent. Also we must be careful for quantum
measurements since the “reduction of wave packet” is usually considered to occur after
the quantum measurement. That is, the unknown state [] in the above satement (i) (

and therefore, (ii) ) is the state before the measurement ( cf. Remark 3.1 later ).

Remark 2.5. ( Possibility and likelihood ). Assume that there exist a measure v on
(X,F)and f(-, p?) € L} (2, v) (Vp? € &P(A*) ) such that pP(F(Z)) = [ f(z, p?)v(dz) for
all = € F and all p? in G?(A*). Then, evenif = = {z} and p?(F ({x}) =0 (Vp? € GP(A*)
in the statement (ii) of Remark 2.4, we may calculate as follows:

the possibility that [x] = p}  p{(F({z})) _ .  p(F(Z)) (z,0})

the possibility that [+] = ph  ph(F({2})) =-ix) p2<F =) f(x )

In this sense ( or, in the sense of “Radon-Nikodym derivative” ), we can use “likelihood

function f(z,-)” instead of “possibility function A,< : ,F(E)>A 7. In this paper we
are not concerned with “likelihood” since we consider that basic ideas should be first

described in terms of “possibility”.

Next we introduce “subjective measurement” M 4(O, S(p™) ), which is a mathe-
matical symbol such that p™ is a mixed state, i.e., p™ € &™(A*). The p™ is called a
subjective state ( or, statistical state, weight, prior ). Note that “subjective measure-
ment” has no reality in itself since the state of a system S is always represented by a
pure state p? and not a mixed state p™ ( cf. Axiom 1 ). That is, we have no experiment
that tests Method 1 ( presented below ) directly. Therefore, Method 1, i.e., “subjective

measurement theory”, is meaningless without a proper interpretation ( cf. [7] ).

METHOD 1. [ Subjective measurement ].  Consider a subjective measurement
M4 (O = (X, F,F), S(p™)) formulated in a C*-algebra A. Then, we consider that

(1) the “subjective probability” that * (€ X), the measured value by the subjective
measurement M 4(O, S(p™) ), belongs to a set = (€ F) is given by p™(F(Z)) ( =

(P @) ).

Though a subjective measurement M 4(O, S(p™) ) is merely a mathematical sym-
bol, it must not be underestimated. In fact statistical mechanics is based on Method
1 with a proper interpretation ( i.e., “the principle of equal weight in statistical me-
chanics” ), of. [7]. Also, in [7] we showed that some objective interpretation ( based on

Axiom 1 ) could be always added to the subjective measurement M 4(O, S(p™) )if it was

7
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needed. In other words, the “subjective probability” in Method 1 can be characterized
as a frequency probability of the objective measurement Mgr_, 4(®%=10, Sigr_ o7 ) in
a tensor C*-algebra @7_, A where p™ ~ 150 | p¥ for sufficiently large n. Note that
“probability space (X, F,P)” in Kolmogorov’s probability theory ( and consequently,

P(Z,6) seo.seF in the conventional formulation of statistics ) is also a mathematical
symbol. As Kolmogorov himself said so in his famous book [11], the statement Sk
“The probability that an event = (€ F) occurs is given by P(Z)” is meaningless without
a proper interpretation. In this sense, the Sk and Method 1 are similar. To be compared

with the statement Sk, Method 1 has a merit such that it has a form like Axiom 1.

We also consider a mathematical symbol M4(O, Sj,»)(p™) ), which is called an
objective and subjective measurement in A. That is, we consider that M 4(O, S(p#1(p™) )
= M4(O, Sjpr) ) from the objective point of view, and M4(O, Srj(p™) ) = M4(O,
S(p™) ) from the subjective point of view. Therefore, the phrase “measured value 0b-
tained by M 4(O, S(,ej(p™) )” in Method 1 is meaningful, that is, it is interpretated as
“measured value obtained by M 4(O, S},r))”. By the same reason mentioned in Remark
2.4, the Ma(O, Sppri(p™) ) is also written by M4(O, Sp,(p™) ). In this paper, a sub-
jective measurement M 4(O, S(p™) ) is chiefly used as the subjective part of M (O,
Sipr)(p™) ). However we must again note that it is merely one of interpretations of

Method 1.
The difference between “objectivity” and “subjectivity” is rather delicate. The
following example will promote a better understanding of our theory.

Example 2.6. ( Objective and subjective aspects of “at random” ). Suppose we have
an urn contains ten balls, six blue and four red. Now we consider the following two

measurements:

(I) Consider the following measurement: that is, “choose a ball at random from the

urn, and uninterruptedly look at the ball”.

(IT1) Choose a ball at random from the urn. Assume that the information of the ball is
unknown since it is held in one’s fist. Here, consider the following measurement:

that is, “look at the ball”.

Our present problem is to formulate these two measurements (I) and (II).

The above example is solved in what follows. Consider the state space Qw~ ME, Q),
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in which the state of a ball B; (j = 1,...,10) is represented. Therefore we have the
correspondence: B = {By, -+ ,Bio} 3 B; — w? € §1. Since our interest is concentrated
to the set B, it suffices to consider the restricted state space @ = {w?,...,w%} ( C Q).
That is, we have the identification: B 3 B; ¢ w? € Q. Also assume that B; is blue
(j = 1,2,...,6) and the others are red. Therefore we can define the observable O =
(X = {b,r}, P(X), Fy) in C(£2) such that

; 11
Folw) =19 ¥ 7

and F{r}(w?) =1- F{b}(w?). Here we of course consider that “observing that the ball
B; is blue” <= “getting the measured value ‘b’ by the measurement M¢(q)(O, 5[5‘0@])”.
Thus, Axiom 1 says, for example, that the probability that the measured value B is
obtained by the measurement M¢(qy (O, S[Jwg]) is given by 1 (: 5wg(F{b}) = F{b}(wg)).

. The system S ( or precisely, Sy ) composed of ten balls is formulated in a ten-
Y (1)

sor commutative C*-algebra leo LC(Q) = C(Q9). ( Recall many particles system in

classical mechanics. ) The state of the system S is of course represented by a point
measure ®32,4, 0 (w8, w0y i MY (919 = Q% Define the observable O =

(X = {b,7}, P(X) F)) in C(92'°) such that
~ 1
Fyy(w1,ws, .. wi0) = E(F{b}(wl) + Fppy(w2) + - + F{b}(ww)) V(w1, .., w10) € ',

and ﬁ{,} = 1——ﬁ{b}. This O may be called “average observable” in C(2'?). Now, we have

the measurement MC(QLO)((A), Sis o )]), which represents the situation (I), i.e., the
“1o

@9

objective view of “at random”. Clearly, the ( objective } probability that a measured

value ‘b’ [ resp. ‘r’ | is obtained by the measurement MC(Qm)(a, S5, o o 0 )]) is given

(u.z w9, wdy
by 8(w0,w8,...w00) (Fp}) = Fy(wd,w, ...,wly) = 6/10 [ resp. 5(w?,w2,..4,w10)(F{T}) =4/10
1.

(IT). Assume that the ball chosen in the statement (II) is Bj,. Also note that the
information of the jo is unknown. Therefore, there is a very reason ( cf. [7] ) to consider
that the subjective state of the system S ( or precisely, Sy ) is represented by the
uniform weight p; (€ M41(Q)), that is, pit; = 55 Zlo 8. 9 Thus, we have the
objective and subjective measurement Mc(q)(O, S (puni))- ( Here the observer does
not know the fact that [¥] = (5qu10. ) Then the subjective probability that a measured
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‘)’

value ‘b’ [ resp. ‘r’] is obtained by the measurement M) (0, Si(plh;)) is given by
pri(Fuy) = Jo Froy(@)piui(dw) = 6/10 [ resp. pii(Fyry) = 4/10].

3. STATISTICAL INFERENCES FOR STATES

In this section we study “statistical inferences for states” in measurement theory.

In other words, we focus on the following problem:

() how to infer the unknown state [] (€ &P(A*) ) from the measured data obtained
by a measurement M4 (O, S[*]) or M4 (O, S[*](pm)).

Also this should be of course compared to Fisher’s method or Bayes’s method in statistics.

Let us begin with Fisher’s method. The statement (ii) in Remark 2.4 gives the

justification to “maximum likelihood function method” as follows ( cf. Remark 2.5 ).

(M) When we know that the measured value by a measurement M4(O = (X, 7, F )
S(4]) belongs to =, there is a very reason to consider that the state [*] of the system
S is equal to p? ( € GP(A*) ) such that pj(F(Z)) = max,resrar) pP(F(Z)).

Also, by the statement (i) in Remark 2.4 we get the following test (T).

(T) Assume that = (€ F), disjoint sets Hy and H; (C GP(A*) ) satisfy that 0 <
pP(F(Z0)) < € € 1 (VpP € Ho) and 0 < 1 — € < pP(F(Z0)) < 1 (Vp? € Hy) for
some sufficiently small € and €¢’. And assume the fact that the measured value by
a measurement M 4(O, S,)) belongs to Zo. Here we see that, if [*] € Hp, then the
probability that the fact occurred is less than e, that is, the fact is a rare occurrence.

Therefore, there is a very reason to consider that [+] ¢ Ho.

Thus we consider that Fisher’s spirit is described in terms of Axiom 1. The statement (M)
(or, (T) ) is of course valid for quantum systems as well as classical systems. However,
as stated in Remark 2.4, we must note that the unknown state [] in the satement (M) (
or, (T) ) is the state before the measurement ( cf. Remark 3.1 below ). Though it may be
one of topics in quantum measurement theory, our concern in this paper is concentrated

to classical systems.

Remark 3.1. ( The “collapse of the wave pocket” in quantum mechanics ). The
“collapse of the wave pocket” is the most significant and unsolved problem in quantum
mechanics. That is, some physicists consider that the state [x] (€ &7(A*)) of the system
S changes to some state [*'] (€ &P(A*)) after we know the measured value by the
measurement M 4(O = (X, F, F), Sjj). Though there is a very reason that they consider

so, this produces several farnous paradoxes such as Schrédinger’s cat. Note that the above

10
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(M) also includes a paradox if we consider that the pf in the above (M) approximates
[#']. However, in spite of the paradox, some physicists may assert so. Their opinion must

not be denied since it is unsolved in quantum mechanics.

Next we review Bayes's method ( proposed in 7], i.e., the formula (5.2) in [7] )
in measurements. Let O = (X, F, F,) be an observable in a commutative C*-algebra
C(Q). Consider an objective and subjective measurement M¢(qy(O, S,j(p™)). Then
the following statement is justified by Method 1 ( or Method 2 presented in the next
Section 4 ).

(B) Assume the fact that the measured value by the measurement M¢(q) (O, Sp.(p™))

belongs to = (€ F). Then, from the subjective point of view, we consider that

the new subjective state of the system S is given by pM . (€ M41(f2)) such that

pm(B) = %%‘:)lg:g_jg (VB € Bg, the Borel o-field of Q ).
py =

That is, there is a very reason to consider that the state [#] is approximated by pht,. .
This (B) of course corresponds to Bayes’s method in statistics. Therefore we see that

Bayes’s spirit is described in terms of Method 1.

For completeness, we add the outline of the measurement theoretical justifica-
tion of (B) in what follows. Let O; = (Y, G, G ,) be any observable in C(2). And
consider the iterated measurement Mc()(O x O, S;,(p™)). Applying Method 1 to
M) (O x Oy, Spq(p™)) and Mcq)(O1, Siv(prew)) respectively, we can expect that
the new subjective state p[, (€ M4+1(Q)) satisfies the following condition:

Jo FE(w)Gr(w)p™ (dw)
Jo F=(w)p™(dw)

_ /Q Gr(w)pln(dw) (VT €9).

( For the arguments about “conditional probability”, see [7]. ) Thus we get (B) since

O, is arbitrary.

Now we have Fisher’s method and Bayes’s method in measurement theory. Thus we
now study some statistical examples in terms of measurements. Though these examples
are quite simple ( 1.e., X and £ are supposed to be finite sets ), we believe that these do

not miss the essence of statistics.

Example 3.2. ( Urn problem ). Let U;, j = 1,2,3, be urns that contain sufficiently

11
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many colored balls as follows:

“blue” “green” “red” “yellow”
U - 50% 30% 10% 10%
U, : 30% 30% 30% 10%
Us : 20% 20% 40% 20%

Put U = {U,,U,,U;}. By the same argument in Example 2.6, we consider the state
space  ( = {w;,wsz,ws} ) with the discrete topology, which is identified with U, that is,
U>sUj ¢ wj € Q= ME (Q). Define the observable O = (X = {b,g,7,y, }, P(X), F(,y)
in C(2) by the usual way. That is, Fyy(w1) = 5/10, Fppy(wz) = 3/10, Fiyy(ws) = 2/10
and so on. ( Recall the “average observable” O in Example 2.6 (I), i.e., the objective
view of “at random”.) Then we have the measurement Mc(0)(0,S4). We of course

consider that, for example,

(§) “choosing a ball at ramdom from the urn Uj, and observing that the ball is blue”

< “getting the measured value ’b’ by the measurement M¢(q)(O, S{rfuj])”'

Next consider the iterated measurement Mc(g)(x2_,0 = (X?, P(X?), xi_,F), Six)
where (x2_, F)z, xz,(w) = Fs, (w) - Fg,(w). Also, assume that the measured value (r,b)
is obtained by the iterated measurement M¢(q)(x3-, 0, S[4)- Applying Fisher’s method
(M), we get the conclusion as follows. Put E(w) = Fy,j(w)F(p)(w). Clearly it holds that
E(w;) = 1-5/102 = 0.05, E(wy) = 3-3/10% = 0.09 and E(w3) = 4-2/10% = 0.08.
Therefore, there is a very reason to consider that [*] = §,,, that is, the unknown urn is
Us.

Example 3.3. ( Continued from Example 3.2 ). Let @ be a quantity in C(f2), i.e.,

Q:Q (~ ML () ) — Ris areal valued continuous function on 2. ( For the relation

between quantities and observables, see the next Section 4. > For example we may
consider in what follows. Assume that the weight of a blue ball is given by 10 (gram),

and green 20, red 30 and yellow 10. ( Thus, we can define the map w : X — R such

that w(b) = 10, w(g) = 20, w(r) = 30 and w(y) = 10. ) Therefore, the average weight
Q(w1) of the balls in the urn Uy is given by 15 ( = (10-50+20-30+30- 10+ 10-10)/100
), and similarly, Q(ws2) = 19 and Q(w3) = 20. Now we have the following problem.

(4) How do we infer Q(*) from the measured value (r,b) obtained by the iterated mea-
surement MC(Q)(xizlo, Siy) 7

This problem is easily solved as follows. Since we inferred that [¥] = 6., (¢ w;) in

Example 3.2, we can immediately conclude that Q(*) = Q(wsz) = 19. Also note that

12
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the map w : X — R is not essential in this argument, that is, it is the preparation for

Example 4.3 later.

Remark 3.4. ( Parameter space ). In the above example, some may use a parameter
space © = {15,19,20} instead of the state space §2. This is not wrong if the parameter
space O is regarded as a state space under the identification: € 3 w; 3 Qwj) € O,
that is, C'(©) is C*-isomorphic to C(?). As stated in Remark 4.6 later, measurement
theory is a part of system theory. Therefore, it has the system theoretical concepts, for
example, “state space”, “observable”, “quantity”, “measurement” and so on. Recall the
statements appearing above Axiom 1, and note that these concepts were described in
terms of a C*-algebra A, in which the system is formulated. Thus, if we want to use
the word “parameter space” in order to represent a certain non-mathematical concept, it
should be defined in terms of the C*-algebra A. We consider that the word “parameter
space”, as well as “probability space”, is not clear in the conventional formulation of
statistics ( cf. Remark 2.3 ).

Example 3.5. ( Bayes’s method ). Next study the problem (f) in Example 3.3
from the subjective point of view. Consider an objective and subjective measurement
Mca)(X3=10, Siw(pg*) ). For example, assume that p* = pit;, e, plt; = %Z?’:l Su;
on 2. When we get the measured value (r,b) by the measurement M¢(q)(x;=, 0,
Si(pg) ), we infer, by Bayes’s method (B), that the new state is pjt,, = 5—#3(5 <y +
90, + 8- d.,,). Thus there is a very reason to consider that Q(*) is approximated by

Jo Qw)pmy (duw) = 15551804208 — 1845

Now let us provide another example, which is essentially the same as Example 3.2.

In order to appreciate measurement theory, we must practice a lot of examples.

Example 3.6. ( At a gun shop ). Let G = {G}, ..., G50} be a set of guns in a gun shop.
Assume that
80% i 1< <30,
the percentage of “hits of a gun G;” = ¢ 70% if 31 <j <40,
10% if 41 < j < 50.
Assume the following situation (1)+(ii):

(i) Some one picks up a certain gun G, from G. He does not know the information

concerning the jg. !

(ii) He shoots the gun G, three times. First and second he hits the mark, and third

13
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he misses the mark.

Our present problem is to formulate the measurement (i)+(ii).

The above example is solved in what follows. Let Q be a state space, which is
identified with the set G. That is, we have the identification: G 3 G; ¢ w; € 2. Define
the observable O = (X = {0,1}, P(X), F(,)) in C(Q) such that

0.8 i 1<j5<30,
Fpy(wj) =4 07 if  31<75 <40,
0.1 if 41 <5 <50
and Fyoy(w;) = 1 — Fi1y(w;). Of course we consider that

(4) “hit the mark by a gun G,,” < “get the measured value 1 by the measurement
Mc)(O, S, 1)”

Here, consider the ( three times ) iterated measurement M¢(q)( x3-; O = (X3, P(X?),
x3_F), 5[5%]) in C(82) such that

(X3 F)z, x2axza (w) = Fe, (W) Fe,(w)Fe,(w)  (VEp x Zp x Z5 € P(X?),Vw € Q).

Clearly, the above statement (ii) in Example 3.6 implies that the measured value (1,1, 0)
is obtained by MC(Q)( x%_, O, S[*]). ( The observer does not know that [*] = Swjq - )

By a simple calculation, we see

0.128 if 1 <5 <30,
F{l}(wj)F{l}(wj)F{o}(wj) = 0.147 if 31 <73 <40,
0.009 if 41 < 5 <50.

Therefore, by Fisher’s method (M), there is a very reason to consider that 31 < jp < 40.

Remark 3.7. ( Continued from Example 3.6. Test ). Let M¢(q)(x3~;0, Spy) be as in
the above arguments. Define the map T : X3 = {0,1}® — {0,1} such that
1 lfI]+$2+1322

T b 7' = .
(@1, 22,3) {0 if ¢1 +22+23 <2,

Hence we get the image observable Or = ({0,1},P({0,1}), (Xj— F)p-1(,y) in C(). Put
Zo = T71({1}), Ho = {bu; : 41 < j <50} and H; = {du; : 1 < j < 30}. Then we see
that

\ (0.1)* +3(0.1)2(0.9) = 0.028  ifw; € Ho
M<m<5‘“f ’(X’C=1F)T”1<“})>C<m - { (0.8)® +3(0.8)2(0.2) = 0.896  ifw; € Hy.

14
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Clearly, the hypothesis (i) in Example 3.6 implies that the fact “(1,1,0) € T7!({1})
= Z=y” occurs, that is, the value of the observable Or for the system with the state [%]

is equal to 1. Then we can say, by Fisher’s method (T), that

(1) if [*] € Ho, the probability that the fact ( i.e., “(1,1,0) € T7}({1})” ) occurred is
given by 0.0271.

That is, if [*] € Hg, we can say “A very rare case occurred”. Therefore, there is a very
reason to consider that [x] ¢ Ho, that is, 1 < jp < 40.

Remark 3.8. ( Continued from Remark 2.3 ). All examples ( except Examples 2.6
and 4.2 ) in this paper may be easy for statisticians. That is because the mathematical
structure { L <p”, F(E)>A } is the same as that of statistics, i.e., {P(E,G)}. However
it should be noted that measurement theory has other aspects ( ¢f. Remark 2.2 ). Also
we believe that statistics must not be one of the fields of mathematics. Thus we do not
start from “Kolmogorov’s probability theory” but “measurement”. All results in this
section are consequences of Axiom 1 or Method 1. Therefore, we conclude that Fisher’s

and Bayes’s spirits are described in terms of measurements.
4. APPROXIMATE MEASUREMENTS FOR QUANTITIES

In this section we study “approximate measurements for quantities” in measurement

theory, which corresponds to “estimation under loss function” in statistics. For this,
b

we must study the concept of “measurement error”, which was first introduced in the

formulation of “Heisenberg’s uncertainty relation” ( cf. {7] ).

In measurement theory, every measurement is supposed to be exact, that is, it
does not have the concept of “error” in itself. Assume that we hope to know the value
zo of an observable O = (X,F,F) for a system with the state p?, but we can not
conduct the measurement M4(O, 5[ s ). Therefore, we may take another measurement
Ma(O' = (X, F, F'), Sjpr) ) instead of M 4(O, Sj,r) ). When we get the measured value
x1 by the measurement M 4(O’, S, ), we may regard the z; as the value zo of the
observable O for the state p?. Under this situation, there is a reason to consider that
the “distance” between zg and z; can be regarded as the measurement error. Also,
M 4(O’, Sipp) ) may be called an approximate measurement of M 4(O, S[,r) ). Also, in
this situation, we may be concerned with the subjective measurement rather than the (

objective ) measurement since the state pP is unknown in general.

In the above arguments, we usually assume that the observable O is a crisp one,

or a quantity. Note that a C*-algebra does not have sufficiently many projections in
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general. For example, the C([0,1]) has only two projections, i.e., the constant functions
0 and 1. Therefore, we now introduce the W*-algebraic formulation of measurements (
cf. [7] ). If we are concerned with classical systems, we can say that the C*-algebraic
formulation is topological, on the other hand, the W*-algebraic formulation is measure

theoretical.

Let M be a W*-algebra ( i.e., von Neumann algebra ), that is, A/ is a C*-algebra
with the predual Banach space N, (i.e., N = (N,)* ). The linear functional 5(T) ( ie.,

a continuous linear functional on A in the sense of weak*-topology o(A;N) ) is also

denoted by ., <',5, T>N. Then, we can define the normal state-class &™(N,) such as

G"(N:) = {p e Ne: Il

N.=1landp >0 (ie,p(T*T)>0forall T € N )}

The element p of G™(N,) is called a normal state. The B(V), the space of bounded
linear operators on a Hilbert space V, is a typical non-commutative W*-algebra with
the predual space Tr(V), the space of trace operators. And we see that &"(B(V).) =
Try1(V), i.e., the space of density operators. Also, any commutative W*-algebra N is
represented by L°°(,v), cf. [15]. Of course its predual space is LY(Q,v). Therefore,
S (L>(Q,v),) = L1(Q,v) = {p € L*(Qv) : 7 20, [ plw)v(dw) =1}, i.e., the space
of density functions. The € is also called a state space.

Let M be a W*-algebra. A W*-observable ( or in short, observable ) 0= (X,F,F)
in N is defined such that it satisfies that

(i) (X, ) is a measurable space, that is, F is a o-field on X,

(ii) for every = € F, F(Z) is a positive element in A" ( ie., 0 < F(Z) € N ) such that

F(0) = 0 and F(X) = I, where 0 is the 0-element and I is the identity element in

N, and
(iii) for any countable decomposition {Z;}32, of Z, (E;, Z € F),FE) =%, F(E)

holds in the sense of the weak*-topology o(N;N,).

If F(Z) is a projection for every = (€ F), a W*-observable (X,F,F) in NV is called a
crisp W*-observable.

Let R and B be the real line and the Borel o-field respectively. A crisp W*-
observable Q = (R, B, G) in a W*-algebra A is called a quantity in /. Consider quantum
systems, that is, assume that /' = B(V). Then, by the spectral representation theorem,
we have the identification: Q = (R, B, G) +— [ AG(d}), i.e., (unbounded ) self-adjoint

operator on a Hilbert space V, that is, “quantity” = “self-adjoint operator”. Next,
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consider classical systems, that is, N' = L°°(Q,v). Then, we have the identification:
Q = (R,B,G()) +— Jg A\Gaxr(w). Note that the Jr AGax(®) is equal to a measurable
function @ : © — R such that Gz(w) = X (o eniaenes) (w) (Vw € Q,VE € B), where
xB, B(C Q), is a characteristic function on €, i.e., xp(w) =1, (w € B), =0, (w ¢ B).
Therefore, we can see that “quantity” = “real valued measurable function on Q" in

classical measurement theory.

Let O = (X, F, F) be a W*-observable in A" and let 5 € &™(N,). Then, the symbol
My (0, S(p) ) is called a subjective W*-measurement ( or in short, W*-mcasurement )
in M. And the normal state 7 is called a subjective state. Also, the measure space

(X,F,p(F(-))) is called a sample space.

The following “method” is a W*-algebraic version of Method 1. Cf. [7]. Therefore,
it should be used like Method 1.

METHOD 2. | W*-measurement . Consider a W*-measurement My (0= (X,F,F),
S(p)) in a W*-algebra N'. Then, we consider that

(4) “subjective probability” that ¢ (€ X), the measured value obtained by the W*-
measurement M (O, S(p)), belongs to a set = (€ F) is given by p(F(Z)) ( =

v (PE@) ).

Now let us define “measurement error” in what follows. Let Q = (R,B,G) be a
crisp W*-observable ( i.e., quantity ) in V. Let O = (R, B, F) be a W*-observable in N
such that Q and O commute. Let Q x O = (R?,B2,G x F) be the product observable
of Q and O. Counsider the iterated measurement M (Q x O, S(p)). According to
Method 2, the ( subjective ) probability that the measured value (A1, A2) (€ R?) belong
to S5 x Zo (€ B?) is given by p((G x F)(Z1 x Z2)). Then we have the following definition.

Definition 4.1. ( Measurement error, cf. [7] ).  Assume the above notations. And
assume the situation that we hope to approximate the value A\; of the quantity Q by
the value \y of the observable O, that is, O is the approximation of Q. Then the
measurement error, A(MN(Q x O, S’(ﬁ))), is defined by

(M@ 0.50) = [[[[ = nae < Fxanas)]

This is also called the distance between Q and O concerning p.

Let Q = (R,B,G) and O = (X,F,F) be a quantity and a W*-observable in a
W*-algebra N respectively. Consider the measurable map h : X — R, and the image
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observable O, = (R, B, F(h'(-)) ) in N. Also assume that Q and O}, commute. Thus,
the distance between Q and O, ( concerning 7 € &™(N,) ) is defined by A(Ma(Q x
0,,5(p)) ) as in the above definition. Now we have the following problem:

(#) how to choose a proper image observable Oy ( i.e., O and h ) as the approximation
of Q.

Our interest in this section is concentrated to the problem (f). Note that this (f) is

entirely different from Fisher’s and Bayes’s spirits in Section 3, that is, how to infer the

unknown state from the measured data obtained by a measurement.

Concerning the above problem (f), we can state Heisenberg’s uncertainty relation

in what follows.

Example 4.2. ( Heisenberg’s uncertainty relation, cf. [4], [5], [7] ). Let @; and Q2
be a position quantity and a momentum quantity respectively ( i.e. @; and @, are
self-adjoint operators on a Hilbert space V satisfying that Q1Q2 — @Q2Q1 = th, h is
the Plank constant ). As mentioned before, we identify Q; with the spectral measure
Q; = (R,B,G;) in B(V), ie, Q; = fR AG;(dX). Since ¢y and @y do not commute,
the quasi-product observable does not exist. Therefore, consider an observable 0 =
(X,F,F) in B(V) and measurable maps h; : X = R, (1 = 1,2), and define the image
observables Oy, = (R, B, F(h;'(:))) in B(V). And furthermore, assume the conditions:
(i) fo M6, GaldN)y = o Mw, F(RT (AN)$)y (Vi € N, “the domain of Q" ), (i)

Q; and O;, commute. Then we get the following inequality:

A(1\/-[B(V)((-:51 X 6)1175(—/3))) . A(MB(v) (_Q—Q X 6h2, S(ﬁ))) >h/2 forallpe Try1(V).

This is just Heisenberg’s uncertainty relation, which was discovered by Heisenberg in the

famous thought experiment of y-rays microscope ( cf. [14] ).

The following example is a main part of this section. The reader should find “esti-

mation under loss function in statistics” in the following example.

Example 4.3. ( Continued from Examples 3.2, 3.3 and 3.5 “Urn problem” ). Let M¢(q)
(3210, Sp(pg')) and @ : @ — R be as in Example 3.5. That is, O = (X = {b,r,w,y},
P(X), F(y) in C(Q) (= C({w1,ws,w3}) ) and pg* € M41(2). Consider a measure v on {2,
for example, v({w;}) = 1 (j = 1,2,3). Define the W*-observable O in L>(2, v) such that
O = O, and define the normal state 5 (€ LY,(Q,v) ) such that pf*(B) = [ p(w)v(dw)
for all B (C §2). Then, we can identify MC(Q)(x‘izlo, S (pg")) with MLOO(QYV)(X}izlﬁ,
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S(7)). Note that @ is equivalent to the crisp observable Q = (R,B,G?) in L=(Q,v)
such that Gg(w) = X{w'en:q(w')ez}(w) for all = € B and all w € . Define the map
h:X? — R such that

h(zy,22) = (w(Il) + ’w(fcz)) (W(z1,22) € X? = {b,r,w,y}?) (4.1)

[Se RN

where w(b) = 10, w(g) = 20, w(r) = 30 and w(y) = 10 ( cf. Example 3.3 ). Consider
the image observable (x%_,0), = (R,B,F = (x3_1F)n-1,). Then, A(MLOO(Q’V)(G X

(x2_,0)n, S(ﬁ))), the distance between Q and (x%_,0)4 concerning p, is calculated as
— — 1/2
A(MLOO(Q,U)(Q (x2_,0), // I — A PB(G2 x F)(dMyd), ))]

: 1/2
- [Z Z P(w)|Q(w;) — h(wl’xZ)IZF{Il}(wj)F{xz}(wj)]

J=1(z1,22)€X?

[22 55(w1) + 34.55(w2) + 4075(ws )} Ve (4.2)

Therefore, we see that (4.2) < /40 = 6.32 for all p € L1,(2, ). Now we can also answer
the question (4) in Example 3.3. That is, Q(*) = 3(w(r) + w(b)) = (30 + 10)/2 = 20,

though it of course includes the error 6.32.

The map h : X™ — R, (n = 2), in (4.1) may be chosen by the hint of “the law
of large numbers”. That is, if n is sufficiently large, the map h : X™ — R ( defined by
h(zy,..,zy) = ?1{2;::1 w(zy) ) has a proper property, i.e., lim,_ o A(MLOO(Q,,,)(Q X
(x?_,0)s, S('p’))) = 0 for all p € LY,(,v). However, there are several ideas for the
choice of h. Let Q = (R,B,G) and O = (X, F, F) be a quantity and W*-observable in
a W*-algebra A respectively. For each ¢ = 1,2, consider a measurable map h;, : X - R,
and the image observable Oy, = (R, B, F(h7!(:)) ) in V. Also assume that Q and Oy,
commute. When it holds that

A(Mp(Q x O4,,5(p)) ) < AMA;(Q x On,,S(7)) ) VPEG™ (M),  (43)

we say that Oy, is better than Op, as the approximation of Q. Also, Oy, is called
admissible as the approximation of Q, if there exists no h; that satisfies (4.3) and the

following condition:

A(MN(Q x Ou,, 5(50)) ) < AMN(Q x Op;, 8(7,)) ) for some By € &"(N5).
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As a well known result concerning “admissibility”, we mention the following exam-

ple, which is also the preparation of Remark 4.5 later.

Example 4.4. ( Gaussian observable ). Let O = (R, B, F{.)) be a “Gaussian observable”
in N = L*(R x R*,dudo), that is,

Fe(p,0) = /_6— 57 du (V(u,0) ERxRY =R x {0:0 >0}, V= € B).

1
V2ro?
Consider the quantity @ : R x Rt — R such that Q(u,a) = u (¥(n,0) € RxR1), which
is identified with the observable Q = (R,B,G(Q_)) where Gg(u,a) = x=(p). Consider
the product observable x7_,0 = (R",B", x7_, F(,y) in L°(R x R, dudo). Define the
map b : R® — R such that R™ 5 (A,..., \p) S ’\‘+‘;+’\’ € R. Then, it is well known
(ef. [12] ) that (x2_,0)} is admissible as the approximation of Q. In comparison with
Remark 3.4, the state space R x R may be identified with the ( parameterized ) set of

uncountable infinite urns, which contain sufficiently many balls with various weights.

Here let us add the following remark, which will also promote a better understanding

of our assertion.

Remark 4.5. ( Fundamental observables in statistics ). In measurement theory, the
discoveries of fundamental ( or, useful ) observables should be estimated very much.
For example, “position quantity” and “momentum quantity” are fundamental in both
classical and quantum mechanics. Also, we have Glauber-Sudarshan observable ( i.e.,
observable on phase space ) in semi-classical mechanics, cf. [2] and [3]. And also, “fuzzy
logic” has fuzzy numbers observables ( e.g., Lukasiewicz observable, cf. [8] ). Therefore,
if statistics is a certain aspect of measurements, we may find “fundamental observ-
ables” in statistics. However this has been already solved. That is, as mentioned in
Remark 3.2 and Example 4.4, “Gaussian distribution” is induced by “Gaussian observ-
able”. Therefore, statistics already has useful observables, i.e., “Gaussian observable”,

“Poisson observable” and so on.

Though we focused on only “statistical inferences” in this paper, we are convinced
that all other methods in statistics can be formulated in terms of measurements. For
example, see [10], in which “factor analysis” is formulated in measurement theory. Also,

see the lecture note [9], in which our recent and new results are summarized.

Lastly let us mention “fuzzy logic” since our original motivation of this paper is to
Yy y log g pap

clarify the confusion between “fuzzy logic” and statistics. Though there may be other
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opinions, our opinion for “fuzzy logic” is presented below.

Remark 4.6. ( Fuzzy logic, cf. [8] ). Motivated by quantum mechanics, i.e., “quantum
mechanics” = “Born’s measurement axiom” + “Heisenberg’s kinetic equation”, in [7]
we proposed the viewpoint of “mechanics” such as “mechanics” = “measurement” +
“kinetic equation”. System theory is usually considered to be modeled on mechanics.

Therefore, if we use the terms of system theory, this viewpoint is represented as follows:
“( dynamical ) system theory” = “measurement” + “the rule of time evolution”. (4.4)

Here, “the rule of time evolution” may be extended to “the rule of the relation among
systems” if we consider “general system theory” rather than “dynamical system theory”.
The system theory (4.4) is regarded as a mechanical approach to an understanding of
( non-physical ) phenomena. In this sense, the system theory (44) is an epistemology,
or a philosophy, which may be called “mechanical world view”. In [8], we asserted that
the system theory (4.4) had great power of expression. Namely, a good translation from
“natural language” into “system theoretical language” can be expected. We believe that
this fact is the essence of “fuzzy logic” since the translation changes “fuzzy ( or, loose )
statements” to “system theoretical statements”. That is, we consider that “fuzzy logic”

is mainly related to the following aspect of measurements:

(#) how to translate a statement in a natural language into a statement in measurement

theory, or more generally, in the system theory (4.4),

which is a kind of modeling problem in a broad sense ( cf. [1] or [17], in which similar
spirits can be found ). Since statements in a natural language are rather “logical” or
“qualitative”, this (§) may be also considered as the logical aspect of measurements.
For example, several “syllogisms” were shown in [6]. Note that the above (f) is not
mathematical but system theoretical. As emphasized here and there in this paper, we
believe that “measurement” is the most fundamental concept in science. Therefore, we do
not start from “mathematics” ( e.g., “Kolmogorov’s probability theory”, “mathematical
logic”, etc. ) but “measurement”. From the mathematical point of view, it is of course
desirable that some mathematicians make “mathematical fuzzy logic” motivated by the
logical aspect of measurements. In fact, “quantum logic” is a good mathematical theory,
which was created by the hint of “Born’s quantum measurement axiom”. Also, in general
we consider that “fuzzy system theory” is characterized as the study concerning grade

quantities ( i.e., membership functions ) in the system theory (4.4).

5. CONCLUSIONS
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The purpose of this paper was to propose a measurement theoretical formulation of
statistics, that is, to understand or characterize statistics as one of aspects of measure-
ment theory. In Section 3 we showed that Fisher’s and Bayes’s spirit was respectively
described in objective and subjective measurement theory. Also, in Section 4 we char-
acterized “estimation under loss function in statistics” as “approximate measurements
for quantities” in measurement theory. Since two main topics in statistics, i.e., “Fisher’s
and Bayes’s methods” and “estimation under loss function”, could be described in terms
of measurements, we may conclude that statistics is a certain aspect of measurement
theory. That is, we consider that statistics is mainly related to the following aspect of

measurement theory:

(#) how to derive some useful information from the measured data obtained by a mea-

surement.

This viewpoint for statistics seems to be important. That is because it bridge the gap
between statistics and the other aspects of measurements ( cf. Remark 2.2 ). For
example, there seems to be some confusion between statistics and “fuzzy logic” ( cf. [13]
). Tt is clear that this confusion can not be solved by comparing Kolmogorov’s probability
theory ( or, the conventional formulation of statistics ) with “mathematical fuzzy logic”.
Comparing the above (§) with the (f) in Remark 4.6, we can immediately clarify the

confusion.

As seen in Remark 4.6, measurement theory is indispensable for “fuzzy logic”. On
the other hand, from the practical point of view there may be some reason to consider
that measured data can be analyzed without the knowledge of “measurements”. In
fact, statistics has been developing without the concept “measurements”. However,
as mentioned in Remarks 2.3 and 3.4, we consider that the conventional formulation of
statistics is not sufficient. From the scientific point of view, we believe that measurement

theory promotes a deep understanding of statistics.

REFERENCES

1. M. Black, Reasoning with loose concepts, Dialogue 2 (1963), 1-12.

[

. E. B. Davies, Quantum theory of open systems, Academic Press, 1976.

3. A. S. Holevo, Probabilistic and statistical aspects of quantum theory, North-Holland publishing
company, 1982.

4. S. Ishikawa, Uncertainty relations in simultancous measurements for arbitrary observables, Reports
on Mathematical Physics 29(3) (1991), 257-273.

5. S. Ishikawa, Uncertainties and an interpretation of nonrelativistic quantum theory, International

22



KSTS/RR-98/007
June 27, 1998

10.

11.
12.
13.
14.

15.

Journal of Theoretical Physics 30 (4) (1991), 401 - 417.
. S. Ishikawa, Fuzzy inferences by algebraic method, Fuzzy sets and Systems 87 (1997), 181-200.

. S. Ishikawa, A gquantum mechanical approach to a fuzzy theory, Fuzzy sets and Systems 90 (1997),
277-306.

. S. Ishikawa, Fuzzy logic in measurements, Fuzzy sets and Systems ( to appear ).

. S. Ishikawa, Fundamentals of system theory, (in preparation). For the further informations, see
http://www.math.keio.ac.jp/ ishikawa.

S. Ishikawa, T. Iida, A system theoretical characterization of factor analysis, EUFIT’98 in Aachen
( to appear, September in 1998 ).

A. Kolmogorov, Foundations of Probability ( translation ), Chelsea Publishing Co, 1950.
E. K. Lehmann, Theory of point estirnation, John Wiley, 1983.
D. McNeill, P. Preiberger, Fuzzy logic, Simon and Schuster, New York, 1993.

J. von Neumann, Die Mathematischen Grundlagen Der Quantenmechanik, Springer Verlag, Berlin,
1932.

S. Sakai, C*-algebras and W*-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete ( Band
60 ), Springer-Verlag, Berlin, Heisenberg, New York, 1971.

. A. Wald, Statistical decision functions, John Wiley, 1950.
. L. A. Zadeh, Puzzy Sets, Information and control 8 (1965), 338-353.

23



