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Wayvelet transforms associated to the analytic
continuation of the holomorphic discrete series
of a semisimple Lie group

Takeshi Kawazoe *

Abstract

Grossmann, Morlet, and Paul pointed out that the wavelet theory can be inter-
preted in the scheme of square-integrable representations of locally compact groups.
In this paper we shall obtain a wavelet transform outside this scheme; wavelet trans-
forms associated to non square-integrable representations. Let G be a real connected
semisimple Lie group with finite center and G the universal covering group of G.
We suppose that G/K is of hermitian type. Then G has a non empty family of
square-integrable representations, which is called the holomorphic discrete series,
and G has its analytic continuation, which includes non square-integrable represen-
tations of (. We shall construct a wavelet transform associated to this analytic
continuation.

1. Introduction.

Before stating our goal we shall recall the definition of the holomorphic discrete series
of a semisimple Lie group and its analytic continuation. For most of the following facts
we refer to [6], [7], and [8].

Let g be a real semisimple Lie algebra and g = ¢+ p a Cartan decomposition of g. We
suppose that ¢ has a non empty center 3 = RZ and the eigenvalues of the adjoint action
adZ of Z on p® are +i. Let G be the simply connected group with Lie algebra g and
K the analytic subgroup of G with Lie algebra ¢. Then é/[g’ is a hermitian symmetric
space. The set of pairs A = (Ag, A), where Ag is a dominant weight of [ ¢, ¢] and A a real
number, parametrizes the set of equivalence classes of irreducible unitary representations
of K: let (Uy, Vi) denote the irreducible unitary representation of K of highest weight A.
We define

Ho(A) = {¢ € C=(G, Va); dlgk) = Un(k) " 6(g) (g € Gk € K),
Xo=0 (Xep) and [ 69l = 6l < o).
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e-mail: kawazoe@sfc kelo.ac.Jp
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where pT is the +i-eigensubspace of adZ on p®, Z(CN?) the center of (7, and dg a G-invariant
measure on (/K. Then Hy(A) # {0} if and only if A satisfies the Harish-Chandra
condition (see (1) below). G acts by left translations in Ho(A): Ta(z)d(g) = d(atg)
(x,g9 € CN?), and (T, Ho(A)) is an irreducible unitary representation of (, which is said to
belong to the holomorphic discrete series of Gi.

Let G/ be the simply connected group with Lie algebra g© and G, K, K¢, and Py
the analytic subgroups of G/ with Lie algebra g, ¢, ¢, and p* respectively. Then G/[{’ is
isomorphic to G/ K and G C Py K¢ P-. For g € (G we define k(g) € K¢ by g € Pyk(g)P-
and we naturally lift the map k: G — K¢ to k : G = K¢, the universal covering group
of Ko. We define

¢A($) = UA(k(l'))_IUA (l’ - é),

where Uy is the holomorphic representation of K¢ such that UA|I§' = Uy and vy € V, is
a highest weight vector of Uy. We suppose that 15 is of positive type (see [6, §1.4]) and
we define £ as the linear span of left translations of ¥y,. We here introduce a non zero
Hilbert space H(A) as the completion of £ with the norm:

I Z CiTA(gi)%/JAH%I(A) = Z cic;halg ! g;)-

(Ta, H(A)) is an irreducible unitary representation of (. We call the family of (Ta, H(N))
the analytic continuation of the holomorphic discrete series (T, Ho(A)), in the sense that,
if A satisfies the Harich-Chandra condition, then ), is of positive type, Ho(A) = H(A)
with‘ quH%IO(A) = CAHQb‘H%I(A) where ¢y = H@Z’AH%I(A‘)v and the characters of the analytically
continued representations are holomorphic functions of A.

Now we shall state our goal. We assume that Ag = 0 and we denote A = (0, 1) by A
for simplicity. Let (HC') be the set of A € R satisfying the Harish-Chandra condition and
let (P) be the one of A € R for which 1, is of positive type. These two sets are explicitly
described as follows.

(HC)={MX < —<p H>}Y, (1)

(Py=paore -y o oy 2)

(see [6, §4.6], [T, Theorem 5.10], and §2 for the definition of p, H,r,p). We denote by
(PC) the continuous part of (P): (PC)={X A < —(r — 1)p/2} and we note that

(HC) C (PC) C (P).
If A € (HC), the matrix coefficients of (1), [/(A)) are square-integrable over G/Z(é), S0

(T, H())) is a square-integrable representation of G mod Z((G'). More precisely,

2 s 2 2
/G/Z((;) | <@ Ta(9)¥ >mey I'da = exllollzoy ¥l (3)

for all ¢,¢ € H(A) and therefore,
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o) = el [, < 0Tl 2a o) ()
(cf. [3, §1]). As pointed out by Grossmann, Morlet, and Paul [2], these formulas give a
group theoretical interpretation of continuous wavelet transforms of H(A): in the wavelet
theory ¢ in (4) is called a mother wavelet and < ¢, T\(g )¢ >p(y the wavelet transform
of ¢. Here we rewrite (3) by decomposing G as G = BK, where B is a Borel subgroup
of G. Since Z(G) C K and Ty(k)iby = Uy(k)y for all k € K, letting o = 1y in (3), we
have for all ¢ € H())

S, 1< @D >0 Pb = a9l [ iy, (5)

where db is a left invariant measure on B. Clearly, (5) is equivalent to (3), so it can be
regarded as the wavelet transform associated to the holomorphic discrete series (T, H()))
(A € (HC)). We note that this formula does not make sense if A ¢ (HC'), because the
both sides diverge. When A € (P) N (HC)® corresponds to the limit of the holomorphic
discrete series of ¢/, we obtained a generalization of (5) in the previous papers [3] and [4].

Our goal of this paper is to generalize the integral formula (5) for all A € (PC') and
to obtain a wavelet transform associated to non square-integrable representations of G
mod Z((G). Since the both sides of (5) diverge for A € (P(), to generalize the formula
for A € (PC) we need to replace ¢, with a suitable function ¢ on (i, which is said
to be admissible. The program to carry out this process is as follows. First we shall
consider a combination of the Fourier transforms ¢ — ¢ —» (qAb)N of H(\) (see 3.2 and 3.3)
and we identify H () with [:[()\) = L} x W, J\(£)d&dn). Basic properties about these
transforms are summalized in §4. Especially, the Fourier transform f — f separates a
convolution f%i into the multiplication of each Fourier transforms (see Lemma 4. 1) and
an L%*-norm of f* coinsides with an L?-norm of the matrix coefficient of TA, where TA( )gb

= (T\(9)9)" (see Lemma 4.2). Puting together these properties, we can extend (5) for
all A € (PC): the desired function ¢ are defined in Definition 5.1 and the main theorem
is given by Theorem 5.2. In §6 we shall take an abelian subgroup 7 of G¢ outside of
(i and consider a dilation on W induced from Tp. This dilation yields a large class of 1
satisfying a generalized formula (see Theorem 6.2).

2. Notation.

We keep the notations in §1 and we also refer [5], [6], [7], and [8] for the contents in
this section.

Let h be a maximal abelian subalgebra of ¢. Then p“ is a Cartan subalgebra of g“, so
the set A of roots for (g”, %) is defined. Let AT be the set of positive roots in A, A;’ the
set of noncompact roots in A, and ¥ the maximal set of orthogonal roots in Al chosen
as in [6, §2.1]. For each v € A let (g%)” denote the root space of v and I, the unique
element in ih N [(g“)7, (¢¢)77] such that y(H,) = 2. If 5 is the highest root in ¥, we put
H = H,. For each v € At let £, be an element in (g“)7 such that [£,, E,] = H,. We put
E_,=FE,and X, = E,+FE_,. Thena=3" .y RX, is a maximal abelian subalgebra of p.
Let r be the real rank of g, that is, r = dim a. Let ¥ be the set of restricted roots for (g, a),
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Yt the set of positive roots in X, and {ay, ay, ..., a,} the restrictions to a of the Cayley
transforms of W. Let p =3 cv+ /2 and n = Y cy+ g® where g” is the root space of a.
Then g = t4 a+nis an Iwasawa decomposition of g and p = dim g{®¥2)/2 is independent
of 1,7. Let b = a+nand 6% = b7 + b~ where b* = b7 N (¢ + p*). We define J : 6 — b
such as b* = {X F1JX; X €6} and we put s = Y o Uy = Y egi(H, — E, + E_,)/2.
Then Js has eigenvalues 0, £1/2,£1, and it yields the Js-eigenspace decompositions of g
and b:

1 1
gzg(—l)+g(—§)+g(0)+g(§)+g(1) and b =Ho+ Hij + Hi,

where H; C g(i) (1 = 0,1/2,1). We note that dimHg = dimH; = r + r(r — 1)p/2 > 0.
We put 7(X) = (X —¢JX)/2 for X € H,j, and we let 7—[1"/2 =5t N 7—[10/2. Then 7 is a
complex isomorphism of H,, to 7—[1"/2 (see [6, p.17]).

Let B, A, N, and H; (i = 0,1/2,1) be the analytic subgroups of G with Lie algebras
b, a, n, and H; respectively. Then B = Hy - Hy sy H, (semidirect), solvable and isomorphic
to G/K = G/K. We put G(0) = {g € G;g-Js = s}, where g- implies the adjoint action
of g, and we shall define an open convex cone {2 in ‘H; and its dual cone Q* as follows.

Q=G0)-s and QP ={£cH;<EX >>0 forall X € Q— {0},

The map h — h - s is a diffeomorphism of Hy onto Q@ and, if we put & = 3 cq U, the
map h — - & is one of Hy onto *. For { € Q0 we define h({) € Hy by £ = h(£) - &. Let
Q : 7—[1"/2 X 7—[1"/2 — HY denote the hermitian form on 7—[1"/2 defined by Q(u,v) = i[u, v]/2.

We also define the hermitian form ) on H;/, by Q(u,v) = Q(T(u), 7(v)) for u,v € Hyya.
Then (/K is isomorphic to the Siegel domain:

D(Q,Q) = {(=,u) € Hi x Hip; Sz — Q(a,w) € Q.

Actually, if we define o : G — H{ x 7—[1"/2 by a(g) = ¢+ ((cg), where c is the Cayley
transform and ((g) is the Pi-component of ¢ € Py K¢ P_, then the map a induces a
G-invariant isomorphism: « : (/K — D(Q, Q) (see [6, p.17]).

Let du, du, dx, dt, and d¢ be Lebesgue measures on 7—[1"/2, His2, Hi, Q, and Q
respectively, and dh a left-invariant Haar measure on Hy. Then db = dhdxdu is a left
invariant measure on B: for a compactly supported function F on B

/ F(b)db = / F(hexp xexpu)dhdrdu. (6)
B HOXH1/2XH1

3. Fourier transform of H()).

We retain the references [5] and [6] for the contents in this section and we suppose
that A € (PC) for simplicity (see Remark 3.3 below). In what follows we shall give
a characterization of H(\) as an L?-space H()) on Q* x W, where W is a real form
of His2. This follows from a combination of the identifications o : G/K — D(Q,Q),

T:Hip — 7—[1"/2, and Fourier transforms f and I on H; and W respectively.

4
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3.1. Let ¢ be the element in G that induces the Cayley transform in & (see [6, §2]).
Since ¢ G C Py KYP_, it is easy to see that k(c7lg) is well-defined for g € GG and let

da(g) = Ua(k(c™) " Ua(k(cTg)) (g € G).
@y is the character of GG(0) such that qu(eXp tX,) = e fory € ¥ and ¢ =1 on H,pHj.
Here for each function f(g[&) on G/ K we define a function on G as

Prf(g) = ox(9) "' f(gh).

Then, by considering (Py'¢)(a~!(p)) for ¢ € H()) and p € D(Q,Q), we can regard
(T, H(X)) as a representation realized on D(§2,Q), which we denote by the same symbol.
Especially, for a function f(p) on D(2,Q) G acts by the left translation:

T\(9)f(p) = dr(9)f(g™ - p) (p € D(Q,Q),9 € G).

3.2. Let f(z, 1) be a holomorphic function on D(Q,Q). If f(z,@) is of Schwartz class
with respect to Rz for a fixed Iz, the Fourier transform of f(z,a) is defined by

e = [ Jene S de (e )

Here the integral is independent of Jz. Conversely, if a function ¢(£, @) on Q* x 7—[1/2
is of Schwartz class with respect to ¢ for a fixed @, the inverse Fourier transform of ¢ is
given by

M) = [ s(& e e ((20) € D(.Q))

We here introduce the Hilbert space [:[()\) as the space of measurable functions ¢(¢, )
on Q* x 7—[1/2 satisfying

(1) (&, ) is holomorphic in @ for almost all £ € QF,
(21) /Q |4(¢, )|2€_4wéﬁ(a’a)JA(f)d§d& - qu”%[(/\) < 0,
/2

1

where Qg(ﬂ ) =< &,Q(u, %) > and J\(€) = ¢x(h)2(detyy, h)™" (detyl/2h)_1 for & =
h-& € Q*. If we define the representation (TA, H()\)) of Gi by

Ti(9)¢ = (Ta(9)9)".
then it follows from [6, §4.6] that

Theorem 3.1. If X € (PC) then the map ¢ — ¢ gives an isomorphism of H(\) onto
HQ) with |[¢l[}y = dallllyy» where dy = Ty 5(2m)sCHEIID(— LA 4 (i = 1)p)). In

particular, (T\, H()\)) is umtary equivalent to (TA, H()\))

3.3. Let ]:[(f, @) (€ € ) denote the space of holomorphic functions F' on H,, such that
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IFIE= [ PGP 0dedn < o,
1/2

where Q¢(u,v) =< & Q(u,v) >. Let W be a real form of H;/, such that Q(W, W) C H,
and 0 the conjugation of H;, with respect to W. Then it follows from [5, Theorem 2.24]

that ]:[(f, Q) = L*(W) for a fixed £ € Q*. More precisely, if we define the quadratic form
P(u,u) on Hyjy by P(u,u) = Q(u,0(u)) and put Pe(u,u) =< &, P(u,u) >, the isometry
F — F of ]:[(f, @) onto L*(W) is given by

F(n) — cé/2e4wQ§(n,n) /W F(U)G_QWP‘f(u’u)GSMQ‘f(u’n)dw, (7)

where du = dwdvg if u = w+iv (w,v € W) and dvg is the product measure with respect to
orthogonal coordinates for Q¢(u,v). Moreover, ¢q is given by (12) below and the integral
is independent of v.

For each function ¢ € [:[()\) we define a function ¢, on Q* x H;/y as

qu(f? u) = Qb(f, T(u))
Then ¢, (&, u) € ]:[(f, @) and the isometry of ]:[(f, @) onto L*(W) yields that

60y = [ I6n6 N IEA©dE = [ 16 P IEdedn = 13-y (5)

where

H(X) = L x W, Jy(€)dEdn).
Therefore, if we define the representation (T, H())) of G by

we can obtain the following.

Theorem 3.2. If A € (PC), then the map ¢ — &, gives an isomorphism of [:[()\) onto
H(X) with quHiI(A) = H@H%(A). In particular, (T\, H(X)) is unitary equivalent to (T},

H()).

3.4. Let S(W) be the Schwartz space on W. We introduce S()) as a subspace of H(\)
consisting of functions ¢ € H(\) such that (&, ) belongs to S(W) for each fixed ¢ € Q*.
We define 3’()\) as the dual space of S(A) with respect to the inner product of [:[()\)
Furthermore, we define 3()\) (resp. 3”()\)) by (3’()\)): = S(A) (resp. (S”()\)): = 3’()\))
Remark 3.3 We can similarly treat the case of A € (P) N (PC): A = —(e — 1)p/2
(1 < e <r). In this case Q* x W is replaced with OF x W,, where OF is a GG(0)-orbit of
£ =32 Ur and W, is the kernel of Qée- Especially, OF is contained in the boundary of
" and the measure J,(€)d€ on O is replaced with a positive measure du* on OF.

6
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4. Key lemmas.

We recall that each b € B acts on D(Q,Q) as an affine transformation: if b =
hexpuexpr € B= HoH,;H, and p = (z,u) € D(,Q), then b p is given by

(h-x+h-z+4 ZiQ(h Uy h o T(u)) + z@(h cr(u), b T(u)) b w4 b T(w))
(cf. [8,§2]). Thereby, according to the isomorphism in Theorem 3.1, we have for ¢ € [:[()\)

Ti(h)g(&,a) = da(h)(dety, h)p(h™'¢, h™"a),
TA(eXpu)qb(f, i) = 647@&(ﬂﬁ(u))—%Qf(T(u)ﬁ(u))qb(g?ﬁ_T(u))7 (9)
T(expa)p(6,a) = e 27> g(¢ q).

Now we suppose that A € (PC) and f,¢ € 3()\) (see 3.4). We define a convolution
on 2* x Hy g as follows.

R B S e e (10)

1

Lemma 4.1. For .4 € 3’()\)

[FRB(EN)" () = @ [ (€ m)ho (€, )60,
where ¢q is independent of f, .

Proof. 1t follows from (7) and (10) that [f*(€, )]~ (n) is eqaul to

Cé/2€4WQ£(77777) /W /H f7(57 u/)@z)q—(é: u — u)€—47rQ£(u',u'—u)dule—QwPﬁ(u,u)eSWiQﬁ(u,n)dw‘ (11)
1/2

Let ' = w' 4+ " and u = w. We change the variable w to —w 4+ w’ and put @’ = w’ + 0/
and u = w + v’ respectively. Then we see that

Qﬁ(ulv u' — u) = Qﬁ(alv ﬂ) = Qé(w/lw) + Qé(vlv U/) - iQ&(wlv U/) + iQé(Ulv w)v
Qe(u,n) = Qe(W — ,n) = —Qe(t,n) + Qe(&',n) — 2:Q¢(v', m),

and moreover, Pe(u,u) = Pe(& — @,% — @) is given by

Pg(ﬂ, ﬂ) + Pg(ﬂ/, ﬂ/) + 2(_625(1/7 U/) - Qf(wlv w) + iQf(wv U/) - iQf(Ulv w/))‘

By substituting these relations with —47Q¢(u', v’ —u) — 27 Pe(u,u) + 87iQ¢(u, 1), we can
deduce that the sum of power of the exponents in (11) is equal to

2 Pu(it, 1) — 8miQc(t,m) — 2 Pe(il, i) + 8miQe( ) — 87Qe(o/ ') + 167Qe (o', ).

7
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We here recall that du’ = du’ = dw'dv} and we apply the notation of the Fourier transform
(7) to the integrals with respect to dw and dw’ respectively. Thereby, we see that (11) is
equal to

R A

Then the desired result follows from the following integral formula:

/ 6—87TQ€(’U/,’U/)elGﬂ'Qﬁ(’U’,T])d,Ué — COGSWQﬁ(Uvn) (12)
w
(see [5, p.345]). &

Lemma 4.2. For f,1 € S(\) such that fp(&,u) (€)Y € H(N)

/7'11/2x7-l1 | < f, T/\(eXpl'eXp u)h > i |2d:1;du = /Q* | f* (€, )"gjf(f)df

Proof. Tt follows from (9) that
< f, TA(exp T exp u) >p)= /Q* I(¢, u)6_27@'5(T(“)’T(“))G%K&DJA(f)df,
where

I(§u) = /H+ FIE R)D(E, @ — 7(u))et™Qel@r(w) g=4mQe (@0) g5

1/2

B /H fT(f’ U/)@ZJT(& u' — u)e_47rQ£(u',u’—u)du,
1/2
= fRb(E ),

The lemma follows from the Plancherel formula for the Euclidean Fourier transform of

L*(Hy). W

Lemma 4.3. Let ¢ € S(A) and h € Hy. Then

A

(Ta(h))7 (€)= dalh)(det, h)(dety, , h)dr (R7HE 1),

Proof. 1t follows from (9) and (7) that (TA(h);/)):(f, n) is given by

cé/2€4WQ.§(77777)¢/\(h)(detHlh)/ ¢T(h—1§7 h—lw)e—ZwPﬁ(w,w)eSWiQﬁ(w,n)dw‘
w

Since Q¢(hw, hn) = Qp-1¢(w,n) for all w,n € Hi/o and £ € QF, the change of the variable
w to hw yields the lemma. &
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5. Dilation on Q*.

We retain the notations in the previous sections and the assumption that A € (PC).
For f € S(\) and ¢ € §'()\) we choose F € 3()\) and ¥ € 3’()\) such that f = F,
and ¢ = U, respectively. We suppose that (&, )@t 1, (€) belongs to 3’()\). Since
(F*U)~ = c(l)/QfL/; etmQe(nn) ¢ 3()\), it follows from (6), (8), Lemmas 4.1, 4.2, and 4.3 that

/Hole/Qle | < T\(h™ ") F, T\ (exp z exp u)W¥ > A0y 1*dhdzdu
= o [ 1€ A€, P2, ()2t ) (et )23 )dhded,
where the last integral is taken over Hy x * x W. Then, changing the variables ¢ and n to

h='¢ and A~y respectively, and using the relation: Jy(h™*¢) = @3 (h) (dety, h) (dety, ,h)
JA(€) (see [8, p.33]), we see that the integral is equal to

CO/ & mP[o(h™ 6 h™ ) ey ()72 (detw, h) ™" (detay, , h) ™ IS (R™€)dhddy

oGP N PO (b dedndh. (13)

Definition 5.1. ¢» € S'()\) is said to be B-admissible if

/ [p(h1E, hlg) 260 J (h=1€)dh = ¢, < oo (14)

0

for all £ € QO and n € W, where ¢y is independent of & and n. Especially, |(&,n)| is of
the form [6(€,n)] = B(€)—179%01) and

Cy = /H (W (AP IN(hE)dh = /Q W), (€)(detysh(€)) ™ dE < oo

Let ¢ € 3’()\) be B-admissible. Then the integral (13) makes sense for f € 3()\) and

it coincides with

cocy [ ITEIPINEdEdn = coey 1]

Therefore, we can obtain a generalization of (5):

Theorem 5.2. Let A € (PC) and let o € S'()\) be B-admissible. Then
L < LRG> gy b = cocyl|

9
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for all f € S(\).

Remark 5.3. (1) Let ¢ € S'(\) be B-admissible. Then ¢ is in H()) if and only if

1l = [ TRE@RAE) [ 0 dnd = co | [W()FINE)(det ) de < .

(2) f X = — < p,H >, then A € (PC) (see §1) and J,(§) = 1. The corresponding
representation (T, H())) is called the limit of the holomorphic discrete series of G and
it can be realized as a reducible component of a unitary principal series representation
(mx, L*(N)) of . Thereby, it is quite natural that the B-admissible condition in Definition
5.1 has the similar form of the admissible condition of a wavelet transform associated to
the principal series representation (see [6, (9) in I | and cf. [9]).

6. Dilation on W.

In order to find a large class of ¥ in 3’()\) satisfying a formula similar to Theorem 5.2
we shall consider a dilation on W induced by a subgroup Ty of G¢.

We put to = {X € h;¢(X) = X}, where ¢ is the Cayley transform, and Ty = exp ity C
Go. Since TyPy Ko P_ C Py K¢ P_, we can extend the map o (see 3.1) as o : TpG — HY x
7—[1"/2 and then we can define the action of Ty on o(Ty(). Especially, if (z, ) € D(Q,Q),

t-(z,u)=(z,t-0) (tely),

where t- 4 = Ad(t)u for @ € 7-[1"/2. Thereby, Ty acts on Hyp as 7(t-u) = t-7(u) and then,
on W. We note that on the Eucledian space R the dilation fi(z) of f (t > 0)is defined
by 7' f(t~'x) and its Fourier transform is equal to f(¢)). So, we shall define the dilation
on W as

D f(&m) = f(&t-n) (teTy.

Definition 6.1. ¢» € S'(\) is said to be BTy-admissible if

L[ e et e g e = ¢y < 0o, (15)

where dt is a Haar measure on Ty and ¢y ts independent of £ € O and n € W.

For each Bly-admissible ¢ € 3’()\), the same process used in §5 yields that

< F.D(™YI\N(B) > 71, |Pdtdb

/TO/B| L DA )INb)Y >y |

= Co/ FEm) Pl e Rt ) PeSmQetT ™) 1y (€)1, (h ™€) dEdndhdt
HoxQ*xW xThy

= COCwaHJZf[(A)-

10
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for f € S(\). Therefore, we can obtain the following.

Theorem 6.2. Let A € (PC) and let o € S'(\) be BTy-admissible. Then

1< Db > sy Pl = oy |
forall f € S(\).

Example 6.3. Let us suppose that GG = SU(n, 1). In this case the subalgebras Ho, H, 2,
and H; in §2 consist of matrices being of the form:

to U 1T —ix
H,, = , Xy=| —u” u* |, and X, =
to U 12 —1x
respectively, where tg,2 € R and u € C"™'. Moreover, Q and Q* can be identified with
R, and J\(§) = &M Therefore, (HC) and (PC') are respectively given by A < —n
and A < 0 (see [6, Corollary 4.4.7 and Corollary 4.4.8] and [7, Lemma 4.1 and Corollary
4.2]). We choose a real form of H;j, as W = {X,;u € R"™'} and we parametrize each

element ¢ € Tj as follows.

ln
ty

t = exp ‘ ,

ln—1
2
where ¢; € R and 2t, = —Z?;ll t;. Then hé = € if h = exp Hy, and t-n = (e tip,) if
n = (n;) and t as above. We can rewrite the admissible condition in (14) as follows. Let
E™ be the set of € = (¢;) € R™ such that ¢; = £1 (1 < < m), and for each ¢ € £™ let
R7(c) = {z = (z;) € R™;sgna; = sgnz;(1 <i < m)}. Then ¢ € S'()) is BTy-admissible
if and only if

dz d
)2a~ (M) BrellylP S 4Y < 00 16
/R+ /R" : )l vyl o

for all £ € €77, where dz and dy are Lebesgue measures on R and R"™! respectively,
ly| =TT |wi] if y = (v:), and ¢y is independent of e.

Remark 6.4. When G = SU(1,1) (n = 1), Hijp = W = {0} and the integral over
R}7'(2) in (16) is not necessary. In this case, if A = —1, the whole contents in the above
example are same as the ones obtained by Grossmann and Morlet in the case of the one-
dimensional affine group ax + b (see [1]). They use a square-integrable representation
of ax + b that corresponds to the limit of holomorphic discrete series of SU(1,1) in
our scheme. If —1 < XA < 0, the wavelet transform in Theorem 6.2 associates to a
representation that goes past the limit of holomorphic discrete series of the universal

covering group of SU(1,1) (see [7, §4]).
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