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COMPLETELY OPERATOR SEMI-SELFDECOMPOSABLE

DISTRIBUTIONS

Makoto MAEJIMA (keio University),

Ken-iti SATO

and

Toshiro WATANABE (The University of Aizu)

Abstract. The class L∞(b,Q) of completely operator semi-selfdecomposable

distributions on Rd for b and Q is studied. Here 0 < b < 1 and Q is a d × d

matrix whose eigenvalues have positive real parts. This is the limiting class of

the decreasing sequence of classes Lm(b,Q), m = −1, 0, 1, . . . , where L−1(b,Q)

is the class of all infinitely divisible distributions on Rd and Lm(b,Q) is defined

inductively as the class of distributions µ with characteristic function µ̂(z) sat-

isfying µ̂(z) = µ̂(bQ′z)ρ̂(z) for some ρ ∈ Lm−1(b,Q). Q′ is the transpose of Q.

Distributions in L∞(b,Q) are characterized in terms of Gaussian covariance ma-

trices and Lévy measures. The connection with the class OSS(b,Q) of operator

semi-stable distributions on Rd for b and Q is established.

1. Introduction and a main result

In our previous paper [MSW98], we have introduced the class of operator

semi-selfdecomposable distributions and its decreasing subclasses. To explain

those classes, we start with the necessary notation. P(Rd) is the class of all

probability distributions on Rd, I(Rd) is the class of all infinitely divisible dis-

tributions on Rd, M+(Rd) is the class of all d×d matrices all of whose eigenvalues

have positive real parts, Q′ is the transpose of Q ∈ M+(Rd), I is the identity
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matrix, µ̂(z), z ∈ Rd, is the characteristic function of µ ∈ P(Rd), µ∗t, t ≥ 0,

is the t-th convolution power of µ ∈ I(Rd), L(X) is the law of X, 〈 , 〉 is the

Euclidean inner product in Rd, and | · | is the norm induced by 〈 , 〉 in Rd. For

b > 0, bQ =
∑∞

n=0(n!)−1(log b)nQn. Convergence of probability distributions is

always weak convergence.

Let 0 < b < 1, Q ∈ M+(Rd), m a nonnegative integer, and L−1(b,Q) =

I(Rd). A distribution µ ∈ I(Rd) is said to belong to the class Lm(b,Q) if

there exists ρ ∈ Lm−1(b,Q) such that µ̂(z) = µ̂(bQ′z)ρ̂(z). Actually the classes

Lm(b,Q) have been defined in [MSW98] in a different way and it has been shown

there that the definition above is a necessary and sufficient condition for the def-

inition in [MSW98]. Define L∞(b,Q) by L∞(b,Q) =
⋂

m≥0 Lm(b,Q). We have

called distributions in L0(b,Q) operator semi-selfdecomposable in [MSW98].

On the other hand, Jurek [J83] and Sato and Yamazato [SY85] introduced

and studied the classes Lm(Q) for m a nonnegative integer or ∞. It has been

proved in [MSW98] that Lm(Q) =
⋂

0<b<1 Lm(b,Q), 0 ≤ m ≤ ∞. Distributions

in L∞(Q) are called completely operator selfdecomposable and characterized in

several ways in [SY85]. For this reason, we want to call distributions in L∞(b,Q)

completely operator semi-selfdecomposable. In [SY85], they studied the relation-

ship between the class L∞(Q) and that of operator stable distributions. The

purpose of this paper is to give characterization of distributions in L∞(b,Q) and

to investigate the relationship between the class L∞(b,Q) and that of operator

semi-stable distributions.

Let Q ∈ M+(Rd). A class H ⊂ I(Rd) is said to be Q-completely closed

in the strong sense if H is closed under convergence, convolution, and Q-type

equivalence, and is closed under going to the t-th convolution power for any

t > 0. Here H is said to be closed under Q-type equivalence if L(X) ∈ H, a > 0,

and c ∈ Rd imply L(a−QX + c) ∈ H. We can easily see from the definition

that Lm(b,Q), 0 ≤ m ≤ ∞, are Q-completely closed in the strong sense, because
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L−1(b,Q) = I(Rd) is so. Furthermore let OSS(b,Q) be the class of µ ∈ I(Rd)

such that µ̂(z)a = µ̂(bQ′z)ei〈c,z〉 for some 0 < a < 1 and c ∈ Rd. Distributions

in OSS(b,Q) are called operator semi-stable. They are studied by Jajte [J77],

Krakowiak [K80], Laha and Rohatgi [LR80], ÃLuczak [ÃL81, ÃL91], and others.

One of our main theorems is the following.

THEOREM 1.1. Let 0 < b < 1 and Q ∈ M+(Rd). Then the class L∞(b,Q)

is the smallest Q-completely closed class in the strong sense containing the class

OSS(b,Q).

This theorem is a “semi”-version of Theorem 7.3 in [SY85]. In Section

2, we state some results we need in the subsequent sections. In Section 3, we

characterize Gaussian distributions in L∞(b,Q), and in Section 4, we treat purely

non-Gaussian distributions in L∞(b,Q). The proof of Theorem 1.1 is given in

Section 5. As our results are new even in case Q = I, we make some remarks

on this case in Section 6.

2. Preliminary results

The following three propositions have recently been shown in [MSW98].

Since we need them in the subsequent sections, we state them below without

proofs.

For a d × d matrix B we use the following notation: BE = {Bx : x ∈ E}
for E ⊂ Rd and (TBν)(E) = ν({x : Bx ∈ E}) for a measure ν on Rd. We

use a mapping ΨB from the class of symmetric d× d matrices into itself defined

by ΨB(A) = A − BAB′. Its iteration is Ψ`
B = ΨB ◦ Ψ`−1

B for ` = 2, 3, · · ·
with Ψ1

B = ΨB . Also let B0(Rd) be the class of Borel sets E in Rd such that

E ⊂ {|x| > ε} for some ε > 0.

In what follows, we fix 0 < b < 1 and Q ∈ M+(Rd). We use Ci, i = 1, 2, · · · ,
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for positive constants. Following (3.4.3) in [JM93], we introduce a norm | · |Q in

Rd depending on Q:

|x|Q =
∫ 1

0

|uQx|
u

du, x ∈ Rd.

Since C1u
C2 |x| ≤ |uQx| ≤ C3u

C4 |x|, 0 < u ≤ 1, |x|Q is well defined. The norm

| · |Q is comparable with the Euclidean norm | · |, and has an advantage that, for

any x ∈ Rd \ {0}, t → |tQx|Q (t > 0) is strictly increasing (Proposition 3.4.3 in

[JM93]). Thus sup|x|Q≤1 |bQx|Q < 1. Define

B = bQ,

SB = {x ∈ Rd : |x|Q ≤ 1 and |B−1x|Q > 1},

and B(SB) as the class of Borel sets in SB . It might be better to write SQ,b

instead of SB , because it depends on Q and b.

We note that all our results in this paper remain true if SB is defined by

the usual norm in place of the norm | · |Q, provided that |B| = sup|x|≤1 |Bx|, the

operator norm of B, is less than 1. We also note that, since |Bnx| → 0 for any

x ∈ Rd as n → ∞ and since the space is finite-dimensional, there is a positive

integer n such that |Bn| < 1. Since Bn = bnQ and Lm(b,Q) ⊂ Lm(b, nQ), 0 ≤
m ≤ ∞, study of distributions in Lm(b,Q) in the case |B| < 1 covers all cases in

some sense. However, in characterization of the class Lm(b,Q) itself, we cannot

assume that |B| < 1. This is the reason that we use the norm | · |Q.

PROPOSITION 2.1. (Proposition 3.2 of [MSW98].)

(i) If ν is the Lévy measure of µ ∈ I(Rd), then there exist a finite measure ν0

on SB and a Borel measurable function gn : SB → R+ for each n ∈ Z satisfying

the following conditions:

(a) For E ∈ B(SB), ν0(E) = 0 if and only if ν(BnE) = 0,∀n ∈ Z,

(b)
∫

SB
ν0(dx)

∑
n∈Z(|B−nx|2Q ∧ 1)gn(x) < ∞ ,

(c)
∑

n∈Z gn(x) > 0, ν0-a.e.,
4
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(d) ν(E) =
∫

SB
ν0(dx)

∑
n∈Z gn(x)1E(B−nx), ∀E ∈ B(Rd).

These {ν0, gn, n ∈ Z} are uniquely determined in the following sense. If

{ν0, gn, n ∈ Z} and {ν̃0, g̃n, n ∈ Z} satisfy the above conditions, then there exists

a Borel measurable function h(x) with 0 < h(x) < ∞ such that

ν̃0(dx) = h(x)ν0(dx),

gn(x) = h(x)g̃n(x), ν0-a.e.,∀n ∈ Z.

(ii) Conversely, if ν0, a finite measure on SB, and gn, n ∈ Z, Borel measurable

functions from SB into [0,∞), are given, and satisfy (b) and (c), then ν defined

by (d) is the Lévy measure of some µ ∈ I(Rd) and (a) is also satisfied.

We call {ν0, gn, n ∈ Z} determined uniquely from ν in (i) above the SB-

representation of ν. We may write g(n, x) for gn(x) below. For {k(n), n ∈ Z},
define ∆k(n) = k(n + 1)− k(n) and (∆`k)(n) = ∆(∆`−1k)(n), ` = 2, 3, · · · . The

sequence {k(n), n ∈ Z} is called completely monotone if

(−1)`(∆`k)(n) ≥ 0, for ∀` ≥ 0, ∀n ∈ Z,

with (∆0k)(n) = k(n).

PROPOSITION 2.2. (Lemma 4.3 and Corollary 4.1 of [MSW98].)

(i) If {k(n), n ∈ Z} is completely monotone, then

(a) there exists a unique measure ρ on (0, 1] such that

(2.1) k(n) =
∫

(0,1]

xnρ(dx), n ∈ Z

and

(b) for each b ∈ (0, 1), there exists a unique measure Γ on [0,∞) such that

k(n) =
∫

[0,∞)

bnαΓ(dα).
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(ii) Conversely, {k(n), n ∈ Z} having the representation (2.1) is completely

monotone.

PROPOSITION 2.3. (Theorem 3.1 of [MSW98].) Let 0 ≤ m ≤ ∞, µ ∈
I(Rd), A its Gaussian covariance matrix, ν its Lévy measure, and let

{ν0, g(n, x), n ∈ Z} be the SB-representation of ν. Then the following three

statements are equivalent:

(i) µ ∈ Lm(b,Q),

(ii) Ψ`
B(A), 1 ≤ ` ≤ m + 1, are nonnegative definite, and (I − TB)`ν ≥ 0, 1 ≤

` ≤ m + 1, on B0(Rd),

(iii) Ψ`
B(A), 1 ≤ ` ≤ m + 1, are nonnegative definite, and (−1)`(∆`g)(n, x) ≥

0, n ∈ Z, ν0-a.e.x for 1 ≤ ` ≤ m + 1.

(In the above, when m = ∞, 1 ≤ ` ≤ m + 1 should be read as 1 ≤ ` < ∞.)

3. Gaussian distributions in L∞(b,Q)

The following are generalizations of some results in [SY85] to “semi”-

version.

Let {β1, · · · , βp} be the distinct eigenvalues of B = bQ, and let f(ζ) be the

minimal polynomial of B. Decompose it into linear factors

f(ζ) = (ζ − β1)n1 · · · (ζ − βp)np ,

where, for 1 ≤ j ≤ p, nj is a positive integer not exceeding the multiplicity of

βj . Let

Vj = Ker (B − βjI)nj in Cd (1 ≤ j ≤ p).

Then

Cd = V1 ⊕ · · · ⊕ Vp.

Let Tj be the projector of Cd onto Vj in this direct sum decomposition. Similarly
6
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we denote

V ′
j = Ker (B′ − β̄jI)nj in Cd (1 ≤ j ≤ p),

and obtain

Cd = V ′
1 ⊕ · · · ⊕ V ′

p .

Then the projector of Cd onto V ′
j in this direct sum decomposition coincides

with the adjoint operator T ′j of Tj . For j 6= k, V ′
j and Vk are orthogonal, where

we use the Hermitian inner product denoted also by 〈 , 〉. The following is a

characterization of Gaussian distribution in L∞(b,Q).

THEOREM 3.1. Let µ be a Gaussian distribution with covariance matrix

A. Then the following three statements are equivalent:

(i) µ ∈ L∞(b,Q).

(ii) (B − βj)AT ′j = 0, for 1 ≤ j ≤ p.

(iii) (a) A(B′ − β̄j)T ′j = 0, for 1 ≤ j ≤ p, and (b) TkAT ′j = 0 for j 6= k.

To prove the theorem, we need a lemma.

LEMMA 3.1. Let µ be a Gaussian distribution with covariance matrix A.

Then µ ∈ L∞(b,Q) if and only if for any z ∈ Rd, 〈AB′nz,B′nz〉, n ∈ Z, is

completely monotone.

Proof. Set kz(n) = 〈AB′nz, B′nz〉, n ∈ Z, z ∈ Rd. Then observe that,

for each ` ≥ 1, (−1)`(∆`kz)(n) ≥ 0, ∀n ∈ Z,∀z ∈ Rd, if and only if Ψ`
B(A)

is nonnegative definite. The nonnegative definiteness of Ψ`
B(A) for all ` ≥ 0 is

a necessary and sufficient condition for that the Gaussian µ is in L∞(b,Q) by

Proposition 2.3. This concludes the lemma. ¤

Proof of Theorem 3.1. We first show (i) ⇒ (iii). To show (iii) (a), it is

enough to prove that, for any integer k ≥ 1 and z0 ∈ Cd,

(3.1) (B′ − β̄j)kz0 = 0 implies A(B′ − β̄j)z0 = 0.

We prove this by induction in k. If k = 1, the assertion is trivial. Suppose

that (3.1) is true for k − 1 in place of k, and assume (B′ − β̄j)kz0 = 0. Since
7
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B′n(B′ − β̄j) = (B′ − β̄j)B′n for any n ∈ Z, we have (B′ − β̄j)k−2+`B′nz0 = 0

for any ` ≥ 2 and n ∈ Z. Hence by the induction hypothesis,

(3.2) A(B′ − β̄j)`B′nz0 = 0 for ` ≥ 2 and n ∈ Z.

Let

L(n) = 〈AB′nz0, B
′nz0〉 for n ∈ Z.

We claim that

(3.3) L(n) = |βj |2n
{〈Az0, z0〉+ 2n<〈Az0, z1〉+ n2〈Az1, z1〉

}
, n ∈ Z,

where z1 = β̄−1
j (B′ − β̄j)z0. If n = 0, this is trivial. We write z` = β̄−`

j (B′ −
β̄j)`z0. If n ≥ 1, then

B′nz0 = (β̄j + (B′ − β̄j))nz0 = β̄n
j

n∑

`=1

(
n

`

)
z`

and, by (3.2),

L(n) = 〈β̄n
j A(z0 + nz1), B′nz0〉 = 〈β̄n

j (z0 + nz1), β̄n
j A(z0 + nz1)〉,

which is (3.3). Suppose n ≤ −1 and write n = −h. Let w = B′nz0−β̄n
j (z0+nz1).

Then

w = B′n{z0 − β̄n
j B′h(z0 + nz1)}

= B′n
{

z0 −
h∑

`=0

(
h

`

)
(z` + nz`+1)

}

= B′n
{

n2z2 −
h∑

`=2

(
h

`

)
(z` + nz`+1)

}
,

where the sum over 2 ≤ ` ≤ h is considered as zero if h = 1. Hence by (3.2),

Aw = 0. Thus

L(n) = 〈AB′nz0 −Aw, B′nz0〉
= 〈β̄n

j A(z0 + nz1), B′nz0〉
= 〈β̄n

j (z0 + nz1), AB′nz0 −Aw〉
= 〈β̄n

j (z0 + nz1), β̄n
j A(z0 + nz1)〉.
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Hence (3.3) is true for all n ∈ Z. Since L(n) is completely monotone in n by

Lemma 3.1 under the assumption that µ ∈ L∞(b,Q), we have

(3.4) L(n) =
∫

(0,1]

βnρ(dβ)

for some measure ρ by Proposition 2.2. If we let

E1 = {β ∈ (0, 1] : β > |βj |2}

and

E2 = {β ∈ (0, 1] : β < |βj |2},

then from (3.3) and (3.4)

ρ({|βj |2}) +
∫

E1

(
β

|βj |2
)n

ρ(dβ) +
∫

E2

(
β

|βj |2
)n

ρ(dβ)

= 〈Az0, z0〉+ 2n<〈Az0, z1〉+ n2〈Az1, z1〉 = I,

say. If ρ(E1) > 0, then there exists ε > 0 such that ρ((1 + ε)|βj |2 ≤ β ≤ 1) > 0,

and hence

I ≥ (1 + ε)nρ((1 + ε)|βj |2 ≤ β ≤ 1), n > 0.

Letting n →∞, we get a contradiction. Thus ρ(E1) = 0. Similarly, if ρ(E2) > 0,

then there exists ε > 0 such that

I ≥ (1− ε)nρ(0 < β ≤ (1− ε)|βj |2), n < 0,

and letting n → −∞ yields a contradiction. Thus ρ(E2) = 0. Consequently,
∫

(0,1]

βnρ(dβ) = |βj |2nρ({|βj |2}) = |βj |2n〈Az0, z0〉,

and 〈Az1, z1〉 = 0. By Lemma 3.1 of [SY85], we conclude that Az1 = 0. This

proves (3.1).

Let us show (iii)(b). It is enough to show that

〈Az0, w0〉 = 0 for any z0 ∈ V ′
j and w0 ∈ V ′

k withj 6= k.
9
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Since V ′
j and V ′

k are invariant under B′h, h ∈ Z, we have, by (iii)(a),

A(B′ − β̄j)`B′hz0 = A(B′ − β̄k)`B′hw0 = 0 for ` ≥ 1 and h ∈ Z.

Hence, for n ∈ Z,

L±(n) = 〈AB′n(z0 ± w0), B′n(z0 ± w0)〉
(3.5)

= |βj |2n〈Az0, z0〉 ± 2<β̄n
j βn

k 〈Az0, w0〉+ |βk|2n〈Aw0, w0〉.

We consider two cases.

Case I (|βj | 6= |βk|). As before, there exist measures ρ+ and ρ− on (0, 1]

such that

(3.6) L±(n) =
∫

(0,1]

βnρ±(dβ).

Let us show

(3.7) ρ±({|βj |2}) = 〈Az0, z0〉

and

(3.8) ρ±({|βk|2}) = 〈Aw0, w0〉.

Without loss of generality, we assume that |βj | < |βk|. As in the case of L(n),

we observe

ρ±(β < |βj |2) = ρ±(β > |βk|2) = 0.

It follows from (3.5) and (3.6) that

〈Aw0, w0〉 = lim
n→∞

L±(n)
|βk|2n

= lim
n→∞

∫

β<|βk|2

(
β

|βk|2
)n

ρ±(dβ) + ρ±({|βk|2})

= ρ±({|βk|2}).
10
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This shows (3.8). (3.7) can be shown similarly, by considering L±(n)/|βj |2n and

letting n → −∞. Thus we have

±2<β̄n
j βn

k 〈Az0, w0〉 =
∫

(|βj |2,|βk|2)
βnρ±(dβ) ≥ 0,

concluding <〈Az0, w0〉 = 0. Since iz0 ∈ Vj , we also have =〈Az0, w0〉 = 0.

Case II (|βj | = |βk|). We have

L+(n) = |βj |2n

{
〈Az0, z0〉+ 〈Aw0, w0〉+ 2<

(
βk

βj

)n

〈Az0, w0〉
}

.

As in the case of L(n), we see that

L+(n) =
∫

(0,1]

βnρ+(dβ) = const.× |βj |2n.

Therefore, <(βk/βj)n〈Az0, w0〉 is indepaendent of n. Since βk/βj 6= 1, we have

〈Az0, w0〉 = 0. This conclude (iii)(b).

We next show (iii) ⇒ (i). By the Jordan decomposition of B′, we can find a

basis {zj`k = β̄−k
j (B′ − β̄j)kzj`, 1 ≤ j ≤ p, 1 ≤ ` ≤ `j , 0 ≤ k ≤ k(j, `)} of Cd for

some integers `j and k(j, `). Here zj` ∈ V ′
j (1 ≤ ` ≤ `j) and (B′−β̄j)k(j,`)+1zj` =

0. Thus, for any z ∈ Cd,

z =
∑

j,`,k

cj`kzj`k with some cj`k ∈ C

and, hence,

B′nz =
∑

j,`,k

β̄n
j cj`k

(n(j,`)−k)∧n∑
m=0

(
n

m

)
zj,`,k+m

for all n ∈ Z+. Therefore, by (iii) for any n ∈ Z,

A(B′nz −
∑

j,`

β̄n
j cj`0zj`0) = 0.

Hence, for n ∈ Z,

〈AB′nz,B′nz〉

=
p∑

j=1

|βj |2n〈A
∑

`

cj`0zj`0,
∑

`

cj`0zj`0〉

=
∫

(0,1]

βnρ(dβ),

11
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which is completely monotone, if we define ρ by ρ({|βj |2}) = 〈A ∑
` cj`0zj`0,

∑
` cj`0zj`0〉 and ρ((0, 1] \ {|β1|2, · · · , |βp|2}) = 0. It follows from Lemma 3.1

that µ ∈ L∞(b,Q).

We finally show (ii) ⇔ (iii). (iii) ⇒ (ii) is easily seen, because we have, for

any z, w ∈ Cd,

〈(B − βj)AT ′jz, w〉 =
p∑

k=1

〈T ′jz, A(B′ − β̄j)T ′kw〉 = 0,

using (iii)(a) for k = j and (iii)(b) for k 6= j. As to (ii) ⇒ (iii), we have

〈A(B′ − β̄j)T ′jz, (B′ − β̄j)T ′jz〉 = 〈(B − βj)A(B′ − β̄j)T ′jz, T ′jz〉 = 0,

which together with Lemma 3.1 of [SY85] implies that A(B′ − β̄j)T ′jz = 0,

namely (iii)(a). Also we have (iii)(b), since (ii) implies that AT ′j has its range

in Vj . The proof of Theorem 3.1 is thus complete. ¤

Theorem 3.1 uses the direct sum decomposition of Cd. Let us give to it

an expression using a decomposition of Rd, and then prove a decomposition

theorem of Gaussian distributions in L∞(b,Q). For this purpose we arrange

the distinct eigenvalues of B = bQ in such a way that β1, · · · , βq are real and

βq+1, · · · , βp are not real, βj = β̄j+r (q + 1 ≤ j ≤ q + r), and q + 2r = p. Here q

or r may possibly be zero. Let γj and δj be the real and the imaginary part of

βj , respectively. The real factorization of the minimal polynomial f(ζ) of B′ is

f(ζ) = f1(ζ)n1 · · · fq+r(ζ)nq+r ,

where fj(ζ) = ζ − βj = ζ − γj , 1 ≤ j ≤ q, and fj(ζ) = (ζ − γj)2 + δ2
j ,

q + 1 ≤ j ≤ q + r. Let

(3.9) W ′
j = Ker fj(B′)nj in Rd, 1 ≤ j ≤ q + r.

Then

(3.10) Rd = W ′
1 ⊕ · · · ⊕W ′

q+r.
12
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As in the proof (iii) ⇒ (i) of Theorem 3.1, let

{zj`k = β̄−k
j (B′ − β̄j)kzj` : 1 ≤ j ≤ p, 1 ≤ ` ≤ `j , 0 ≤ k ≤ k(j, `)}

be a basis of Cd, where zj` ∈ V ′
j and (B′ − β̄j)k(j,`)+1zj` = 0. For 1 ≤ j ≤ q,

we can choose zj` real so that {zj`k : 1 ≤ ` ≤ `j , 0 ≤ k ≤ k(j, `)} is a basis of

W ′
j . For q + 1 ≤ j ≤ q + r, we have `j = `j+r and k(j, `) = k(j + r, `) and we

can choose zj` and zj+r,` in such a way that zj` = z̄j+r,`. Let ξj`k and ηj`k be

the real and the imaginary part of zj`k, respectively, for q + 1 ≤ j ≤ q + r. Here

complex conjugates, real parts, and imaginary parts of vectors in Cd are taken

component-wise. The system {ξj`k, ηj`k : 1 ≤ ` ≤ `j , 0 ≤ k ≤ k(j, `)} is then

a basis of W ′
j . The following theorem gives a matrix representation when these

bases are used.

THEOREM 3.2. Let µ be Gaussian with covariance matrix A. Then µ ∈
L∞(b,Q) if and only if the following four conditions are satisfied:

(i) 〈Azj`k, zj`k〉 = 0 for 1 ≤ j ≤ q, 1 ≤ ` ≤ `j , k ≥ 1,

(ii) 〈Aξj`k, ξj`k〉 = 〈Aηj`k, ηj`k〉 = 0 for q + 1 ≤ j ≤ q + r, 1 ≤ ` ≤ `j , k ≥ 1,

(iii) 〈Aξj`0, ξjm0〉 = 〈Aηj`0, ηjm0〉 and 〈Aξj`0, ηjm0〉 = −〈Aηj`0, ξjm0〉 for q+1 ≤
j ≤ q + r, 1 ≤ ` ≤ `j , 1 ≤ m ≤ `j with ` = m inclusive,

(iv) 〈Az, w〉 = 0 for z ∈ W ′
j , w ∈ W ′

k, for 1 ≤ j ≤ q + r, 1 ≤ k ≤ q + r with

j 6= k.

Proof. The proof is exactly the same as that of Theorem 4.1 of [SY85]. So

we omit it here. ¤

Let us consider the direct sum decomposition of Rd associated with B = bQ.

Let

Wj = Ker fj(B)nj in Rd, 1 ≤ j ≤ q + r.

Then

(3.11) Rd = W1 ⊕ · · · ⊕Wq+r.
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This is the decomposition dual to (3.10). Let Uj be the projector of Rd onto Wj

in the decomposition (3.11). The transposed matrix U ′
j of Uj is the projector

onto W ′
j in the decomposition (3.10). For q + 1 ≤ j ≤ q + r, we have Vj = V j+r

and Tjx = Tj+rx for x ∈ Rd. Thus Ujx = Tjx + Tj+rx for x ∈ Rd for

q + 1 ≤ j ≤ q + r. For 1 ≤ j ≤ q, we have Ujx = Tjx for x ∈ Rd. Let

Nj = Ker fj(B) in Rd, 1 ≤ j ≤ q + r.

THEOREM 3.3. Suppose that µ is a centered Gaussian distribution in

L∞(b,Q). Then, the support of µ is a B-invariant linear subspace of Rd and

the minimal polynomial of the restriction of B to the support of µ does not have

double roots. There exists a unique decomposition µ = µ1 ∗ · · ·∗µq+r, where each

µj is a centered Gaussian distribution such that µj ∈ L∞(b,Q) and the support

of µj is contained Nj and hence in Wj.

Proof. Again, the proof is exactly the same as that of Theorem 4.2 of

[SY85]. So we omit it here. ¤

REMARK 3.1. The µj in Theorem 3.3 is centered Gaussian with covariance

matrix Aj = UjAU ′
j. Thus, since µj ∈ L∞(b,Q), by Theorem 3.1,

µ̂j(B′z) = exp{−1
2
〈AjB

′z,B′z〉}

= exp{−1
2
〈AjB

′U ′
jz, B′U ′

jz〉}

= exp{−1
2
|βj |2〈AjU

′
jz, U ′

jz〉}

= exp{−1
2
|βj |2〈Ajz, z〉}

= µ̂j(z)|βj |2 ,

which means that µj ∈ OSS(b,Q).

Combining Theorem 3.3 and Remark 3.1, we have

THEOREM 3.4. Let s be the number of distinct absolute values of eigen-

values of B = bQ. If µ is a Gaussian distribution in L∞(b,Q), then µ can be
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expressed as the convolution of at most s Gaussian distributions in OSS(b,Q).

EXAMPLE. For d = 2, 3, 4, explicit forms of the covariance matrices of

Gaussian distributions in L∞(Q) are given in [SY85]. Let d = 2 and let IG be

the class of all Gaussian distributions on R2. Let µ ∈ IG with covariance matrix

A.

First consider the case Q =
(

γ 1
0 γ

)
with γ > 0. For 0 < b < 1, bQ =

bγ

(
1 log b
0 1

)
and hence bQ has the Jordan form

(
bγ 1
0 bγ

)
. As is shown in

[SY85], µ ∈ L∞(Q) if and only if A =
(

a 0
0 0

)
, a ≥ 0. As our Theorem 3.2

is formally the same as Theorem 4.1 of [SY85], we see that µ ∈ L∞(b,Q) if

and only if A =
(

a 0
0 0

)
, a ≥ 0. Thus L∞(b,Q) ∩ IG = L∞(Q) ∩ IG for any

0 < b < 1 in this case.

Next consider the case Q =
(

γ −δ
δ γ

)
with γ > 0 and δ ∈ R \ {0}.

Then, for 0 < b < 1, bQ = bγ

(
cos θ − sin θ
sin θ cos θ

)
with θ = δ log b. In this case,

µ ∈ L∞(Q) if and only if A = aI, a ≥ 0, as is shown in [SY85]. If b = enπ/δ

with n ∈ Z and n/δ < 0, then bQ = bγ(−1)nI and hence L∞(b,Q) ∩ IG = IG.

Otherwise, bQ is of the same type as Q and L∞(b,Q)∩ IG = L∞(Q)∩ IG. Thus,

L∞(b,Q)∩IG truly depends on b and, for some b, L∞(b,Q)∩IG is strictly larger

than L∞(Q) ∩ IG.

4. Purely non-Gaussian distributions in L∞(b,Q)

Now we give a representation of the Lévy measure of purely non-Gaussian

µ ∈ L∞(b,Q). For each x ∈ Rd \ {0}, let

β(x) = max{|βj | : 1 ≤ j ≤ q + 2r, Tjx 6= 0},

n(x, j) = max{n : n ≥ 0, (B − βj)nTjx 6= 0 for Tjx 6= 0},
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n(x) = max{n(x, j) : 1 ≤ j ≤ q + 2r, Tjx 6= 0, |βj | = β(x)},

and

γ(x) =
log β(x)

log b
.

We show the following. Given two measurable spaces (Θ1,B1) and (Θ2,B2),

we say that {Γθ1 , θ1 ∈ Θ1}, a system of measures on (Θ2,B2), is measurable in

θ1 if Γθ1(E) is measurable in θ1 for every E ∈ B2.

THEOREM 4.1. (i) Suppose that µ is a purely non-Gaussian distribution

in I(Rd) with nonzero Lévy measure ν. Then µ ∈ L∞(b,Q) if and only if ν is

expressed as

(4.1) ν(E) =
∫

SB

ν0(dx)
∫

(0,2γ(x))

Γx(dα)
∑

n∈Z

bnα1E(B−nx), E ∈ B(Rd),

where ν0 is a nonzero finite measure on SB and Γx, x ∈ SB, are nonzero finite

measures on (0,∞) measurable in x, each Γx is concentrated on (0, 2γ(x)) and

(4.2)
∫

SB

ν0(dx)
∫

(0,2γ(x))

Γx(dα)
∑

n∈Z

bnα(|B−nx|2Q ∧ 1) < ∞.

(ii) If a nonzero finite measure ν0 on SB and nonzero finite measures Γx, x ∈ SB,

on (0,∞) measurable in x are given and if each Γx is concentrated on (0, 2γ(x))

and (4.2) is satisfied, then the measure ν defined by (4.1) is the Lévy measure

of some µ ∈ I(Rd).

(iii) If µ ∈ L∞(b,Q) has nonzero Lévy measure ν and if ν is expressed by ν0

and Γx as in (i), then ν0 and Γx are unique in the following sense: if ν̃ and Γ̃x

give another expression of ν, then there exists a Borel measurable function h(x)

with 0 < h(x) < ∞ such that ν̃0(dx) = h(x)ν0(dx) and Γx(dα) = h(x)Γ̃x(dα)

for ν0-a.e. x. The measures Γx necessarily satisfy

(4.3)
∫

(0,2γ(x))

(α−1 + (2γ(x)− α)−2n(x)−1)Γx(dα) < ∞, ν0-a.e.x.

16

KSTS/RR-98/006
June 12, 1998



LEMMA 4.1. There exist positive constants Cj (j = 5, 6, 7) and bj(x)

(j = 1, 2, 3) such that, for x ∈ SB,

(4.4) |Bkx|Q ≤ C5β(x)kkn(x) for k ≥ 1,

(4.5) |Bkx|Q ≥ b2(x)β(x)kkn(x) for k ≥ b1(x),

C6α
−1+b3(x)(2γ(x)− α)−2n(x)−1 ≤

∑

n∈Z

(|Bnx|2Q ∧ 1)b−nα

(4.6)

≤ C7(α−1 + (2γ(x)− α)−2n(x)−1) for 0 < α < 2γ(x).

If α ≥ 2γ(x), then

(4.7)
∑

n∈Z

(|Bnx|2Q ∧ 1)b−nα = ∞.

Proof. Let |x|Q be defined by |x|Q =
∫ 1

0
|uQx|

u du aslo to x ∈ Cd. We have

BkTjx = (βj + (B − βj))kTjx(4.8)

= βk
j

n(x,j)∧k∑

`=0

(
k

`

)
β−`

j (B − βj)`Tjx.

Thus

|Bkx|Q ≤ C8β(x)k

p∑

j=1

kn(x,j) k ≥ 1.

Hence we have (4.4). It follows from (4.8) that there are b4(x) and b5(x) such

that, for k ≥ b4(x),

|BkTjx|Q ≥ 2−1|βj |kkn(x,j)(n(x, j)!)−1|(B − βj)n(x,j)Tjx|Q
≥ b5(x)|βj |kkn(x,j)
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for all j satisfying Tjx 6= 0. Choose a norm ‖ · ‖ in Cd as ‖x‖ =
∑p

j=1 |Tjx|Q.

Since arbitrary two norms are equivalent, we have C9|x|Q ≤ ‖x‖ ≤ C10|x|Q.

Choosing j such that β(x) = βj and n(x) = n(x, j), we obtain

|Bkx|Q ≥ C−1
10 ‖Bkx‖ ≥ C−1

10 |BkTjx|Q.

Hence (4.5) follows. Let 0 < α < 2γ(x). Note that
∑0

k=−∞ b−kα = (1 − bα)−1

and C11α
−1 ≤ (1− bα)−1 ≤ C12α

−1. We see from (4.4) that

∞∑

k=1

|Bkx|2Qb−kα ≤ C2
5

∞∑

k=1

β(x)2kk2n(x)b−kα

= C2
5

∞∑

k=1

bk(2γ(x)−α)k2n(x) ≤ C13(2γ(x)− α)−2n(x)−1.

This proves the second inequality in (4.6). The first inequality is obtained from

(4.5) as follows. We have

∑

k≥b1(x)

|Bkx|2b−kα ≥ b2(x)2
∑

k≥b1(x)

bk(2γ(x)−α)k2n(x)

≥ b6(x)(2γ(x)− α)−2n(x)−1,

for some b6(x) > 0. Hence the first inequality in (4.6) is obtained. The proof of

(4.7) for α ≥ 2γ(x) is similar. ¤

Proof of Theorem 4.1. In the following the conditions (a) – (d) refer to

those in Proposition 2.1.

(i) Let {ν0, gn, n ∈ Z} be the SB-representation of ν. Suppose that µ ∈
L∞(b,Q). It follows from Propositions 2.2 and 2.3 that, for ν0-a.e. x, there

exists a measure Γx such that

gn(x) =
∫

[0,∞)

bnαΓx(dα).

By (c), Γx is nonzero. By (d), for any E ∈ B(Rd),

ν(E) =
∫

SB

ν0(dx)
∑

n∈Z

∫

[0,∞)

1E(B−nx)bnαΓx(dα).
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Note that for any nonnegative measurable function h(α) on [0,∞),
∫

h(α)Γx(dα)

is measurable in x. By (b),

∞ >
∑

n≥0

∫

SB

gn(x)ν0(dx) =
∫

SB

ν0(dx)
∫

[0,∞)

Γx(dα)
∑

n≥0

bnα.

When α = 0,
∑

n≥0 bnα = ∞. Hence
∫

SB

ν0(dx)Γx({0}) = 0.

Next we have, by (d),

∞ >

∫

Rd

(|y|2Q ∧ 1)ν(dy)

=
∑

n∈Z

∫

SB

((|B−nx|2Q ∧ 1)ν0(dx)
∫

(0,∞)

bnαΓx(dα)

=
∫

SB

ν0(dx)
∫

(0,∞)

Γx(dα)
∑

n∈Z

bnα(|B−nx|2Q ∧ 1).

Thus by Lemma 4.1, we have
∫

SB

ν0(dx)
∫

[2γ(x),∞)

Γx(dα) = 0,

concluding (4.1), and the integrability condition (4.2) is also proved.

Conversely suppose that ν has the representation (4.1) with ν0 and Γx

satisfying (4.2). Set

(4.9) gn(x) =
∫

(0,2γ(x))

bnαΓx(dα), n ∈ Z.

Then (4.1) and (4.9) imply (d). We observe that gn(x) in (4.9) satisfies (a), (b),

and (c). As to (b),
∫

SB

ν0(dx)
∑

n∈Z

(|B−nx|2Q ∧ 1)gn(x)

=
∫

SB

ν0(dx)
∑

n∈Z

(|B−nx|2Q ∧ 1)
∫

(0,2γ(x))

bnαΓx(dα)

=
∫

SB

ν0(dx)
∫

(0,2γ(x))

Γx(dα)
∑

n∈Z

bnα(|B−n|2Q ∧ 1) < ∞
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by (4.2). (a) and (c) are obvious because Γx(dα) is nonzero for each x. Therefore

{ν0, gn, n ∈ Z} is the SB-representation of ν. It follows from (4.9) and Proposi-

tion 2.2 that gn(x) is completely monotone in n ∈ Z. Thus, by Proposition 2.3,

µ ∈ L∞(b,Q).

(ii) In order to see that ν is the Lévy measure of some µ, it is enough to

show that ν({0}) = 0 and that
∫
Rd(|x|2 ∧ 1)ν(dx) < ∞. The former is obvious

from (4.1). The latter follows (4.2) since |x| ≤ const.×|x|Q.

(iii) To show the uniqueness, suppose that both {ν0,Γx} and {ν̃0, Γ̃x} rep-

resent ν. Let

(4.10) gn(x) =
∫

(0,2γ(x))

bnαΓx(dα), g̃n(x) =
∫

(0,2γ(x))

bnαΓ̃x(dα).

By the proof above, {ν0, gn} and {ν̃0, g̃n} are SB-representations of ν. Thus

by the uniqueness of them in Proposition 2.1, there exists a Borel measur-

able function h(x) with 0 < h(x) < ∞ such that ν̃0(dx) = h(x)ν0(dx) and

gn(x) = h(x)g̃n(x), ν0-a.e. x for any n ∈ Z. Thus by the uniqueness assertion

in Proposition 2.2 (i)(b) and by (4.10), we conclude that Γx(dα) = h(x)Γ̃x(dα).

The assertion (4.3) for Γx follows from (4.2) and (4.6). ¤

5. Proof of Theorem 1.1

We first show that OSS(b,Q) ⊂ L∞(b,Q). Let µ ∈ OSS(b,Q). That is,

for some 0 < a < 1 and c ∈ Rd,

(5.1) µ̂(z)a = µ̂(bQ′z)ei〈c,z〉.

Then

(5.2) µ̂(z) = µ̂(bQ′z)ρ̂(z),
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with

(5.3) ρ̂(z) = µ̂(z)1−aei〈c,z〉.

To show that µ ∈ L∞(b,Q), by the definition, it is enough to show that ρ ∈
L∞(b,Q). Since µ ∈ I(Rd), ρ ∈ I(Rd). Hence by (5.2), µ ∈ L0(b,Q). Since

L0(b,Q) is Q-completely closed in the strong sense as mentioned in Section 1, ρ

in (5.3) is in L0(b,Q). Thus by the definition, (5.2) implies that µ ∈ L1(b,Q).

Repeating this argument, we conclude that µ ∈ Lm(b,Q) for any 1 ≤ m < ∞
and therefore µ ∈ L∞(b,Q). Hence OSS(b,Q) ⊂ L∞(b,Q).

Since L∞(b,Q) is Q-completely closed in the strong sense, it only remains

to prove “the smallest”. Let K be any Q-completely closed class in the strong

sense containing OSS(b,Q). First, notice the following fact. Let α > 0 and

r(z, x) = ei〈z,x〉 − 1 − i〈z,x〉
1+|x|2 . If ν0 is a finite measure concentrated on SB∩

{x : 2γ(x) > α} satisfying
∫

SB

ν0(dx)
∑
n<0

bnα|b−nQx|2 < ∞

and if µ is a distribution with

µ̂(z) = exp

{∫

SB

ν0(dx)
∑

n∈Z

bnαr(z, b−nQx)

}
,

then µ ∈ OSS(b,Q), since (5.1) holds with a = bα. Now let µ be a purely

non-Gaussian distribution in L∞(b,Q). Then its Lévy measure is represented as

in Theorem 4.1, and we have

µ̂(z) = exp

{
i〈γ, z〉+

∫

SB

ν0(dx)
∫

(0,2γ(x))

Γx(dα)
∑

n∈Z

bnαr(z, b−nQx)

}

with some γ ∈ Rd. For ε > 0, define µε by

µ̂ε(z) = exp

{
i〈γ, z〉+

∫

SB

ν0(dx)
∫

(ε,2γ(x)−ε)

Γx(dα)
∑

n∈Z

bnαr(z, b−nQx)

}
.
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Since the number of the possible values of γ(x) is finite, 2γ(x) − ε > ε for

all x, if ε is small enough. Then, for fixed ε > 0, we can choose measures

Γ(n)
x (dα) satisfying the following conditions: Γ(n)

x (dα) is concentrated on the

points {k2−n, k = 1, 2, · · · } ∩ (ε, 2γ(x) − ε), Γ(n)
x (dα) converges to Γx(dα) for

each x ∈ SB as n → ∞, the total mass of Γ(n)
x (dα) does not exceed that of

Γx(dα) for each x ∈ SB , and {Γ(n)
x } is measurable in x. Define µ

(n)
ε by

µ̂(n)
ε (z) = exp

{
i〈γ, z〉+

∫

SB

ν0(dx)
∫

(ε,2γ(x)−ε)

Γ(n)
x (dα)

∑

n∈Z

bnαr(z, b−nQx)

}
.

We see that µ
(n)
ε is a convolution of a finite number of purely non-Gaussian

distributions in OSS(b,Q). Hence µ
(n)
ε ∈ K. We see from (4.6) that, for any

fixed ε > 0,

(5.4) C14 ≤
∑

n∈Z

bnα(|b−nQx|2Q ∧ 1) ≤ C15 for α ∈ (ε, 2γ(x)− ε) and x ∈ SB .

Hence, by (4.2),

(5.5)
∫

SB

ν0(dx)Γx((ε, 2γ(x)− ε)) < ∞.

We show that, for fixed z ∈ Rd,
∑

n∈Z bnαr(z, b−nQx) is bounded in α ∈
(ε, 2γ(x)− ε) and x ∈ SB , and continuous in α. Since |r(z, x)| ≤ C16(|x|2Q ∧ 1),

we see the boundedness from (5.4). The continuity is obvious. Thus by (5.5) and

Lebesgue’s dominated convergence theorem, we have that as n →∞ µ̂
(n)
ε (z) →

µ̂ε(z), and that µε ∈ K. Finally, µ̂ε → µ̂ as ε ↓ 0. Thus µ ∈ K. This proves

that if µ ∈ L∞(b,Q) is purely non-Gaussian, then µ ∈ K.

If µ ∈ L∞(b,Q) is Gaussian, then by Theorem 3.4, µ is a convolution of

finite number of Gaussian distributions in OSS(b,Q) ⊂ K, and thus µ ∈ K. As

Proposition 2.3 shows, any µ ∈ L∞(b,Q) is decomposable in L∞(b,Q) as the

convolution of a Gaussian and a purely non-Gaussian. Hence L∞(b,Q) ⊂ K and

the proof is complete. ¤
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6. Remarks on the case Q = I

Let us consider the case Q = I. Let 0 < b < 1. The classes Lm(b, I),

0 ≤ m ≤ ∞, were introduced by Maejima and Naito [MN98], of which our paper

[MSW98] was a matrix generalization on Rd. Distributions in L0(b, I) are called

semi-selfdecomposable. Distributions in L∞(b, I) should be called completely

semi-selfdecomposable. The class OSS(b, I) consists of µ ∈ P(Rd) that satisfies

µ̂(z)a = µ̂(bz)ei〈c,z〉 for some 0 < a < 1 and c ∈ Rd; namely it is the class of

µ ∈ P(Rd) that satisfies µ̂(z)bα

= µ̂(bz)ei〈c,z〉 for some 0 < α ≤ 2 and c ∈ Rd.

Thus distributions in OSS(b, I) are exactly semi-stable distributions studied by

many authors beginning with Lévy [L37]. Now we have B = bI, |x|Q = |x|, and

SB = {x ∈ Rd : b < |x| ≤ 1}. We write SB as Sb. Further we have p = q = 1,

b1 = b, n1 = 1, and f(ζ) = ζ − b. Since ΨB(A) = (1 − b2)A, Proposition

2.3 shows that all Gaussian distributions are in L∞(b, I). Since β(x) = b and

γ(x) = 1 for all x ∈ Rd, the following result is obtained from Theorem 4.1.

THEOREM 6.1. (i) Suppose that µ is in I(Rd) with nonzero Lévy measure

ν. Then µ ∈ L∞(b, I) if and only if ν is expressed as

(6.1) ν(E) =
∫

Sb

ν0(dx)
∫

(0,2)

Γx(dα)
∑

n∈Z

bnα1E(b−nx), E ∈ B(Rd),

where ν0 is a nonzero finite measure on Sb and Γx, x ∈ Sb, are measures on

(0, 2) measurable in x satisfying

(6.2)
∫

(0,2)

(
1
α

+
1

2− α

)
Γx(dα) = 1.

(ii) If a nonzero finite measure ν0 on Sb and measures Γx, x ∈ Sb, on (0, 2)

measurable in x satisfying (6.2) are given, then the measure ν defined by (6.1)

is the Lévy measure of some µ ∈ I(Rd).

(iii) If µ ∈ L∞(b, I) with nonzero Lévy measure ν, then the measure ν0 in (i) is

uniquely determined by ν and the measures Γx, x ∈ Sb, are unique in the sense
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that Γ̃x = Γx for ν0-a.e. x for any Γ̃x which expresses ν by (6.1) in place of

Γx.

Proof. (i) We apply Theorem 4.1. Note that we do not assume that µ

is purely non-Gaussian, since all Gaussians are in L∞(b, I). Suppose that µ ∈
L∞(b, I). Then we get (6.1) with some ν0 and Γx satisfying

∫

Sb

ν0(dx)
∫

(0,2)

Γx(dα)
∑

n∈Z

bnα((b−2n|x|2) ∧ 1) < ∞.

This is equivalent to

∫

Sb

ν0(dx)
∫

(0,2)

Γx(dα)


∑

n≥0

bnα +
∑
n<0

b−n(2−α)


 < ∞.

Since
∑

n≥0 bnα ∼ C17
α as α ↓ 0 and

∑
n<0 b−n(2−α) ∼ C18

2−α as α ↑ 2, the

condition is equivalent to
∫

SB

ν0(dx)
∫

(0,2)

(
1
α

+
1

2− α

)
Γx(dα) < ∞.

Let h(x) =
∫
(0,2)

( 1
α + 1

2−α )Γx(dα) and use h(x)ν0(dx) and 1
h(x)Γx(dα) in place

of ν0 and Γx to obtain (6.2). The converse is similarly proved. (ii) and (iii)

follow from Theorem 4.1 (ii) and (iii), respectively. ¤

Another form of the theorem above is as follows.

THEOREM 6.2. (i) Suppose that µ ∈ I(Rd) with nonzero Lévy measure

ν. Then µ ∈ L∞(b, I) if and only if

(6.3) ν(E) =
∫

(0,2)

Γ(dα)
∫

Sb

να(dx)
∑

n∈Z

bnα1E(b−nx), E ∈ B(Rd),

where Γ is a nonzero measure on (0, 2) with

(6.4)
∫

(0,2)

(
1
α

+
1

2− α

)
Γ(dα) < ∞

and να, α ∈ (0, 2), are probability measures on Sb, measurable in α.
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(ii) If a nonzero measure Γ on (0, 2) satisfying (6.4) and probability measures

να, α ∈ (0, 2), measurable in α are given, then the measure ν defined by (6.3) is

the Lévy measure of some µ ∈ I(Rd).

(iii) If µ ∈ L∞(b, I) with nonzero Lévy measure ν, then the measure Γ in (i) is

uniquely determined by ν and the probability measures να, α ∈ (0, 2), are unique

in the sense that ν̃α = να for Γ-a.e. α for any ν̃α that expresses ν by (6.3) in

place of να.

Proof. In order to go to the representation (6.3) from (6.1), consider the

probability measure 1
ν0(Sb)

ν0(dx)( 1
α + 1

2−α )Γx(dα) on Sb × (0, 2) and apply the

existence theorem for conditional distributions. Transfer in the reverse direction

is similar. ¤

Finiteness and infiniteness of the moments of distributions in L∞(b, I) are

determined only by the measure Γ. This is an application of Theorem 6.2.

THEOREM 6.3. Let µ be a distribution in L∞(b, I) with nonzero Lévy

measure ν. Let Γ(dα) be the nonzero measure on (0, 2) uniquely determined by

ν in Theorem 6.2. Let α0 ∈ [0, 2) be the infimum of the support of Γ. Then,

finiteness and infiniteness of Mη =
∫
Rd |x|ηµ(dx) are as follows.

(i) If η > α0, then Mη = ∞.

(ii) If α0 > 0 and 0 < η < α0, then Mη < ∞.

(iii) If α0 > 0 and Γ({α0}) > 0, then Mα0 = ∞.

(iv) If α0 > 0 and Γ({α0}) = 0, then Mα0 is finite or infinite according as
∫
(α0,2)

1
α−α0

Γ(dα) is finite or infinite.

Proof. It is known that Mη < ∞ if and only if
∫
|x|>1

|x|ην(dx) < ∞
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(Kruglov [K70]). We have, from (6.3),

∫

|x|>1

|x|ην(dx) =
∫

(0,2)

Γ(dα)
∫

Sb

να(dx)
∑

n∈Z

bnα|b−nx|η1E(b−nx)

=
∫

(0,2)

Γ(dα)
∫

Sb

να(dx)|x|η
∑

n≥1

bn(α−η),

where E = {x : |x| > 1}. If η > α0, then
∑

n≥1 bn(α−η) = ∞ for α ∈ [α0, η) and
∫
|x|>1

|x|ην(dx) = ∞. If α0 > 0 and 0 < η < α0, then

∫

|x|>1

|x|ην(dx) ≤ 1
1− bα0−η

∫

[α0,2)

Γ(dα)
∫

Sb

|x|ηνα(dx) < ∞.

If α0 > 0 and Γ({α0}) > 0, then

∫

|x|>1

|x|α0ν(dx) ≥ Γ({α0})
∫

Sb

να(dx)|x|α0
∑

n≥1

1 = ∞.

Hence we obtain (i), (ii), and (iii). Consider the final case, α0 > 0 and

Γ({α0}) = 0. Since
∑

n≥1 bn(α−α0) ∼ C19
α−α0

as α ↓ α0, we have

C20

∫

(α0,2)

1
α− α0

Γ(dα) ≤
∫

|x|>1

|x|α0ν(dx) ≤ C21

∫

(α0,2)

1
α− α0

Γ(dα).

Hence the assertion (iv) follows. ¤
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