Research Report

KSTS/RR-98/005 June 12, 1998

Wavelet Transforms Associated to the Analytic Continuation of the Holomorphic Discrete Series of a Semisimple Lie Group

by

Takeshi Kawazoe

Takeshi Kawazoe Department of Mathematics Keio University at Shonan Fujisawa

Department of Mathematics
Faculty of Science and Technology
Keio University

©1998 KSTS

3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan

Wavelet transforms associated to the analytic continuation of the holomorphic discrete series of a semisimple Lie group

Takeshi Kawazoe *

Abstract

Grossmann, Morlet, and Paul pointed out that the wavelet theory can be interpreted in the scheme of square-integrable representations of locally compact groups. In this paper we shall obtain a wavelet transform outside this scheme; wavelet transforms associated to non square-integrable representations. Let G be a real connected semisimple Lie group with finite center and \tilde{G} the universal covering group of G. We suppose that G/K is of hermitian type. Then G has a non empty family of square-integrable representations, which is called the holomorphic discrete series, and \tilde{G} has its analytic continuation, which includes non square-integrable representations of \tilde{G} . We shall construct a wavelet transform associated to this analytic continuation.

1. Introduction.

Before stating our goal we shall recall the definition of the holomorphic discrete series of a semisimple Lie group and its analytic continuation. For most of the following facts we refer to [6], [7], and [8].

Let \mathfrak{g} be a real semisimple Lie algebra and $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ a Cartan decomposition of \mathfrak{g} . We suppose that \mathfrak{k} has a non empty center $\mathfrak{z} = RZ$ and the eigenvalues of the adjoint action adZ of Z on \mathfrak{p}^C are $\pm i$. Let \tilde{G} be the simply connected group with Lie algebra \mathfrak{g} and \tilde{K} the analytic subgroup of \tilde{G} with Lie algebra \mathfrak{k} . Then \tilde{G}/\tilde{K} is a hermitian symmetric space. The set of pairs $\Lambda = (\Lambda_0, \lambda)$, where Λ_0 is a dominant weight of $[\mathfrak{k}, \mathfrak{k}]$ and λ a real number, parametrizes the set of equivalence classes of irreducible unitary representations of \tilde{K} : let $(U_{\Lambda}, V_{\Lambda})$ denote the irreducible unitary representation of \tilde{K} of highest weight Λ . We define

$$\begin{split} H_0(\Lambda) &= \{ \phi \in C^{\infty}(\tilde{G}, V_{\Lambda}); \phi(gk) = U_{\Lambda}(k)^{-1} \phi(g) \quad (g \in \tilde{G}, k \in \tilde{K}), \\ X\phi &= 0 \quad (X \in \mathfrak{p}^-), \quad \text{and} \quad \int_{\tilde{G}/Z(\tilde{G})} \|\phi(g)\|_{V_{\Lambda}}^2 d\dot{g} = \|\phi\|_{H_0(\Lambda)}^2 < \infty \}, \end{split}$$

^{*}Department of Mathematics, Keio University at Shonan Fujisawa, 5322, Endo, Fujisawa 252, Japan. e-mail: kawazoe@sfc.keio.ac.jp

where \mathfrak{p}^{\pm} is the $\pm i$ -eigensubspace of adZ on \mathfrak{p}^{C} , $Z(\tilde{G})$ the center of \tilde{G} , and $d\dot{g}$ a G-invariant measure on \tilde{G}/\tilde{K} . Then $H_0(\Lambda) \neq \{0\}$ if and only if Λ satisfies the Harish-Chandra condition (see (1) below). \tilde{G} acts by left translations in $H_0(\Lambda)$: $T_{\Lambda}(x)\phi(g) = \phi(x^{-1}g)$ $(x, g \in \tilde{G})$, and $(T_{\Lambda}, H_0(\Lambda))$ is an irreducible unitary representation of \tilde{G} , which is said to belong to the holomorphic discrete series of \tilde{G} .

Let G_C be the simply connected group with Lie algebra \mathfrak{g}^C and G, K, K_C , and P_{\pm} the analytic subgroups of G_C with Lie algebra \mathfrak{g} , \mathfrak{k} , \mathfrak{k}^C , and \mathfrak{p}^{\pm} respectively. Then \tilde{G}/\tilde{K} is isomorphic to G/K and $G \subset P_+K_CP_-$. For $g \in G$ we define $k(g) \in K_C$ by $g \in P_+k(g)P_-$ and we naturally lift the map $k: G \to K_C$ to $k: \tilde{G} \to \tilde{K}_C$, the universal covering group of K_C . We define

$$\psi_{\Lambda}(x) = \tilde{U}_{\Lambda}(k(x))^{-1} v_{\Lambda} \quad (x \in \tilde{G}),$$

where \tilde{U}_{Λ} is the holomorphic representation of \tilde{K}_{C} such that $\tilde{U}_{\Lambda}|_{\tilde{K}} = U_{\Lambda}$ and $v_{\Lambda} \in V_{\Lambda}$ is a highest weight vector of U_{Λ} . We suppose that ψ_{Λ} is of positive type (see [6, §1.4]) and we define \mathcal{L} as the linear span of left translations of ψ_{Λ} . We here introduce a non zero Hilbert space $H(\Lambda)$ as the completion of \mathcal{L} with the norm:

$$\|\sum_{i} c_i T_{\Lambda}(g_i) \psi_{\Lambda}\|_{H(\Lambda)}^2 = \sum_{i} c_i \bar{c}_j \psi_{\Lambda}(g_i^{-1} g_j).$$

 $(T_{\Lambda}, H(\Lambda))$ is an irreducible unitary representation of \tilde{G} . We call the family of $(T_{\Lambda}, H(\lambda))$ the analytic continuation of the holomorphic discrete series $(T_{\Lambda}, H_0(\lambda))$, in the sense that, if Λ satisfies the Harich-Chandra condition, then ψ_{Λ} is of positive type, $H_0(\Lambda) = H(\Lambda)$ with $\|\phi\|_{H_0(\Lambda)}^2 = c_{\Lambda} \|\phi\|_{H(\Lambda)}^2$ where $c_{\Lambda} = \|\psi_{\Lambda}\|_{H(\Lambda)}^2$, and the characters of the analytically continued representations are holomorphic functions of Λ .

Now we shall state our goal. We assume that $\Lambda_0 = 0$ and we denote $\Lambda = (0, \lambda)$ by λ for simplicity. Let (HC) be the set of $\lambda \in \mathbf{R}$ satisfying the Harish-Chandra condition and let (P) be the one of $\lambda \in \mathbf{R}$ for which ψ_{λ} is of positive type. These two sets are explicitly described as follows.

$$(HC) = \{\lambda; \lambda < -\langle \rho, H \rangle\}, \tag{1}$$

$$(P) = \{\lambda; \lambda < -\frac{(r-1)p}{2}\} \quad \cup \quad \{-\frac{(e-1)p}{2}; 1 \le e \le r\}$$
 (2)

(see [6, §4.6], [7, Theorem 5.10], and §2 for the definition of ρ, H, r, p). We denote by (PC) the continuous part of (P): $(PC) = {\lambda; \lambda < -(r-1)p/2}$ and we note that

$$(HC) \subset (PC) \subset (P).$$

If $\lambda \in (HC)$, the matrix coefficients of $(T_{\lambda}, H(\lambda))$ are square-integrable over $\tilde{G}/Z(\tilde{G})$, so $(T_{\lambda}, H(\lambda))$ is a square-integrable representation of $\tilde{G} \mod Z(\tilde{G})$. More precisely,

$$\int_{\tilde{G}/Z(\tilde{G})} | \langle \phi, T_{\lambda}(g)\psi \rangle_{H(\lambda)} |^{2} d\dot{g} = c_{\lambda} \|\phi\|_{H(\lambda)}^{2} \|\psi\|_{H(\lambda)}^{2}$$
(3)

for all $\phi, \psi \in H(\lambda)$ and therefore,

$$\phi(x) = c_{\lambda}^{-1} \|\psi\|_{H(\lambda)}^{-2} \int_{\tilde{G}/Z(\tilde{G})} \langle \phi, T_{\lambda}(g)\psi \rangle_{H(\lambda)} T_{\lambda}(g)\psi(x)d\dot{g}$$

$$\tag{4}$$

(cf. [3, §1]). As pointed out by Grossmann, Morlet, and Paul [2], these formulas give a group theoretical interpretation of continuous wavelet transforms of $H(\lambda)$: in the wavelet theory ψ in (4) is called a mother wavelet and $\langle \phi, T_{\lambda}(g)\psi \rangle_{H(\lambda)}$ the wavelet transform of ϕ . Here we rewrite (3) by decomposing \tilde{G} as $\tilde{G} = B\tilde{K}$, where B is a Borel subgroup of G. Since $Z(\tilde{G}) \subset \tilde{K}$ and $T_{\lambda}(k)\psi_{\lambda} = U_{\lambda}(k)\psi_{\lambda}$ for all $k \in \tilde{K}$, letting $\psi = \psi_{\lambda}$ in (3), we have for all $\phi \in H(\lambda)$

$$\int_{B} |\langle \phi, T_{\lambda}(b)\psi_{\lambda} \rangle_{H(\lambda)}|^{2} db = c_{\lambda} \|\phi\|_{H(\lambda)}^{2} \|\psi_{\lambda}\|_{H(\lambda)}^{2}, \tag{5}$$

where db is a left invariant measure on B. Clearly, (5) is equivalent to (3), so it can be regarded as the wavelet transform associated to the holomorphic discrete series $(T_{\lambda}, H(\lambda))$ ($\lambda \in (HC)$). We note that this formula does not make sense if $\lambda \notin (HC)$, because the both sides diverge. When $\lambda \in (P) \cap (HC)^c$ corresponds to the limit of the holomorphic discrete series of \tilde{G} , we obtained a generalization of (5) in the previous papers [3] and [4].

Our goal of this paper is to generalize the integral formula (5) for all $\lambda \in (PC)$ and to obtain a wavelet transform associated to non square-integrable representations of \tilde{G} mod $Z(\tilde{G})$. Since the both sides of (5) diverge for $\lambda \in (PC)$, to generalize the formula for $\lambda \in (PC)$ we need to replace ψ_{λ} with a suitable function ψ on \tilde{G} , which is said to be admissible. The program to carry out this process is as follows. First we shall consider a combination of the Fourier transforms $\phi \to \hat{\phi} \to (\hat{\phi})^{\sim}$ of $H(\lambda)$ (see 3.2 and 3.3) and we identify $H(\lambda)$ with $\tilde{H}(\lambda) = L^2(\Omega^* \times W, J_{\lambda}(\xi)d\xi d\eta)$. Basic properties about these transforms are summalized in §4. Especially, the Fourier transform $f \to \tilde{f}$ separates a convolution $f * \psi$ into the multiplication of each Fourier transforms (see Lemma 4.1) and an L^2 -norm of $f * \psi$ coinsides with an L^2 -norm of the matrix coefficient of \hat{T}_{λ} , where $\hat{T}_{\lambda}(g)\hat{\phi} = (T_{\lambda}(g)\phi)^{\wedge}$ (see Lemma 4.2). Puting together these properties, we can extend (5) for all $\lambda \in (PC)$: the desired function ψ are defined in Definition 5.1 and the main theorem is given by Theorem 5.2. In §6 we shall take an abelian subgroup T_0 of G_C outside of \tilde{G} and consider a dilation on W induced from T_0 . This dilation yields a large class of ψ satisfying a generalized formula (see Theorem 6.2).

2. Notation.

We keep the notations in §1 and we also refer [5], [6], [7], and [8] for the contents in this section

Let \mathfrak{h} be a maximal abelian subalgebra of \mathfrak{k} . Then \mathfrak{h}^C is a Cartan subalgebra of \mathfrak{g}^C , so the set Δ of roots for $(\mathfrak{g}^C, \mathfrak{h}^C)$ is defined. Let Δ^+ be the set of positive roots in Δ , $\Delta^+_{\mathfrak{p}}$ the set of noncompact roots in Δ^+ , and Ψ the maximal set of orthogonal roots in $\Delta^+_{\mathfrak{p}}$ chosen as in $[\mathbf{6}, \S 2.1]$. For each $\gamma \in \Delta$ let $(\mathfrak{g}^C)^{\gamma}$ denote the root space of γ and H_{γ} the unique element in $i\mathfrak{h} \cap [(\mathfrak{g}^C)^{\gamma}, (\mathfrak{g}^C)^{-\gamma}]$ such that $\gamma(H_{\gamma}) = 2$. If γ is the highest root in Ψ , we put $H = H_{\gamma}$. For each $\gamma \in \Delta^+_{\mathfrak{p}}$ let E_{γ} be an element in $(\mathfrak{g}^C)^{\gamma}$ such that $[E_{\gamma}, \bar{E}_{\gamma}] = H_{\gamma}$. We put $E_{-\gamma} = \bar{E}_{\gamma}$ and $X_{\gamma} = E_{\gamma} + E_{-\gamma}$. Then $\mathfrak{a} = \sum_{\gamma \in \Psi} \mathbf{R} X_{\gamma}$ is a maximal abelian subalgebra of \mathfrak{p} . Let r be the real rank of \mathfrak{g} , that is, $r = \dim \mathfrak{a}$. Let Σ be the set of restricted roots for $(\mathfrak{g}, \mathfrak{a})$,

Σ⁺ the set of positive roots in Σ, and $\{\alpha_1, \alpha_2, \dots, \alpha_r\}$ the restrictions to $\mathfrak a$ of the Cayley transforms of Ψ. Let $\rho = \sum_{\alpha \in \Sigma^+} \alpha/2$ and $\mathfrak n = \sum_{\alpha \in \Sigma^+} \mathfrak g^\alpha$ where $\mathfrak g^\alpha$ is the root space of α . Then $\mathfrak g = \mathfrak k + \mathfrak a + \mathfrak n$ is an Iwasawa decomposition of $\mathfrak g$ and $p = \dim \mathfrak g^{(\alpha_i + \alpha_j)/2}$ is independent of i, j. Let $\mathfrak b = \mathfrak a + \mathfrak n$ and $\mathfrak b^C = \mathfrak b^+ + \mathfrak b^-$ where $\mathfrak b^\pm = \mathfrak b^C \cap (\mathfrak k^C + \mathfrak p^\pm)$. We define $J: \mathfrak b \to \mathfrak b$ such as $\mathfrak b^\pm = \{X \mp iJX; X \in \mathfrak b\}$ and we put $s = \sum_{\gamma \in \Psi} U_\gamma = \sum_{\gamma \in \Psi} i(H_\gamma - E_\gamma + E_{-\gamma})/2$. Then Js has eigenvalues $0, \pm 1/2, \pm 1$, and it yields the Js-eigenspace decompositions of $\mathfrak g$ and $\mathfrak b$:

$$\mathfrak{g}=\mathfrak{g}(-1)+\mathfrak{g}(-\frac{1}{2})+\mathfrak{g}(0)+\mathfrak{g}(\frac{1}{2})+\mathfrak{g}(1)\quad \mathrm{and}\quad \mathfrak{b}=\mathcal{H}_0+\mathcal{H}_{1/2}+\mathcal{H}_1,$$

where $\mathcal{H}_i \subset \mathfrak{g}(i)$ (i = 0, 1/2, 1). We note that $\dim \mathcal{H}_0 = \dim \mathcal{H}_1 = r + r(r-1)p/2 > 0$. We put $\tau(X) = (X - iJX)/2$ for $X \in \mathcal{H}_{1/2}$ and we let $\mathcal{H}_{1/2}^+ = \mathfrak{b}^+ \cap \mathcal{H}_{1/2}^C$. Then τ is a complex isomorphism of $\mathcal{H}_{1/2}$ to $\mathcal{H}_{1/2}^+$ (see [6, p.17]).

Let B, A, N, and H_i (i = 0, 1/2, 1) be the analytic subgroups of G with Lie algebras \mathfrak{b} , \mathfrak{a} , \mathfrak{n} , and \mathcal{H}_i respectively. Then $B = H_0 \cdot H_{1/2}H_1$ (semidirect), solvable and isomorphic to $\tilde{G}/\tilde{K} \cong G/K$. We put $G(0) = \{g \in G; g \cdot Js = s\}$, where $g \cdot$ implies the adjoint action of g, and we shall define an open convex cone Ω in \mathcal{H}_1 and its dual cone Ω^* as follows.

$$\Omega = G(0) \cdot s \quad \text{and} \quad \Omega^* = \{ \xi \in \mathcal{H}_1^*; \langle \xi, X \rangle > 0 \quad \text{for all } X \in \bar{\Omega} - \{0\} \}.$$

The map $h \to h \cdot s$ is a diffeomorphism of H_0 onto Ω and, if we put $\xi_0 = \sum_{\gamma \in \Psi} U_{\gamma}^*$, the map $h \to h \cdot \xi_0$ is one of H_0 onto Ω^* . For $\xi \in \Omega^*$ we define $h(\xi) \in H_0$ by $\xi = h(\xi) \cdot \xi_0$. Let $\tilde{Q}: \mathcal{H}_{1/2}^+ \times \mathcal{H}_{1/2}^+ \to \mathcal{H}_1^C$ denote the hermitian form on $\mathcal{H}_{1/2}^+$ defined by $\tilde{Q}(u,v) = i[u,\bar{v}]/2$. We also define the hermitian form Q on $\mathcal{H}_{1/2}$ by $Q(u,v) = \tilde{Q}(\tau(u),\tau(v))$ for $u,v \in \mathcal{H}_{1/2}$. Then \tilde{G}/\tilde{K} is isomorphic to the Siegel domain:

$$D(\Omega, \tilde{Q}) = \{(z, \tilde{u}) \in \mathcal{H}_1^C \times \mathcal{H}_{1/2}^+; \Im z - Q(\tilde{u}, \tilde{u}) \in \Omega\}.$$

Actually, if we define $\alpha: G \to \mathcal{H}_1^C \times \mathcal{H}_{1/2}^+$ by $\alpha(g) = c \cdot \zeta(c^{-1}g)$, where c is the Cayley transform and $\zeta(g)$ is the P_+ -component of $g \in P_+K_CP_-$, then the map α induces a G-invariant isomorphism: $\alpha: \tilde{G}/\tilde{K} \to D(\Omega, \tilde{Q})$ (see [6, p.17]).

Let $d\tilde{u}$, du, dx, dt, and $d\xi$ be Lebesgue measures on $\mathcal{H}_{1/2}^+$, $\mathcal{H}_{1/2}$, $\mathcal{H}_{1/2}$, Ω , and Ω^* respectively, and dh a left-invariant Haar measure on H_0 . Then db = dh dx du is a left invariant measure on B: for a compactly supported function F on B

$$\int_{B} F(b)db = \int_{\mathcal{H}_{0} \times \mathcal{H}_{1/2} \times H_{1}} F(h \exp x \exp u) dh dx du.$$
 (6)

3. Fourier transform of $H(\lambda)$.

We retain the references [5] and [6] for the contents in this section and we suppose that $\lambda \in (PC)$ for simplicity (see Remark 3.3 below). In what follows we shall give a characterization of $H(\lambda)$ as an L^2 -space $\tilde{H}(\lambda)$ on $\Omega^* \times W$, where W is a real form of $\mathcal{H}_{1/2}$. This follows from a combination of the identifications $\alpha : \tilde{G}/\tilde{K} \to D(\Omega, \tilde{Q})$, $\tau : \mathcal{H}_{1/2} \to \mathcal{H}_{1/2}^+$, and Fourier transforms \hat{f} and \tilde{F} on \mathcal{H}_1 and W respectively. **3.1.** Let c be the element in G_C that induces the Cayley transform in \tilde{G} (see [6, §2]). Since $c^{-1}G \subset P_+K^CP_-$, it is easy to see that $k(c^{-1}g)$ is well-defined for $g \in \tilde{G}$ and let

$$\phi_{\lambda}(g) = U_{\lambda}(k(c^{-1}))^{-1}U_{\lambda}(k(c^{-1}g)) \quad (g \in \tilde{G}).$$

 ϕ_{λ} is the character of G(0) such that $\phi_{\lambda}(\exp tX_{\gamma}) = e^{t\lambda}$ for $\gamma \in \Psi$ and $\phi_{\lambda} \equiv 1$ on $H_{1/2}H_1$. Here for each function $f(g\tilde{K})$ on \tilde{G}/\tilde{K} we define a function on \tilde{G} as

$$P_{\lambda}f(g) = \phi_{\lambda}(g)^{-1}f(g\tilde{K}).$$

Then, by considering $(P_{\lambda}^{-1}\phi)(\alpha^{-1}(p))$ for $\phi \in H(\lambda)$ and $p \in D(\Omega, \tilde{Q})$, we can regard $(T_{\lambda}, H(\lambda))$ as a representation realized on $D(\Omega, \tilde{Q})$, which we denote by the same symbol. Especially, for a function f(p) on $D(\Omega, \tilde{Q})$ G acts by the left translation:

$$T_{\lambda}(g)f(p) = \phi_{\lambda}(g)f(g^{-1} \cdot p) \quad (p \in D(\Omega, \tilde{Q}), g \in \tilde{G}).$$

3.2. Let $f(z, \tilde{u})$ be a holomorphic function on $D(\Omega, \tilde{Q})$. If $f(z, \tilde{u})$ is of Schwartz class with respect to $\Re z$ for a fixed $\Im z$, the Fourier transform of $f(z, \tilde{u})$ is defined by

$$\hat{f}(\xi, \tilde{u}) = \int_{\mathcal{H}_1} f(z, \tilde{u}) e^{-2\pi i \langle z, \xi \rangle} dx \quad (\xi \in \mathcal{H}_1^*).$$

Here the integral is independent of $\Im z$. Conversely, if a function $\phi(\xi, \tilde{u})$ on $\Omega^* \times \mathcal{H}_{1/2}^+$ is of Schwartz class with respect to ξ for a fixed \tilde{u} , the inverse Fourier transform of ϕ is given by

$$\check{\phi}(z,\tilde{u}) = \int_{\Omega^*} \phi(\xi,\tilde{u}) e^{2\pi i \langle \xi,z \rangle} d\xi \quad ((z,\tilde{u}) \in D(\Omega,\tilde{Q})).$$

We here introduce the Hilbert space $\hat{H}(\lambda)$ as the space of measurable functions $\phi(\xi, \tilde{u})$ on $\Omega^* \times \mathcal{H}_{1/2}^+$ satisfying

(i) $\phi(\xi, \tilde{u})$ is holomorphic in \tilde{u} for almost all $\xi \in \Omega^*$,

$$(ii) \qquad \int_{\Omega^* \times \mathcal{H}_{1/2}^+} |\phi(\xi, \tilde{u})|^2 e^{-4\pi \tilde{Q}_{\xi}(\tilde{u}, \tilde{u})} J_{\lambda}(\xi) d\xi d\tilde{u} = \|\phi\|_{\hat{H}(\lambda)}^2 < \infty,$$

where $\tilde{Q}_{\xi}(\tilde{u},\tilde{u}) = \langle \xi, \tilde{Q}(\tilde{u},\tilde{u}) \rangle$ and $J_{\lambda}(\xi) = \phi_{\lambda}(h)^{-2}(\det_{\mathcal{H}_{1}}h)^{-1} (\det_{\mathcal{H}_{1/2}}h)^{-1}$ for $\xi = h \cdot \xi_{0} \in \Omega^{*}$. If we define the representation $(\hat{T}_{\lambda}, \hat{H}(\lambda))$ of \tilde{G} by

$$\hat{T}_{\lambda}(g)\phi = (T_{\lambda}(g)\check{\phi})^{\wedge},$$

then it follows from $[6, \S 4.6]$ that

Theorem 3.1. If $\lambda \in (PC)$, then the map $\phi \to \hat{\phi}$ gives an isomorphism of $H(\lambda)$ onto $\hat{H}(\lambda)$ with $\|\phi\|_{H(\lambda)}^2 = d_{\lambda} \|\hat{\phi}\|_{\hat{H}(\lambda)}^2$, where $d_{\lambda} = \prod_{i=1}^r \frac{1}{2} (2\pi)^{\frac{1}{2}(\lambda + (i-1)p)} \Gamma(-\frac{1}{2}(\lambda + (i-1)p))$. In particular, $(T_{\lambda}, H(\lambda))$ is unitary equivalent to $(\hat{T}_{\lambda}, \hat{H}(\lambda))$.

3.3. Let $\hat{H}(\xi,Q)$ $(\xi \in \Omega^*)$ denote the space of holomorphic functions F on $\mathcal{H}_{1/2}$ such that

$$||F||_{\xi}^2 = \int_{\mathcal{H}_{1/2}} |F(u)|^2 e^{-4\pi Q_{\xi}(u,u)} du < \infty,$$

where $Q_{\xi}(u,v) = \langle \xi, Q(u,v) \rangle$. Let W be a real form of $\mathcal{H}_{1/2}$ such that $Q(W,W) \subset \mathcal{H}_1$ and θ the conjugation of $\mathcal{H}_{1/2}$ with respect to W. Then it follows from [5, Theorem 2.24] that $\hat{H}(\xi,Q) \cong L^2(W)$ for a fixed $\xi \in \Omega^*$. More precisely, if we define the quadratic form P(u,u) on $\mathcal{H}_{1/2}$ by $P(u,u) = Q(u,\theta(u))$ and put $P_{\xi}(u,u) = \langle \xi, P(u,u) \rangle$, the isometry $F \to \tilde{F}$ of $\hat{H}(\xi,Q)$ onto $L^2(W)$ is given by

$$\tilde{F}(\eta) = c_0^{1/2} e^{4\pi Q_{\xi}(\eta, \eta)} \int_W F(u) e^{-2\pi P_{\xi}(u, u)} e^{8\pi i Q_{\xi}(u, \eta)} dw, \tag{7}$$

where $du = dw dv_{\xi}$ if u = w + iv $(w, v \in W)$ and dv_{ξ} is the product measure with respect to orthogonal coordinates for $Q_{\xi}(u, v)$. Moreover, c_0 is given by (12) below and the integral is independent of v.

For each function $\phi \in \hat{H}(\lambda)$ we define a function ϕ_{τ} on $\Omega^* \times \mathcal{H}_{1/2}$ as

$$\phi_{\tau}(\xi, u) = \phi(\xi, \tau(u)).$$

Then $\phi_{\tau}(\xi, u) \in \hat{H}(\xi, Q)$ and the isometry of $\hat{H}(\xi, Q)$ onto $L^{2}(W)$ yields that

$$\|\phi\|_{\hat{H}(\lambda)}^{2} = \int_{\Omega^{*}} \|\phi_{\tau}(\xi, \cdot)\|_{\xi}^{2} J_{\lambda}(\xi) d\xi = \int_{\Omega^{*} \times W} |\tilde{\phi}_{\tau}(\xi, \eta)|^{2} J_{\lambda}(\xi) d\xi d\eta = \|\tilde{\phi}_{\tau}\|_{\hat{H}(\lambda)}^{2}, \tag{8}$$

where

$$\tilde{H}(\lambda) = L^2(\Omega^* \times W, J_{\lambda}(\xi)d\xi d\eta).$$

Therefore, if we define the representation $(\tilde{T}_{\lambda}, \tilde{H}(\lambda))$ of \tilde{G} by

$$\tilde{T}_{\lambda}(g)\tilde{\phi}_{\tau} = (\hat{T}_{\lambda}(g)\phi)_{\tau}^{\sim},$$

we can obtain the following.

Theorem 3.2. If $\lambda \in (PC)$, then the map $\phi \to \tilde{\phi}_{\tau}$ gives an isomorphism of $\hat{H}(\lambda)$ onto $\tilde{H}(\lambda)$ with $\|\phi\|_{\hat{H}(\lambda)}^2 = \|\tilde{\phi}_{\tau}\|_{\tilde{H}(\lambda)}^2$. In particular, $(T_{\lambda}, H(\lambda))$ is unitary equivalent to $(\tilde{T}_{\lambda}, \tilde{H}(\lambda))$.

3.4. Let S(W) be the Schwartz space on W. We introduce $\tilde{S}(\lambda)$ as a subspace of $\tilde{H}(\lambda)$ consisting of functions $\phi \in \tilde{H}(\lambda)$ such that $\phi(\xi, \eta)$ belongs to S(W) for each fixed $\xi \in \Omega^*$. We define $\tilde{S}'(\lambda)$ as the dual space of $\tilde{S}(\lambda)$ with respect to the inner product of $\tilde{H}(\lambda)$. Furthermore, we define $\hat{S}(\lambda)$ (resp. $\hat{S}'(\lambda)$) by $(\hat{S}(\lambda))_{\tau}^{\sim} = \tilde{S}(\lambda)$ (resp. $(\hat{S}'(\lambda))_{\tau}^{\sim} = \tilde{S}'(\lambda)$).

Remark 3.3 We can similarly treat the case of $\lambda \in (P) \cap (PC)^c$: $\lambda = -(e-1)p/2$ $(1 \leq e \leq r)$. In this case $\Omega^* \times W$ is replaced with $O_e^* \times W_e$, where O_e^* is a G(0)-orbit of $\xi_e = \sum_{i=1}^{e-1} U_i^*$ and W_e is the kernel of \tilde{Q}_{ξ_e} . Especially, O_e^* is contained in the boundary of Ω^* and the measure $J_{\lambda}(\xi)d\xi$ on Ω^* is replaced with a positive measure $d\mu_e^*$ on O_e^* .

4. Key lemmas.

We recall that each $b \in B$ acts on $D(\Omega, \tilde{Q})$ as an affine transformation: if $b = h \exp u \exp x \in B = H_0 H_{1/2} H_1$ and $p = (z, \tilde{u}) \in D(\Omega, \tilde{Q})$, then $b \cdot p$ is given by

$$(h \cdot x + h \cdot z + 2i\tilde{Q}(h \cdot \tilde{u}, h \cdot \tau(u)) + i\tilde{Q}(h \cdot \tau(u), h \cdot \tau(u)), h \cdot \tilde{u} + h \cdot \tau(u))$$

(cf. [8, §2]). Thereby, according to the isomorphism in Theorem 3.1, we have for $\phi \in \hat{H}(\lambda)$

$$\hat{T}_{\lambda}(h)\phi(\xi,\tilde{u}) = \phi_{\lambda}(h)(\det_{\mathcal{H}_{1}}h)\phi(h^{-1}\xi,h^{-1}\tilde{u}),
\hat{T}_{\lambda}(\exp u)\phi(\xi,\tilde{u}) = e^{4\pi\tilde{Q}_{\xi}(\tilde{u},\tau(u))-2\pi\tilde{Q}_{\xi}(\tau(u),\tau(u))}\phi(\xi,\tilde{u}-\tau(u)),
\hat{T}_{\lambda}(\exp x)\phi(\xi,\tilde{u}) = e^{-2\pi i \langle \xi,x \rangle}\phi(\xi,\tilde{u}).$$
(9)

Now we suppose that $\lambda \in (PC)$ and $f, \psi \in \hat{\mathcal{S}}(\lambda)$ (see 3.4). We define a convolution on $\Omega^* \times \mathcal{H}_{1/2}$ as follows.

$$f \tilde{*} \psi(\xi, u) = \int_{\mathcal{H}_{1/2}} f_{\tau}(\xi, u') \bar{\psi}_{\tau}(\xi, u' - u) e^{-4\pi \bar{Q}_{\xi}(u', u' - u)} du'. \tag{10}$$

Lemma 4.1. For $f, \psi \in \hat{\mathcal{S}}(\lambda)$

$$[f \tilde{*} \psi(\xi, \cdot)]^{\sim}(\eta) = c_0^{1/2} \tilde{f}_{\tau}(\xi, \eta) \bar{\psi}_{\tau}(\xi, \eta) e^{4\pi Q_{\xi}(\eta, \eta)},$$

where c_0 is independent of f, ψ .

Proof. It follows from (7) and (10) that $[f *\psi(\xi,\cdot)]^{\sim}(\eta)$ is equal to

$$c_0^{1/2} e^{4\pi Q_{\xi}(\eta,\eta)} \int_W \int_{\mathcal{H}_{1/2}} f_{\tau}(\xi,u') \bar{\psi}_{\tau}(\xi,u'-u) e^{-4\pi \bar{Q}_{\xi}(u',u'-u)} du' e^{-2\pi P_{\xi}(u,u)} e^{8\pi i Q_{\xi}(u,\eta)} dw. \quad (11)$$

Let u' = w' + iv' and u = w. We change the variable w to -w + w' and put $\tilde{u}' = w' + iv'$ and $\tilde{u} = w + iv'$ respectively. Then we see that

$$Q_{\xi}(u', u' - u) = Q_{\xi}(\tilde{u}', \tilde{u}) = Q_{\xi}(w', w) + Q_{\xi}(v', v') - iQ_{\xi}(w', v') + iQ_{\xi}(v', w),$$

$$Q_{\xi}(u, \eta) = Q_{\xi}(\tilde{u}' - \tilde{u}, \eta) = -\bar{Q}_{\xi}(\tilde{u}, \eta) + Q_{\xi}(\tilde{u}', \eta) - 2iQ_{\xi}(v', \eta),$$

and moreover, $P_{\xi}(u,u) = P_{\xi}(\tilde{u}' - \tilde{u}, \tilde{u}' - \tilde{u})$ is given by

$$\bar{P}_{\varepsilon}(\tilde{u},\tilde{u}) + P_{\varepsilon}(\tilde{u}',\tilde{u}') + 2(-Q_{\varepsilon}(v',v') - Q_{\varepsilon}(w',w) + iQ_{\varepsilon}(w,v') - iQ_{\varepsilon}(v',w')).$$

By substituting these relations with $-4\pi \bar{Q}_{\xi}(u', u'-u) - 2\pi P_{\xi}(u, u) + 8\pi i Q_{\xi}(u, \eta)$, we can deduce that the sum of power of the exponents in (11) is equal to

$$-2\pi \bar{P}_{\xi}(\tilde{u},\tilde{u}) - 8\pi i \bar{Q}_{\xi}(\tilde{u},\eta) - 2\pi P_{\xi}(\tilde{u}',\tilde{u}') + 8\pi i Q_{\xi}(\tilde{u}',\eta) - 8\pi Q_{\xi}(v',v') + 16\pi Q_{\xi}(v',\eta).$$

We here recall that $du' = d\tilde{u}' = dw'dv'_{\xi}$ and we apply the notation of the Fourier transform (7) to the integrals with respect to dw and dw' respectively. Thereby, we see that (11) is equal to

$$c_0^{-1/2} \tilde{f}_\tau(\xi,\eta) \bar{\tilde{\psi}}_\tau(\xi,\eta) e^{-4\pi Q_\xi(\eta,\eta)} \int_W e^{-8\pi Q_\xi(v',v')} e^{16\pi Q_\xi(v',\eta)} dv'_\xi.$$

Then the desired result follows from the following integral formula:

$$\int_{W} e^{-8\pi Q_{\xi}(v',v')} e^{16\pi Q_{\xi}(v',\eta)} dv'_{\xi} = c_{0} e^{8\pi Q_{\xi}(\eta,\eta)}$$
(12)

(see [5, p.345]).

Lemma 4.2. For $f, \psi \in \hat{\mathcal{S}}(\lambda)$ such that $f * \psi(\xi, u) J_{\lambda}(\xi)^{1/2} \in \hat{H}(\lambda)$

$$\int_{\mathcal{H}_{1/2}\times\mathcal{H}_1}|< f, \hat{T}_{\lambda}(\exp x\exp u)\psi>_{\hat{H}(\lambda)}|^2dxdu=\int_{\Omega^*}\|f\tilde{*}\psi(\xi,\cdot)\|_{\xi}^2J_{\lambda}^2(\xi)d\xi.$$

Proof. It follows from (9) that

$$\langle f, \hat{T}_{\lambda}(\exp x \exp u)\psi \rangle_{\hat{H}(\lambda)} = \int_{\Omega^*} I(\xi, u) e^{-2\pi \tilde{Q}_{\xi}(\tau(u), \tau(u))} e^{2\pi i \langle \xi, x \rangle} J_{\lambda}(\xi) d\xi,$$

where

$$\begin{split} I(\xi,u) &= \int_{\mathcal{H}_{1/2}^{+}} f(\xi,\tilde{u}) \bar{\psi}(\xi,\tilde{u}-\tau(u)) e^{4\pi \bar{Q}_{\xi}(\tilde{u},\tau(u))} e^{-4\pi \bar{Q}_{\xi}(\tilde{u},\tilde{u})} d\tilde{u} \\ &= \int_{\mathcal{H}_{1/2}} f_{\tau}(\xi,u') \bar{\psi}_{\tau}(\xi,u'-u) e^{-4\pi \bar{Q}_{\xi}(u',u'-u)} du' \\ &= f \tilde{*} \psi(\xi,u). \end{split}$$

The lemma follows from the Plancherel formula for the Euclidean Fourier transform of $L^2(\mathcal{H}_1)$.

Lemma 4.3. Let $\psi \in \hat{S}(\lambda)$ and $h \in H_0$. Then

$$(\hat{T}_{\lambda}(h)\psi)_{\tau}^{\sim}(\xi,\eta) = \phi_{\lambda}(h)(\det_{\mathcal{H}_{1},h})(\det_{\mathcal{H}_{1},h})\tilde{\psi}_{\tau}(h^{-1}\xi,h^{-1}\eta).$$

Proof. It follows from (9) and (7) that $(\hat{T}_{\lambda}(h)\psi)_{\tau}^{\sim}(\xi,\eta)$ is given by

$$c_0^{1/2} e^{4\pi Q_{\xi}(\eta,\eta)} \phi_{\lambda}(h) (\det_{\mathcal{H}_1} h) \int_W \psi_{\tau}(h^{-1}\xi,h^{-1}w) e^{-2\pi P_{\xi}(w,w)} e^{8\pi i Q_{\xi}(w,\eta)} dw.$$

Since $Q_{\xi}(hw, h\eta) = Q_{h^{-1}\xi}(w, \eta)$ for all $w, \eta \in \mathcal{H}_{1/2}$ and $\xi \in \Omega^*$, the change of the variable w to hw yields the lemma.

5. Dilation on Ω^* .

We retain the notations in the previous sections and the assumption that $\lambda \in (PC)$. For $f \in \tilde{\mathcal{S}}(\lambda)$ and $\psi \in \tilde{\mathcal{S}}'(\lambda)$ we choose $F \in \hat{\mathcal{S}}(\lambda)$ and $\Psi \in \hat{\mathcal{S}}'(\lambda)$ such that $f = \tilde{F}_{\tau}$ and $\psi = \tilde{\Psi}_{\tau}$ respectively. We suppose that $\psi(\xi, \eta)e^{4\pi Q_{\xi}(\eta, \eta)}$ $J_{\lambda}(\xi)$ belongs to $\tilde{\mathcal{S}}'(\lambda)$. Since $(F * \Psi)^{\sim} = c_0^{1/2} f \bar{\psi} \ e^{4\pi Q_{\xi}(\eta, \eta)} \in \tilde{\mathcal{S}}(\lambda)$, it follows from (6), (8), Lemmas 4.1, 4.2, and 4.3 that

$$\int_{B} |\langle f, \hat{T}_{\lambda}(b)\psi \rangle_{\hat{H}(\lambda)}|^{2} db$$

$$= \int_{H_{0} \times \mathcal{H}_{1/2} \times \mathcal{H}_{1}} |\langle \hat{T}_{\lambda}(h^{-1})F, \hat{T}_{\lambda}(\exp x \exp u)\Psi \rangle_{\hat{H}(\lambda)}|^{2} dh dx du$$

$$= c_{0} \int |f(h\xi, h\eta)|^{2} |\psi(\xi, \eta)|^{2} e^{8\pi Q_{\xi}(\eta, \eta)} \phi_{\lambda}(h)^{-2} (\det_{\mathcal{H}_{1}} h)^{-2} (\det_{\mathcal{H}_{1/2}} h)^{-2} J_{\lambda}^{2}(\xi) dh d\xi d\eta,$$

where the last integral is taken over $H_0 \times \Omega^* \times W$. Then, changing the variables ξ and η to $h^{-1}\xi$ and $h^{-1}\eta$ respectively, and using the relation: $J_{\lambda}(h^{-1}\xi) = \phi_{\lambda}^2(h)$ (det $_{\mathcal{H}_1}h$) (det $_{\mathcal{H}_{1/2}}h$) $J_{\lambda}(\xi)$ (see [8, p.33]), we see that the integral is equal to

$$c_0 \int |f(\xi,\eta)|^2 |\psi(h^{-1}\xi,h^{-1}\eta)|^2 e^{8\pi Q_{\xi}(\eta,\eta)} \phi_{\lambda}(h)^{-2} (\det_{\mathcal{H}_1} h)^{-1} (\det_{\mathcal{H}_{1/2}} h)^{-1} J_{\lambda}^2(h^{-1}\xi) dh d\xi d\eta$$

$$= c_0 \int_{H_0 \times \Omega^* \times W} |f(\xi, \eta)|^2 |\psi(h^{-1}\xi, h^{-1}\eta)|^2 e^{8\pi Q_{\xi}(\eta, \eta)} J_{\lambda}(\xi) J_{\lambda}(h^{-1}\xi) d\xi d\eta dh.$$
 (13)

Definition 5.1. $\psi \in \tilde{S}'(\lambda)$ is said to be B-admissible if

$$\int_{H_0} |\psi(h^{-1}\xi, h^{-1}\eta)|^2 e^{8\pi Q_{\xi}(\eta, \eta)} J_{\lambda}(h^{-1}\xi) dh = c_{\psi} < \infty$$
(14)

for all $\xi \in \Omega^*$ and $\eta \in W$, where c_{ψ} is independent of ξ and η . Especially, $|\psi(\xi,\eta)|$ is of the form $|\psi(\xi,\eta)| = \Psi(\xi)e^{-4\pi Q_{\xi}(\eta,\eta)}$ and

$$c_{\psi} = \int_{H_0} |\Psi(h^{-1}\xi)|^2 J_{\lambda}(h^{-1}\xi) dh = \int_{\Omega^*} |\Psi(\xi)|^2 J_{\lambda}(\xi) (\det_{\mathcal{H}_1^*} h(\xi))^{-1} d\xi < \infty.$$

Let $\psi \in \tilde{\mathcal{S}}'(\lambda)$ be *B*-admissible. Then the integral (13) makes sense for $f \in \tilde{\mathcal{S}}(\lambda)$ and it coincides with

$$c_0 c_\psi \int_{\Omega^* \times W} |f(\xi, \eta)|^2 J_\lambda(\xi) d\xi d\eta = c_0 c_\psi ||f||_{\dot{H}(\lambda)}^2.$$

Therefore, we can obtain a generalization of (5):

Theorem 5.2. Let $\lambda \in (PC)$ and let $\psi \in \tilde{S}'(\lambda)$ be B-admissible. Then

$$\int_{B} |\langle f, \tilde{T}_{\lambda}(b)\psi \rangle_{\tilde{H}(\lambda)}|^{2} db = c_{0}c_{\psi} ||f||_{\tilde{H}(\lambda)}^{2}.$$

for all $f \in \tilde{\mathcal{S}}(\lambda)$.

Remark 5.3. (1) Let $\psi \in \tilde{\mathcal{S}}'(\lambda)$ be *B*-admissible. Then ψ is in $\tilde{H}(\lambda)$ if and only if

$$\|\psi\|_{\tilde{H}(\lambda)}^2 = \int_{\Omega^*} |\Psi(\xi)|^2 J_{\lambda}(\xi) \int_W e^{-8\pi Q_{\xi}(\eta,\eta)} d\eta d\xi = c_0 \int_{\Omega^*} |\Psi(\xi)|^2 J_{\lambda}(\xi) (\det Q_{\xi})^{-1} d\xi < \infty.$$

(2) If $\lambda = -\langle \rho, H \rangle$, then $\lambda \in (PC)$ (see §1) and $J_{\lambda}(\xi) \equiv 1$. The corresponding representation $(T_{\lambda}, H(\lambda))$ is called the limit of the holomorphic discrete series of \tilde{G} and it can be realized as a reducible component of a unitary principal series representation $(\pi_{\lambda}, L^{2}(N))$ of \tilde{G} . Thereby, it is quite natural that the B-admissible condition in Definition 5.1 has the similar form of the admissible condition of a wavelet transform associated to the principal series representation (see [6, (9) in I] and cf. [9]).

6. Dilation on W.

In order to find a large class of ψ in $\tilde{S}'(\lambda)$ satisfying a formula similar to Theorem 5.2 we shall consider a dilation on W induced by a subgroup T_0 of G_C .

We put $\mathfrak{t}_0 = \{X \in \mathfrak{h}; c(X) = X\}$, where c is the Cayley transform, and $T_0 = \exp i\mathfrak{t}_0 \subset G_C$. Since $T_0P_+K_CP_- \subset P_+K_CP_-$, we can extend the map α (see 3.1) as $\alpha: T_0G \to \mathcal{H}_1^C \times \mathcal{H}_{1/2}^+$ and then we can define the action of T_0 on $\alpha(T_0G)$. Especially, if $(z, \tilde{u}) \in D(\Omega, \tilde{Q})$,

$$t \cdot (z, \tilde{u}) = (z, t \cdot \tilde{u}) \quad (t \in T_0),$$

where $t \cdot \tilde{u} = Ad(t)\tilde{u}$ for $\tilde{u} \in \mathcal{H}_{1/2}^+$. Thereby, T_0 acts on $\mathcal{H}_{1/2}$ as $\tau(t \cdot u) = t \cdot \tau(u)$ and then, on W. We note that on the Eucledian space \mathbf{R} the dilation $f_t(x)$ of f(t > 0) is defined by $t^{-1}f(t^{-1}x)$ and its Fourier transform is equal to $\hat{f}(t\lambda)$. So, we shall define the dilation on W as

$$\tilde{D}(t)f(\xi,\eta) = f(\xi,t\cdot\eta) \quad (t\in T_0).$$

Definition 6.1. $\psi \in \tilde{S}'(\lambda)$ is said to be BT_0 -admissible if

$$\int_{T_0} \int_{H_0} |\psi(h^{-1}\xi, h^{-1}t^{-1} \cdot \eta)|^2 e^{8\pi Q_{\xi}(t^{-1} \cdot \eta, t^{-1} \cdot \eta)} J_{\lambda}(h^{-1}\xi) dt dh = c_{\psi} < \infty, \tag{15}$$

where dt is a Haar measure on T_0 and c_{ψ} is independent of $\xi \in \Omega^*$ and $\eta \in W$.

For each BT_0 -admissible $\psi \in \tilde{\mathcal{S}}'(\lambda)$, the same process used in §5 yields that

$$\begin{split} &\int_{T_0} \int_{B} |< f, \tilde{D}(t^{-1}) \tilde{T}_{\lambda}(b) \psi >_{\tilde{H}(\lambda)} |^2 dt db \\ &= c_0 \int_{H_0 \times \Omega^* \times W \times T_0} |f(\xi, \eta)|^2 |\psi(h^{-1} \xi, h^{-1} t^{-1} \cdot \eta)|^2 e^{8\pi Q_{\xi}(t^{-1} \cdot \eta, t^{-1} \cdot \eta)} J_{\lambda}(\xi) J_{\lambda}(h^{-1} \xi) d\xi d\eta dh dt \\ &= c_0 c_{\psi} \|f\|_{\tilde{H}(\lambda)}^2. \end{split}$$

for $f \in \tilde{\mathcal{S}}(\lambda)$. Therefore, we can obtain the following.

Theorem 6.2. Let $\lambda \in (PC)$ and let $\psi \in \tilde{S}'(\lambda)$ be BT_0 -admissible. Then

$$\int_{T_0} \int_{B} | \langle f, \tilde{D}(t^{-1}) \tilde{T}_{\lambda}(b) \psi \rangle_{\tilde{H}(\lambda)} |^{2} dt db = c_0 c_{\psi} ||f||_{\tilde{H}(\lambda)}^{2}$$

for all $f \in \tilde{\mathcal{S}}(\lambda)$.

Example 6.3. Let us suppose that G = SU(n,1). In this case the subalgebras \mathcal{H}_0 , $\mathcal{H}_{1/2}$, and \mathcal{H}_1 in §2 consist of matrices being of the form:

$$H_{t_0} = \begin{pmatrix} & t_0 \\ & & \\ t_0 & \end{pmatrix}, \quad X_u = \begin{pmatrix} & u \\ -u^* & & u^* \\ & & u \end{pmatrix}, \quad \text{and} \quad X_x = \begin{pmatrix} ix & -ix \\ & & \\ ix & -ix \end{pmatrix}$$

respectively, where $t_0, x \in \mathbf{R}$ and $u \in \mathbf{C}^{n-1}$. Moreover, Ω and Ω^* can be identified with \mathbf{R}_+ and $J_{\lambda}(\xi) = \xi^{-(\lambda+n)}$. Therefore, (HC) and (PC) are respectively given by $\lambda < -n$ and $\lambda < 0$ (see [6, Corollary 4.4.7 and Corollary 4.4.8] and [7, Lemma 4.1 and Corollary 4.2]). We choose a real form of $\mathcal{H}_{1/2}$ as $W = \{X_u; u \in \mathbf{R}^{n-1}\}$ and we parametrize each element $t \in T_0$ as follows.

$$t = \exp \begin{pmatrix} t_n & & & & \\ & t_1 & & & \\ & & \ddots & & \\ & & & t_{n-1} & \\ & & & & t_n \end{pmatrix},$$

where $t_i \in \mathbf{R}$ and $2t_n = -\sum_{j=1}^{n-1} t_j$. Then $h\xi = e^{2t_0}\xi$ if $h = \exp H_{t_0}$ and $t \cdot \eta = (e^{t_n - t_i}\eta_i)$ if $\eta = (\eta_i)$ and t as above. We can rewrite the admissible condition in (14) as follows. Let \mathcal{E}^m be the set of $\varepsilon = (\varepsilon_i) \in \mathbf{R}^m$ such that $\varepsilon_i = \pm 1$ $(1 \le i \le m)$, and for each $\varepsilon \in \mathcal{E}^m$ let $\mathbf{R}^m_+(\varepsilon) = \{x = (x_i) \in \mathbf{R}^m; \operatorname{sgn} x_i = \operatorname{sgn} \varepsilon_i (1 \le i \le m)\}$. Then $\psi \in \tilde{\mathcal{S}}'(\lambda)$ is BT_0 -admissible if and only if

$$\int_{\mathbf{R}_{+}} \int_{\mathbf{R}_{+}^{n-1}(\varepsilon)} |\psi(x,y)|^{2} x^{-(\lambda+n)} e^{8\pi x ||y||^{2}} \frac{dx}{x} \frac{dy}{|y|} = c_{\psi} < \infty$$
 (16)

for all $\varepsilon \in \mathcal{E}^{n-1}$, where dx and dy are Lebesgue measures on \mathbf{R}_+ and \mathbf{R}^{n-1} respectively, $|y| = \prod_{i=1}^{n-1} |y_i|$ if $y = (y_i)$, and c_{ψ} is independent of ε .

Remark 6.4. When G = SU(1,1) (n = 1), $\mathcal{H}_{1/2} = W = \{0\}$ and the integral over $\mathbf{R}_{+}^{n-1}(\varepsilon)$ in (16) is not necessary. In this case, if $\lambda = -1$, the whole contents in the above example are same as the ones obtained by Grossmann and Morlet in the case of the one-dimensional affine group ax + b (see [1]). They use a square-integrable representation of ax + b that corresponds to the limit of holomorphic discrete series of SU(1,1) in our scheme. If $-1 < \lambda < 0$, the wavelet transform in Theorem 6.2 associates to a representation that goes past the limit of holomorphic discrete series of the universal covering group of SU(1,1) (see [7, §4]).

References

- [1] Grossmann, A. and Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of constant shape SIAM J. Math. Anal., 15, pp. 723-736 (1984).
- [2] Grossmann, A., Morlet, J., and Paul, P.: Transforms associated to square integrable group representations, I, General results. J. Math. Phisics, 26, pp. 2473-2479 (1985).
- [3] Kawazoe, T.: Wavelet transform associated to an induced representation of SL(n + 2, R). Ann. Inst. Henri Poincaré, 65, pp. 1-13 (1996).
- [4] Kawazoe, T.: Wavelet transforms associated to a principal series representation of semisimple Lie groups I, II. Proc. Japan Acad, 71, pp. 154-157, pp. 158-160 (1995).
- [5] Rossi, H. and Vergne, M.: Representations of certain solvable Lie groups on Hilbert spaces of holomorphic functions and the application to the holomorphic discrete series of a semisimple Lie group. J. Funct. Anal. 13, pp. 324-389 (1973).
- [6] Vergne, M. and Rossi, H.: Analytic continuation of the holomorphic discrete series of a semisimple Lie group. Acta Math. 136, pp. 1-59 (1976).
- [7] Wallach, N. R.: The analytic continuation of the discrete series. I. Trans. A. M. S. 251, pp. 1-17 (1979).
- [8] Wallach, N. R.: The analytic continuation of the discrete series. II. Trans. A. M. S. 251, pp. 19-37 (1979).
- [9] Liu, H.: Admissible wavelets associated with the affine homogeneous Siegel domains of type II. Mamuscript.