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SUMMARY. There are two types of generalizations of selfdecomposabil-
ity of probability measures on R%, d > 1: the c-decomposability and the C-
decomposability of Loéve and Bunge on the one hand, and the semi-
selfdecomposability of Maejima-Naito on the other. The latter implies infinite
divisibility but the former does not in general. For d > 2 introduction of oper-
ator (matrix) normalizations yields four kinds of classes of distributions on R%:
Lo(b, Q), Lo(b,Q), Lo(C, Q), and EO(C,Q), where 0 < b < 1, Q is a d X d matrix
with eigenvalues having positive real parts, and C is a closed multiplicative sub-
semigroup of [0, 1] containing 0 and 1. Further, each of these classes generates
the Urbanik-Sato type decreasing sequence of its subclasses. Characterizations
and relations of these classes and subclasses are established. They complement

and generalize results of Bunge, Jurek, Maejima-Naito, and Sato-Yamazato.

1. Introduction and preliminaries. In Maejima and Naito (1998),
the notion of semi-selfdecomposable distributions on R? was introduced as an

extension of selfdecomposable distributions, and the class of such distributions
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and its decreasing subclasses containing semistable distributions were studied.
The distributions in those classes were defined as limiting distributions of the
normalized partial sums, with scalar normalization, of independent infinitesimal
R-valued random variables, where each limit is taken through a subsequence.
In this paper, we enlarge those classes by allowing the linear operator normal-
izations in the normalized partial sums. As a result, we extend the notion of

semi-selfdecomposability to that of operator semi-selfdecomposability.

On the other hand, Bunge (1997) extended the notion of selfdecomposabil-
ity to another direction by introducing the class of C-decomposable distribu-
tions. This is also an extension of c-decomposability in the earlier work of Loeve
(1945), (also see Loeve (1977), page 312). While semi-selfdecomposable distri-
butions are infinitely divisible, the distributions in the class by Bunge (1997)
are not necessarily infinitely divisible. He studied the class and its decreasing
subclasses. Here we also extend his notion to the linear operator setting ((C, Q)-
decomposability), and compare two generalizations of operator selfdecomposable
distributions. Operator selfdecomposable distributions were discussed in Jurek

(1983) and Sato and Yamazato (1985).

We start with the notation we are going to use in this paper. P(R?) is
the class of all probability distributions on R?, I(R?) is the class of all infinitely
divisible distributions on R¢, M, (R?) is the class of all d xd matrices all of whose
eigenvalues have positive real parts, ' is the transposed matrix of Q € M, (RY),
I is the identity matrix, fi(z), z € R, is the characteristic function of y € P(RY),
u*t,t > 0, is the ¢-th convolution power of u € R?, £(X) is the law of X, (, )
is the Euclidean inner product in R?, and | - | is the norm induced by (, } in
R For b> 0,09 = 3°°° (n!))"'(logb)"Q". b =0 and Q € M;(R?), then
b? is defined to be 0. Convergence of probability distributions is always weak
convergence. Whenever we write H C P(R?), we mean that § # H C P(R?).

Let 0 < b< 1and Q € My (RY).
DEFINITION 1.1. Let H ¢ P(R%). A distribution p € P(R?) is said
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to belong to the class K (H,b,Q) if there exist independent R?-valued random
variables {X;},an > 0,1 00,¢cp, € R4k, € N, 1 oo, such that

(1.1) lim —" =,

n—00 Up4q

(1.2) L(X;) € H,

kn

(1.3) L{az®) Xj+ea | = p
=1

If, furthermore, the infinitesimal condition:

(1.4) lim max P{}a;Qin >e} =0, Ve>0,

n—001<j<kn
is satisfied, we say that u € P(R?) belongs to the class K (H,b,Q).

From the definition, we see that

(1.5) K(H,b,Q) C K(H,b,Q),

(1.6) K(H,b,Q) c I(RY),

(17) K(HlabuQ) CA’(HZJ),Q) if Hl CHZ,
and

(18) I’Z’(th’Q)CK(H%buQ) lle CHZ

The class K(H,b,I) was introduced in Maejima and Naito (1998), and the
class I:‘;(P(Rd), ¢, I) coincides with the class L. on page 312 of Loéve (1977).

DEFINITION 1.2. A class H C P(R¢?) is said to be Q-completely closed if
H is closed under convergence, convolution, and @-type equivalence. Here H is

said to be closed under Q-type equivalence if £L(X) € H, a > 0, and ¢ € RY, then
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L(a=2X + ¢) € H. If, furthermore, H C I(R?) and H is closed under going to
the t-th convolution power for any ¢ > 0, we say that H is @-completely closed

in the strong sense.

Our basic results are the following two statements. All theorems and propo-

sitions in this section will be proved in the next section.
THEOREM 1.1.
(i) Suppose that H C P(R?) is Q-completely closed. If u € K(H,b,Q),

then there exists p € H N I(R?) such that

(1.9) A(z) = 6(b? 2)p(z), Vz e R

(i) If H is completely closed in the strong sense, then the converse of (i)

18 also true.
(iii) If H is completely closed in the strong sense, then so is K(H,b,Q).
THEOREM 1.2.

(1) Suppose that H C P(R?) is Q-completely closed. Then p € IN{(H,b,Q)
if and only if there ezists p € H such that (1.9) is satisfied.
(ii) If H is Q-completely closed, then so 1s K’(H, b,Q).

In Theorem 1.1, the distribution p in (1.9) is uniquely determined by u, b,
and Q, since fi(z) # 0 by (1.6). But, in Theorem 1.2, the p is not always unique.

The problem of uniqueness is discussed in Loéve (1945).
In view of these theorems, it is natural to introduce the following definition.

DEFINITION 1.3. Let 0 < ¢ < 1,Q € M,(R?), and H C P(RY). A
probability distribution 2 € P(R?) is said to be (¢, @, H)-decomposable if fi(z) =
fi(c®' z)p(z) with some p € H. Givenp € P(R?),Q € M, (R?),and H C P(RY),
we denote by Dgq g (u) the set of ¢ € [0,1] such that  is (¢, @, H)-decomposable.

PROPOSITION 1.1. Suppose that H is Q-completely closed. If Dg n(u) #
{1}, then Dq () is a closed multiplicative subsemigroup of [0,1] containing 0
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and 1.
The following proposition is a direct consequence of Theorems 1.1 and 1.2.
PROPOSITION 1.2,

(i) pe I?(IL b,Q) of and only if u is (b, Q, H )-decomposable, provided that
H is Q-completely closed.

(ii) K(H,b,Q) = IA{'(H, b,Q), whenever H is Q-completely closed in the

strong sense.

(iii) Suppose that H is Q-completely closed and H N I(R?) is Q-completely
closed in the strong sense. Then, the following three conditions are equivalent:

p€ K(H,bQ); pe K(HNIRY,bQ); uis (b,Q,HNIR?))-decomposable.

In case d = 1, Q = I, and H = P(R?%), a decisive study of the semigroup
Dg,u(p) was made by Ilinskii (1978), and some examples of similarly defined
multiplicative subsemigroups of [—1,1] were given by Urbanik (1976). For gen-
eral d and H = P(R?), the class {c? : ¢ € Dg g(p)} is a subsemigroup of the
Urbanik decomposability semigroup D(y) in Jurek and Mason (1993).

Following Bunge (1997), let € be the collection of all closed multiplicative
subsemigroup C' of [0, 1] such that C' 2 {0,1}. Define, for C € €,
K(H,C,Q = (] K(HbQ)
beC\{0,1}

and

KH.CQ)= () KHbQ.

beC\{0,1}

Note that, by Proposition 1.2 (i), I?(H, C, Q) is the class of u such that
C C Dg,u(p), provided that H is Q-completely closed. The class f((H, C, 1)
coincides with the class L¢(H) introduced by Bunge (1997). (For the detail of

its proof, see Proposition 2.4 in the next section.)

Distributions in K(P(R%),[0,1],I) are usually called selfdecomposable.

Urbanik (1972) introduced the notion of a slowly varying sequence of random
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variables and found a decreasing sequence of subclasses of the class of selfdecom-
posable distributions. Sato (1980) defined an operation to make a new subclass
from a subclass and showed that iteration of his operation generates the sequence
of Urbanik. Our operation K(-,b,Q) is a development from his operation. We
now define four kinds of classes of distributions and the Urbanik-Sato type de-

creasing sequences of those subclasses.

DEFINITION 1.4. For 0 < b < 1 and Q € M (R?), define
Lo(b, Q) = I((/P(Rd)a b, Q)a

Lm(b7 Q) = I{(Lm—l(byQ)abaQ)a m = la 23 Ty

and
[o ]

m=0

Similarly define
Zm<b7Q)7 m:07172,"' y OQ,

using K instead of K. Furthermore, for C € €, define
LO(C, Q) = I((P(Rd)a C’ Q)a

Lm(ca Q) = I{(Lm—l(c7 Q)ao’ Q) m = 1a23 B

o0

Loo(C,Q) = [ Ln(C,Q),

m=0
and define
Zm(C)Q)y m:0,1,2,~- » OQ,

using K instead of K.

In particular, we call u € P(R?) operator semi-selfdecomposable if u €
Lo(b,Q) for some 0 < b < 1 and @ € M (R?Y), and (C, Q)-decomposable if
p € Lo(C, Q), respectively.

PROPOSITION 1.3. Let C € €. Then

I(R%) D Lo(6,Q) D L1(5,Q) D - D Loo(b,Q),

6



IR%) 5 Ly(C,Q) D L1(C,Q) D -+ D Leo(C, Q),
Lo(5,Q) D L1(6,Q) D -~ D Loo(b,Q),

and

Lo(C,Q) D Li(C,Q) D+ D Le(C, Q).

PROPOSITION 1.4. Let C1,C; € € and suppose C; C Cy. Then for any
0 <m < oo,
Lm(ChQ) o Lm(027 Q)

and

L(C1,Q) D Ln(Cy, Q).

Classes L, ([0, 1], @) with C chosen as [0, 1] are the finite-dimensional case
of the classes studied in Jurek’s paper (Jurek (1983)). A one-parameter con-
tinuous multiplicative group {Uy,t > 0} with U; — 0 as t | 0 is used there in
place of %, but any such matrix group {U;,? > 0} is expressed as U; = t9 with
Q € M (R%). Note that Q@ € M, (R?) is equivalent to that t2 — Qast | 0
(Sato (1991), Lemma 2.6).

Operator selfdecomposable distributions are defined in the following way
(Sato and Yamazato (1984, 1985)). Let OL(Q) be the class of u € P(R?) such
that there exist independent R?-valued random variables {X;},a, > 0,1 oo,

and ¢, € R? satisfying

L (a;QZXj—kcn) =i, n— oo

i=1

and

lim max P{|la;9X;|>¢e} =0, Ve>0.

n=oo 1<;j<n
It is known that u € OL(Q) if and only if i is (¢, @, P(R?))-decomposable
for every ¢ € [0,1]. That is, OL(Q) = Lo([0,1],Q) by our terminology in this
paper. See Proposition 2.5 for details. Distributions ¢ € OL(Q) are called
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Q-selfdecomposable. A distribution u is called operator selfdecomposable if it
is Q-selfdecomposable for some @ € M, (R?). Our terminology is different
from that of Jurek and Mason (1993). The class of operator selfdecomposable
distributions in the sense of Jurek and Mason (1993) is called the class OL
in Sato and Yamazato (1984) and is strictly bigger than the class of operator
selfdecomposable distributions in our sense (see Yamazato (1984)). But both
definitions coincide as long as the distributions considered are full (that is, are

not concentrated in any proper hyperplane in R?). This is a consequence of a

theorem of Urbanik (1972).
In Section 2, we shall prove the results stated in this section and show that,

for 0 <m < o0,

Lm({o,l]aQ): m Lm(va):zm([Ovl]aQ)z n Em(baQ)

b€(0,1) b€(0,1)
This should be compared with the fact that, if C = {6"}°2, U {0} with some
b e (0,1), then for 0 < m < oo,

La(C,Q) G Lu(C,Q),

since L (C, Q) N (I(R))° # 0 (Bunge (1997)).

In Section 3 we shall give characterization of 4 € L, (b, @), for 0 < m < oo,
in properties of its Gaussian covariance matrix and Lévy measure. Examples

will show that
Lm (b» Q) 2 Lm+1(ba Q)

for 0 < m < 0.

We shall study Loo(C, Q) and ZW(C, Q) in Section 4. It will be shown that
Leo(C,Q) = Loo(C, Q)
for any C € €. The main result in Section 4 is the following. Define, for C' € €,

E(C) = {be (0,1): C C {p"}32, U {0}}.
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When =Z(C) is nonempty, let by be its infimum. Clearly by € Z(C) in this case.
Then

Loo(C,Q) = Lo(bo, Q) if E(C) # 0,
Lo(C,Q) = Loo([07 1,Q) i E(C) = 0.

We shall examine, in Section 5, the relationship between L, (C,I) and
Msecr (0,13 Lm(b,I) when d = 1 and C' # [0,1]. It will be shown that, for
1 < m < oo, there exists C' € € such that

La(C,DS []  Lm(b1)
beC\{0,1}

and

In(C,1)S () Lm(d,1).
beC\{0,1}

We conclude this section with other related problems which are not dealt
with in this paper. The distribution in the class Lo ([0, 1], @) is called completely
operator selfdecomposable in Sato and Yamazato (1985), where the relationship
between the class Lo ([0,1],Q) and that of operator stable distributions was
studied. A natural question is how the class Lo, (b, Q) is related to that of oper-
ator semi-stable distributions. This problem will be discussed in the forthcoming

paper by the authors of the present paper.

Another important problem is the continuity properties (the absolute con-
tinuity and the smoothness for instance) of distributions in the classes we are

discussing here. This will be studied in another forthcoming paper by Watanabe.

2. Basic results on K(H,b,Q) and I:’(H, b,Q). Throughout this paper,
let 0 <b<1, Qe M. (R?, and C € €. The following two propositions can be

proved in the same way as for Proposition 2.3 in Maejima and Naito (1998).

PROPOSITION 2.1. If H C P(R%) is Q-completely closed, then
K(H,b,Q) C H and K(H,b,Q) C H.



PROPOSITION 2.2. We have
K(H,b,Q)C K(H,b",Q) forVneN

and

K(H,b,Q) C K(H,b",Q) forVn€N.

The following proposition is also obvious from the definition and Proposi-

tipn 2.2.

PROPOSITION 2.3. If

C={"}2,0{0} for somebe (0,1),

n=0

then
K(H,C,Q)=K(H,b,Q)

and

K(H,C,Q) = K(H,b,Q).

Bunge (1997) introduced the following class when d = 1.

DEFINITION 2.1. Suppose that H C P(R%) is I-completely closed. A
distribution p € P(R?) is said to belong to the class LE(H), if, for every b €
C \ {0,1}, there exist independent R?-valued random variables {X!}, al, > 0,
¢® € R? such that

b

(2.1) lim —" = b,

n—o0 an+1

(2.2) | L(X?) € H,
(2.3) L((a’)? Zn:X;? +cb) =
i=1

Then we have the following.
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PROPOSITION 2.4. LC(H) = K(H,C, I).

PROOF. The differences in the definitions of two classes are that a, 1 oo
and Zf;l X, in Definition 1.1. If u € IN\’(H, C,I), then X;? = Zfikj‘ﬂq X
satisfies (2.3) and hence u € LY(H). Conversely if p € LY(H), then o’ <
al ., — oo for large n, since 0 < b < 1, and hence y € IZ’(H, ¢, n. O

We are now going to prove the statements mentioned in Sections 1 and 2

up to now.
Proof of Theorem 1.1.
(i) The same as for Theorem 2.1 (i) of Maejima and Naito (1998).

(ii) We first show that (1.9) implies that i(z) # 0, Vz € R?. If not, there
exists zgp € RY such that fi(z0) = 0 and fi(z) # 0 when |z| < |20|. We have

lim¢yo t%2 = 0 for every = € RY, since ) € My (R?). Hence for large n,
(2.4) 679" 20| < |20]-

It follows from (1.9) that, for every n = 1,2,..., there exists p, € H N I(R%)
such that

0 = fi(20) = (6" 20)Pn(20).
By (2.4), we have ﬁ(b"Q'zo) # 0, which implies p,(z) = 0, contradicting that
pn € I(R%). Thus fi(z) # 0, Vz € R?. The rest of the proof is the same as for
Theorem 2.1 (ii) of Maejima and Naito (1998).

(iii) The same as for Theorem 2.1 (iii) of Maejima and Naito (1998). [

Proof of Theorem 1.2. (i) “If part.” By the repeated use of (1.9), we have

for any n > 1

A(z) = B9z T 699 2).
j=0

Since b(**DQ"z 5 0 as n — oo, we have

n—oo 4 n—oo 4

A(z) = lim []A('?2) = lim J] a9 %).
71=0 =0
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If we define independent random variables {X;} by
L(X;)(=) = p(6779 ),
then £(X,) € H and
LY X ) —p
=0
Therefore, (1.3) holds with a, =b™" and ¢, = 0.

(i) “Only if part.” We need the following lemma.

LEMMA 2.1. (Loeve (1945).) Suppose pin,0n,pn € P(RY), pn — p,

on = 0, and py, = Oy * py. Then p, converges through a subsequence of n.

Now suppose u € f?(H, b,Q). Then there exist {X;}, {an}, {¢n} and {k.}
satisfying (1.1)-(1.3) in Definition 1.1. We have

(2.5)

kn kn_1
a;? ZXJ' t+en =az%7 | a7 Z Xj+cna
j=1 =1
kn
+ (a;Q E X;+en— cn__la;Qa,?_l)

J=kn_1+1

and denote the distributions of the left hand side of (2.5) and of the first and
the second terms on the right hand side of (2.5) by pp, on, and p,, respectively.
By (1.3), ptn — p, and by (1.3) and (1.1), G,(2) = f(b9 z). Thus by Lemma
2.1, pn converges, through a subsequence of n, to p (say) in P(R?). However,
since £(X;) € H and H is Q-completely closed, we conclude that p € H and
i(z) = (b9 2)5(2) in the limit.

(ii) We only show that K(H,b,Q) is closed under convergence. Let up, €
I?(H,b,Q) and suppose f, — fieo. By (i), for each n > 1,

fin(2) = Bn(b92)Pa(2),  pn € H,
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Again by Lemma 2.1, p, converges, through a subsequence of n, to ps (say) in

P(RY). Since H is closed under convergence, we see that
Poo(2) = Poo(89 2)P(2),  poo € H.

Thus by (i) again, we conclude that p, € I:’(H, b, Q). Closedness under convo-

lution and Q-type equivalence can be shown similarly. O

Proof of Proposition 1.1. Denote by §, the unit mass at z. First note that
S0 € H. In fact, £(X) € H implies that & = limp—eo £L(9X) € H when b, | 0.
Next note that 1 € Dg p(), which follows from that o € H. Let by and by be
in Dg g(p). Then, for j = 1,2, ji(2) = ﬁ(b?’z)ﬁ](z) with some p; € H. Hence

fi(z) = AT bF 2)p2 (b3 2)p1(2).

Note that b?lb?l = (byb;)?" and that ﬁg(blqlz)ﬁl(z) is the characteristic function
of a distribution in H. Hence bjby € Dg u(u). Now we can show that 0 €
Do u(p). In fact, we can choose ¢ # 1 in Dg g(u). Then ¢ € Dg g(p) for
n =1,2,... and hence 7i(z) = fi(c"? 2)pn(z) for some p, € H, which implies
that p, — u, p € H, and 0 € Dg g(p). Closedness of Dg () is proved from
Lemma 2.1. [

Proof of Proposition 1.2. (i) Restatement of Theorem 1.2 (i).

(ii) If H is Q-completely closed in the strong sense, then, by its definition,
H=HNI (Rd). Thus the assertion follows from Theorems 1.1 and 1.2.

(iti) If u € K(H,b,Q), then it is (b, @, H N I(R%))-decomposable by Theo-
rem 1.1. If p is (b,Q, H N I(R?))-decomposable, then p € K(HNIR),b,Q) =
K(HNI(RY),b,Q) by (i) and (ii). Finally, K(H n I(R%),b,Q) C K(H,b,Q) by
(1.7). O

Proof of Proposition 1.3. We have I(R?%) D Lo(b,Q) by (1.6). It fol-

lows from (1.7) and the definition that Lo(b, @) D Ly(b, Q). Hence L,,(b,Q) D
L41(b, Q) by induction and (1.7). The other assertions are proved similarly. O
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Proof of Proposition 1.4. For m = 0, we have

Lo(C1,Q) = K(P(RY),C1,Q) = ]| K(P(R%,b,Q)

beC\{0,1}
> () K(PRY,5Q) =K(PR?),C,Q)
beC2\{0,1}
=L0(027Q)'

If Lip(C1,Q) D Li(Cq, @), then

Lnt1(C1,Q) = K(Lm(C1,Q),C1,Q) = [ E(Zm(C1,Q),5,Q)

beCi\{0,1}
D) ﬂ K(Lm(C%Q)abaQ) (by (17))
beC1\{0,1}
D ﬂ R’(Lm(cb Q)»ba Q) = I((Lm(C%Q)’C%Q)
' beC2\{0,1}
- Lm+1(c2a Q)

The assertion for L can be proved in exactly the same way if we use (1.8) instead

of (1.7) above. O

THEOREM 2.1. Let 0 < m < oo. pu € Lp(b,Q) if and only if there
ezists pm € Lm—1(b,Q) such that fi(z) = A(b? 2)pm(2), where L_1(b,Q) and
Loo-1(b,Q) are understood as I(R%) and Loo(b,Q), respectively. Furthermore,
- L, (b,Q) is @-completely closed in the strong sense.

PROOF. Obviously I(R?) is Q-completely closed in the strong sense. Thus
the assertion for m = 0 comes from Proposition 1.2 (iii). Then we can prove the
assertion for 1 < m < oo by induction, using Theorem 1.1 (i), (ii), and (iii). Let
p € Lo(b, Q). Then, since fi(z) # 0, po is determined uniquely, and p € Lo (b, Q)
if and only if pg € Leo(b, Q). The assertion for m = oo thus follows. [

REMARK 2.1. The statement of Theorem 2.1 remains valid for L in place
of L, if L_1(b,Q) is understood as P(R?) and if we delete “in the strong sense”
at the end. Proof is straightforward from Theorem 1.2 in case 0 < m < co. If

p € Loo(b,Q), then for every m < oo, u € Lm(b, Q) and Ji(z) = G(69 2)pm(2)
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with some pm € Lm—-1(b,Q). By Lemma 2.1, p,, tends to some poo as m — 0o
through a subsequence, and [i(z) = ﬁ(lez)ﬁoo(z). Since pp € Zm(b,Q) for
m' > m, we see po € zm(b,Q) and hence po, € Eoo(b,Q). Conversely, if y is
(b, Q, Loo(b, Q))-decomposable, then it is (b, Q, Lm (b, Q))-decomposable for all
m < oo, and hence y € zoo(b, Q).

REMARK 2.2. The class Lo(b,Q) is the largest class that is invariant
under the operation K(-,b,Q). The class Loo(C,Q) is the largest class that
is invariant under the operation K(-,C,Q). These statements remain valid if
we replace L and K by L and K , respectively. Proof is as follows. L (b,Q) =
K(Loo(b,Q),b, Q) by Theorem 2.1 and Proposition 1.2. If H satisfies K (H, b, Q)
= H, then Lo (b,Q) D H since, by the repeated use of (1.7), L.(b,Q) D H for
0 <m < oco. For C €€ L,(C,Q) D K(Lo(C,Q),b,Q) by Proposition 2.1,
and hence Loo(C,Q) O K(Lo(C,Q),C, Q). On the other hand,

Lo(C,Q) = () Lu(C,Q) = (] K(Ln-1(C,Q),C.Q)

m< oo m<oo

= [ EZwn-1(CQ),bQ),
m<o0 beC\{0,1}
and hence pt € Loo(C, Q) implies that fi(z) = (b2 2)pp(z) for b € C\ {0, 1} with
pb € Ly—1(C, Q). This py does not depend on m and thus py € Loo(C, Q). Hence
Lo(C,Q) C K(Lo(C,Q),b,Q) for b € C\ {0,1}. It follows that Lo.(C,Q) C
K(Lo(C,Q),C,Q). Hence the equality holds. If K(H,C,Q) = H, then we
have Lo(C,Q) D H from that K(P(R%),b,Q) D K(H,b,Q) and, similarly
L, (C,Q) D H for all m, that is, Loo(C,Q) D H. The assertion for L and

K is proved similarly by use of Lemma 2.1.
PROPOSITION 2.5. I(R?%) D OL(Q) = Lo([0,1],Q) = Zo([O, 1], Q).

PROOF. The following three statements are equivalent: 4 € OL(Q); p is
(b, Q, P(R?))-decomposable for all b € (0, 1); u is (b, Q, I(R?))-decomposable for
all b € (0,1). This is essentially Theorem 2.1 and Corollary 2.4 of Sato (1980).
See also Theorem 3.3.5 of Jurek and Mason (1993). On the other hand, p is
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and
vBE) = [ A(de)iu(e) = [ wde)he)g(e).
Hence we conclude that gn(z) = h(z)gn(z), vo-a.e.
(ii) For given {vg, gn,n € Z} satisfying (b) and (c), define v by (d). Then
by (3.2) and (b), we have [p.(|z|* A 1)v(dz) < oo, and by (d), »({0}) = 0.
Hence v is the Lévy measure of some u € I(R?). (a) also follows from (c) by

(8.3). This completes the proof. 0O

PROPOSITION 3.3. Suppose that u € I(R?) has the generating triplet
(v, A,v). A necessary and sufficient condition for that u € Lo(b, Q) is that

(1) Tp(A) is nonnegative definite, and
(ii) ¥(E) — v(B™1E) > 0 for any E € Bo(RY).

PROOF. By Theorem 2.1, u € Lo(b, Q) if and only if p(z) = (z)/f(B’'z)

is infinitely divisible characteristic function. We have, form (3.1),
1
P(2) = expli{(I ~ B)y + . ) — 3((A~ BAB')z,2)

" /Rd\m r(z,2)(v(dz) — v(d(B~'a))},

where

/ ( ! L > zv(dr)

c= = — .

R4\ {0} 1+IB_1.TC|2 1+|:c|2

Therefore, for that p € I{R?), it is necessary and sufficient that A — BAB' is

nonnegative definite (which is (i)) and
v(E)—=v(B™'E) >0, VE € By(RY),
(which is (ii)). O

The following theorem is an extension of the results of Sato (1980), Jurek

((1983), and Maejima and Naito (1998).

THEOREM 3.1. Let 0 < m < oo,u € I(R?4), A its Gaussian covariance
matriz, v its Lévy measure, and let {vy, g(n,z),n € Z} be the Sp-representation

of v. Then the following three statements are equivalent.
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(i) € Lm(b,Q),

(ii) T4(A),1 < £ < m + 1, are nonnegative definite, and (I — Tpg)'v >
0,1 <€<m+1, on By(RY),

(i) 45 (A),1 < £ < m+1, are nonnegative definite, and (—1)*(A’g)(n,z)
> 0,n € Z, vg-a.e.x for 1 < £ < m+ 1, where for k(n),n € Z,(Ak)(n) =
k(n+ 1) — k(n).

(In the above, when m = 00,1 <€ <m + 1 should be read as 1 < ¢ < c0.)

PROOF. Note that the condition that (—1)¢(Afg)(n,z) for vo-a.e.x does
not depend on the choice of our Sp-representation of v, as the representation
has uniqueness in the sense described in Proposition 3.2 (i). Also note that,
since E € Bo(R?) implies that B~'E € Bo(R?), (I — Tg)'vo is well-defined on
Bo(RY) for £ > 1.

We first show the equivalence of (i) and (ii). Since
(I - To))(E) = u(B) — (B E),

we have (i) < (ii) for m = 0 by Proposition 3.3. Next we suppose (i)  (ii) for
m and will show it for m + 1. By Theorem 2.1, u € L;41(b, @) if and only if
b(z) = 7i(b9' 2)p(z) for some p € Ly (b, Q). The Gaussian covariance matrix A,
of pis A, = ¥p(A). Hence

V3(4,) = T (4),

and therefore ¥4 (A,) are nonnegative definite for 1 < £ < m + 1 if and only if
T4 (A) are nonnegative definite for 2 < £ < m + 2. Similarly, the Lévy measure

v, of p satisfies v, = v — Tgv on Bo(R?). Hence
(I —Tg)v,=(I-Tg)*'v on By(RY)
and therefore

I-T)v,>0, 1<f£<m+1, onB R¢
P
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if and only if
(I-Tp)'v>0, 2<L<m+2, onBy(RY).

This proves the case for m + 1.

We next show the equivalence of (ii) and (iii). We have, for E € Bo(R%),
((I = Tp)v)(E) = v(E) — v(BT'E)

L vo(dz) (Zgn Zgn N g-1g(B "x))

nez n€Z

= [ wold) Y (90(2) = gnss (@))1£(B ")

n€Z

:/S vol(dz) 37 (~Ag(n,2))1e(B~"2).

n€z

Hence for E € B(Sg),

(I =Tg)v)(B™"E)
:/S Yo dl?) Z gn gn+] ))1B_"E(B_n'r)

n€Z

— / (=Ag(n,z))vo(dz),
E

and thus
(I-Tg)v >0 on By(RY)

if and only if

(—Ag)(n,2) >0, Vné€Z,np-ae z.

Using the above expression of (I — Tg)v in place of (d) of Proposition 3.2, we
get
(T =ToPw)(B) = [ wolde) Y- (~A)g(n,2)15(B~"2).
Sp

n€Z

Repeating this argument, we conclude, for each £ > 1, that

(I- TB)ZV >0 on Bo(Rd)

24



