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(Abbreviated Title : Operator semi-selfdecomposability)

By
Makoto Maejima (Keio University),
Ken-iti Sato
and

Toshiro Watanabe (The University of Aizu)

SUMMARY. There are two types of generalizations of selfdecomposabil-
ity of probability measures on R%, d > 1: the c-decomposability and the C-
decomposability of Loéve and Bunge on the one hand, and the semi-
selfdecomposability of Maejima-Naito on the other. The latter implies infinite
divisibility but the former does not in general. For d > 2 introduction of oper-
ator (matrix) normalizations yields four kinds of classes of distributions on R%:
Lo(b, Q), Lo(b,Q), Lo(C, Q), and EO(C,Q), where 0 < b < 1, Q is a d X d matrix
with eigenvalues having positive real parts, and C is a closed multiplicative sub-
semigroup of [0, 1] containing 0 and 1. Further, each of these classes generates
the Urbanik-Sato type decreasing sequence of its subclasses. Characterizations
and relations of these classes and subclasses are established. They complement

and generalize results of Bunge, Jurek, Maejima-Naito, and Sato-Yamazato.

1. Introduction and preliminaries. In Maejima and Naito (1998),
the notion of semi-selfdecomposable distributions on R? was introduced as an

extension of selfdecomposable distributions, and the class of such distributions

AMS 1991 subject classifications. Primary 60E05: secondary 60F05, 60E07
Key words and phrases. Operator semi-selfdecomposability, (C, Q)-decomposability, in-
finite divisibility, completely monotone sequence, Lévy measure.
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and its decreasing subclasses containing semistable distributions were studied.
The distributions in those classes were defined as limiting distributions of the
normalized partial sums, with scalar normalization, of independent infinitesimal
R-valued random variables, where each limit is taken through a subsequence.
In this paper, we enlarge those classes by allowing the linear operator normal-
izations in the normalized partial sums. As a result, we extend the notion of

semi-selfdecomposability to that of operator semi-selfdecomposability.

On the other hand, Bunge (1997) extended the notion of selfdecomposabil-
ity to another direction by introducing the class of C-decomposable distribu-
tions. This is also an extension of c-decomposability in the earlier work of Loeve
(1945), (also see Loeve (1977), page 312). While semi-selfdecomposable distri-
butions are infinitely divisible, the distributions in the class by Bunge (1997)
are not necessarily infinitely divisible. He studied the class and its decreasing
subclasses. Here we also extend his notion to the linear operator setting ((C, Q)-
decomposability), and compare two generalizations of operator selfdecomposable
distributions. Operator selfdecomposable distributions were discussed in Jurek

(1983) and Sato and Yamazato (1985).

We start with the notation we are going to use in this paper. P(R?) is
the class of all probability distributions on R?, I(R?) is the class of all infinitely
divisible distributions on R¢, M, (R?) is the class of all d xd matrices all of whose
eigenvalues have positive real parts, ' is the transposed matrix of Q € M, (RY),
I is the identity matrix, fi(z), z € R, is the characteristic function of y € P(RY),
u*t,t > 0, is the ¢-th convolution power of u € R?, £(X) is the law of X, (, )
is the Euclidean inner product in R?, and | - | is the norm induced by (, } in
R For b> 0,09 = 3°°° (n!))"'(logb)"Q". b =0 and Q € M;(R?), then
b? is defined to be 0. Convergence of probability distributions is always weak
convergence. Whenever we write H C P(R?), we mean that § # H C P(R?).

Let 0 < b< 1and Q € My (RY).
DEFINITION 1.1. Let H ¢ P(R%). A distribution p € P(R?) is said
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to belong to the class K (H,b,Q) if there exist independent R?-valued random
variables {X;},an > 0,1 00,¢cp, € R4k, € N, 1 oo, such that

(1.1) lim —" =,

n—00 Up4q

(1.2) L(X;) € H,

kn

(1.3) L{az®) Xj+ea | = p
=1

If, furthermore, the infinitesimal condition:

(1.4) lim max P{}a;Qin >e} =0, Ve>0,

n—001<j<kn
is satisfied, we say that u € P(R?) belongs to the class K (H,b,Q).

From the definition, we see that

(1.5) K(H,b,Q) C K(H,b,Q),

(1.6) K(H,b,Q) c I(RY),

(17) K(HlabuQ) CA’(HZJ),Q) if Hl CHZ,
and

(18) I’Z’(th’Q)CK(H%buQ) lle CHZ

The class K(H,b,I) was introduced in Maejima and Naito (1998), and the
class I:‘;(P(Rd), ¢, I) coincides with the class L. on page 312 of Loéve (1977).

DEFINITION 1.2. A class H C P(R¢?) is said to be Q-completely closed if
H is closed under convergence, convolution, and @-type equivalence. Here H is

said to be closed under Q-type equivalence if £L(X) € H, a > 0, and ¢ € RY, then
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L(a=2X + ¢) € H. If, furthermore, H C I(R?) and H is closed under going to
the t-th convolution power for any ¢ > 0, we say that H is @-completely closed

in the strong sense.

Our basic results are the following two statements. All theorems and propo-

sitions in this section will be proved in the next section.
THEOREM 1.1.
(i) Suppose that H C P(R?) is Q-completely closed. If u € K(H,b,Q),

then there exists p € H N I(R?) such that

(1.9) A(z) = 6(b? 2)p(z), Vz e R

(i) If H is completely closed in the strong sense, then the converse of (i)

18 also true.
(iii) If H is completely closed in the strong sense, then so is K(H,b,Q).
THEOREM 1.2.

(1) Suppose that H C P(R?) is Q-completely closed. Then p € IN{(H,b,Q)
if and only if there ezists p € H such that (1.9) is satisfied.
(ii) If H is Q-completely closed, then so 1s K’(H, b,Q).

In Theorem 1.1, the distribution p in (1.9) is uniquely determined by u, b,
and Q, since fi(z) # 0 by (1.6). But, in Theorem 1.2, the p is not always unique.

The problem of uniqueness is discussed in Loéve (1945).
In view of these theorems, it is natural to introduce the following definition.

DEFINITION 1.3. Let 0 < ¢ < 1,Q € M,(R?), and H C P(RY). A
probability distribution 2 € P(R?) is said to be (¢, @, H)-decomposable if fi(z) =
fi(c®' z)p(z) with some p € H. Givenp € P(R?),Q € M, (R?),and H C P(RY),
we denote by Dgq g (u) the set of ¢ € [0,1] such that  is (¢, @, H)-decomposable.

PROPOSITION 1.1. Suppose that H is Q-completely closed. If Dg n(u) #
{1}, then Dq () is a closed multiplicative subsemigroup of [0,1] containing 0
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and 1.
The following proposition is a direct consequence of Theorems 1.1 and 1.2.
PROPOSITION 1.2,

(i) pe I?(IL b,Q) of and only if u is (b, Q, H )-decomposable, provided that
H is Q-completely closed.

(ii) K(H,b,Q) = IA{'(H, b,Q), whenever H is Q-completely closed in the

strong sense.

(iii) Suppose that H is Q-completely closed and H N I(R?) is Q-completely
closed in the strong sense. Then, the following three conditions are equivalent:

p€ K(H,bQ); pe K(HNIRY,bQ); uis (b,Q,HNIR?))-decomposable.

In case d = 1, Q = I, and H = P(R?%), a decisive study of the semigroup
Dg,u(p) was made by Ilinskii (1978), and some examples of similarly defined
multiplicative subsemigroups of [—1,1] were given by Urbanik (1976). For gen-
eral d and H = P(R?), the class {c? : ¢ € Dg g(p)} is a subsemigroup of the
Urbanik decomposability semigroup D(y) in Jurek and Mason (1993).

Following Bunge (1997), let € be the collection of all closed multiplicative
subsemigroup C' of [0, 1] such that C' 2 {0,1}. Define, for C € €,
K(H,C,Q = (] K(HbQ)
beC\{0,1}

and

KH.CQ)= () KHbQ.

beC\{0,1}

Note that, by Proposition 1.2 (i), I?(H, C, Q) is the class of u such that
C C Dg,u(p), provided that H is Q-completely closed. The class f((H, C, 1)
coincides with the class L¢(H) introduced by Bunge (1997). (For the detail of

its proof, see Proposition 2.4 in the next section.)

Distributions in K(P(R%),[0,1],I) are usually called selfdecomposable.

Urbanik (1972) introduced the notion of a slowly varying sequence of random
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variables and found a decreasing sequence of subclasses of the class of selfdecom-
posable distributions. Sato (1980) defined an operation to make a new subclass
from a subclass and showed that iteration of his operation generates the sequence
of Urbanik. Our operation K(-,b,Q) is a development from his operation. We
now define four kinds of classes of distributions and the Urbanik-Sato type de-

creasing sequences of those subclasses.

DEFINITION 1.4. For 0 < b < 1 and Q € M (R?), define
Lo(b, Q) = I((/P(Rd)a b, Q)a

LM(b7 Q) = I{(Lm—l(byQ)abaQ)a m = la 23 Ty

and
[o ]

m=0

Similarly define
Zm<b7Q)7 m:07172,"' y OQ,

using K instead of K. Furthermore, for C € €, define
LO(C, Q) = I((P(Rd)a C’ Q)a

Lm(ca Q) = I{(Lm—l(c7 Q)ao’ Q) m = 1a23 B

o0

Loo(C,Q) = [ Ln(C,Q),

m=0
and define
Zm(C)Q)y m:0,1,2,~- » OQ,

using K instead of K.

In particular, we call u € P(R?) operator semi-selfdecomposable if u €
Lo(b,Q) for some 0 < b < 1 and @ € M (R?Y), and (C, Q)-decomposable if
p € Lo(C, Q), respectively.

PROPOSITION 1.3. Let C € €. Then

I(R%) D Lo(6,Q) D L1(5,Q) D - D Loo(b,Q),
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I(R?) D Lo(C,Q) D L1(C,Q) D -+ D Lo(C, Q),

Lo(6,Q) > L1(5,Q) D - D Lao(b,Q),
and

Lo(C,Q) D Li(C,Q) D -+ D Le(C, Q).

PROPOSITION 1.4. Let C1,C; € € and suppose C; C Cy. Then for any
0 <m < oo,
Lm(ChQ) D) Lm(027 Q)

and

L(C1,Q) D Ln(Cy, Q).

Classes L, ([0, 1], @) with C chosen as [0, 1] are the finite-dimensional case
of the classes studied in Jurek’s paper (Jurek (1983)). A one-parameter con-
tinuous multiplicative group {Uy,t > 0} with U; — 0 as t | 0 is used there in
place of %, but any such matrix group {U;,? > 0} is expressed as U; = t9 with
Q € M (R%). Note that Q@ € M, (R?) is equivalent to that t2 — Qast | 0
(Sato (1991), Lemma 2.6).

Operator selfdecomposable distributions are defined in the following way
(Sato and Yamazato (1984, 1985)). Let OL(Q) be the class of u € P(R?) such
that there exist independent R?-valued random variables {X;},a, > 0,1 oo,

and ¢, € R? satisfying

L (a;QZXj—kcn) =i, n— oo

i=1

and

lim max P{|la;9X;|>¢e} =0, Ve>0.

n=oo 1<;j<n
It is known that u € OL(Q) if and only if i is (¢, @, P(R?))-decomposable
for every ¢ € [0,1]. That is, OL(Q) = Lo([0,1],Q) by our terminology in this
paper. See Proposition 2.5 for details. Distributions ¢ € OL(Q) are called
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Q-selfdecomposable. A distribution u is called operator selfdecomposable if it
is Q-selfdecomposable for some @ € M, (R?). Our terminology is different
from that of Jurek and Mason (1993). The class of operator selfdecomposable
distributions in the sense of Jurek and Mason (1993) is called the class OL
in Sato and Yamazato (1984) and is strictly bigger than the class of operator
selfdecomposable distributions in our sense (see Yamazato (1984)). But both
definitions coincide as long as the distributions considered are full (that is, are

not concentrated in any proper hyperplane in R?). This is a consequence of a

theorem of Urbanik (1972).
In Section 2, we shall prove the results stated in this section and show that,

for 0 <m < o0,

Lm({o,l]aQ): m Lm(va):zm([Ovl]aQ)z n Em(baQ)

b€(0,1) b€(0,1)
This should be compared with the fact that, if C = {6"}°2, U {0} with some
b e (0,1), then for 0 < m < oo,

La(C,Q) G Lu(C,Q),

since L (C, Q) N (I(R))° # 0 (Bunge (1997)).

In Section 3 we shall give characterization of 4 € L, (b, @), for 0 < m < oo,
in properties of its Gaussian covariance matrix and Lévy measure. Examples

will show that
Lm (b» Q) 2 Lm+1(ba Q)

for 0 < m < 0.

We shall study Loo(C, Q) and ZW(C, Q) in Section 4. It will be shown that
Leo(C,Q) = Loo(C, Q)
for any C € €. The main result in Section 4 is the following. Define, for C' € €,

E(C) = {be (0,1): C C {p"}32, U {0}}.
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When =Z(C) is nonempty, let by be its infimum. Clearly by € Z(C) in this case.
Then

Loo(C,Q) = Lo(bo, Q) if E(C) # 0,
Lo(C,Q) = Loo([07 1,Q) i E(C) = 0.

We shall examine, in Section 5, the relationship between L, (C,I) and
Msecr (0,13 Lm(b,I) when d = 1 and C' # [0,1]. It will be shown that, for
1 < m < oo, there exists C' € € such that

La(C,DS []  Lm(b1)
beC\{0,1}

and

In(C,1)S () Lm(d,1).
beC\{0,1}

We conclude this section with other related problems which are not dealt
with in this paper. The distribution in the class Lo ([0, 1], @) is called completely
operator selfdecomposable in Sato and Yamazato (1985), where the relationship
between the class Lo ([0,1],Q) and that of operator stable distributions was
studied. A natural question is how the class Lo, (b, Q) is related to that of oper-
ator semi-stable distributions. This problem will be discussed in the forthcoming

paper by the authors of the present paper.

Another important problem is the continuity properties (the absolute con-
tinuity and the smoothness for instance) of distributions in the classes we are

discussing here. This will be studied in another forthcoming paper by Watanabe.

2. Basic results on K(H,b,Q) and I:’(H, b,Q). Throughout this paper,
let 0 <b<1, Qe M. (R?, and C € €. The following two propositions can be

proved in the same way as for Proposition 2.3 in Maejima and Naito (1998).

PROPOSITION 2.1. If H C P(R%) is Q-completely closed, then
K(H,b,Q) C H and K(H,b,Q) C H.
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PROPOSITION 2.2. We have
K(H,b,Q)C K(H,b",Q) forVneN
and
K(H,b,Q) C K(H,b",Q) for¥n e N.
The following proposition is also obvious from the definition and Proposi-
tion 2.2.
PROPOSITION 2.3. If
C={"}2,0{0} for somebe (0,1),
then
K(H,C,Q) = K(H,b,Q)
and

K(H,C,Q) = K(H,b,Q).

Bunge (1997) introduced the following class when d = 1.

DEFINITION 2.1. Suppose that H C P(R%) is I-completely closed. A
distribution p € P(R?) is said to belong to the class LE(H), if, for every b €
C \ {0,1}, there exist independent R?-valued random variables {X!}, al, > 0,
¢® € R? such that

b

(2.1) lim —" = b,

n—o0 an+1

(2.2) | L(X?) € H,
(2.3) L((a’)? Zn:X;? +cb) =
i=1

Then we have the following.

10
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PROPOSITION 2.4. LC(H) = K(H,C, I).

PROOF. The differences in the definitions of two classes are that a, 1 oo
and Zf;l X, in Definition 1.1. If u € IN\’(H, C,I), then X;? = Zfikj‘ﬂq X
satisfies (2.3) and hence u € LY(H). Conversely if p € LY(H), then o’ <
al ., — oo for large n, since 0 < b < 1, and hence y € IZ’(H, ¢, n. O

We are now going to prove the statements mentioned in Sections 1 and 2

up to now.
Proof of Theorem 1.1.
(i) The same as for Theorem 2.1 (i) of Maejima and Naito (1998).

(ii) We first show that (1.9) implies that i(z) # 0, Vz € R?. If not, there
exists zgp € RY such that fi(z0) = 0 and fi(z) # 0 when |z| < |20|. We have

lim¢yo t%2 = 0 for every = € RY, since ) € My (R?). Hence for large n,
(2.4) 679" 20| < |20]-

It follows from (1.9) that, for every n = 1,2,..., there exists p, € H N I(R%)
such that

0 = fi(20) = (6" 20)Pn(20).
By (2.4), we have ﬁ(b"Q'zo) # 0, which implies p,(z) = 0, contradicting that
pn € I(R%). Thus fi(z) # 0, Vz € R?. The rest of the proof is the same as for
Theorem 2.1 (ii) of Maejima and Naito (1998).

(iii) The same as for Theorem 2.1 (iii) of Maejima and Naito (1998). [

Proof of Theorem 1.2. (i) “If part.” By the repeated use of (1.9), we have

for any n > 1

A(z) = B9z T 699 2).
j=0

Since b(**DQ"z 5 0 as n — oo, we have

n—oo 4 n—oo 4

A(z) = lim []A('?2) = lim J] a9 %).
71=0 =0

11
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If we define independent random variables {X;} by
L(X;)(=) = p(6779 ),
then £(X,) € H and
LY X ) —p
=0
Therefore, (1.3) holds with a, =b™" and ¢, = 0.

(i) “Only if part.” We need the following lemma.

LEMMA 2.1. (Loeve (1945).) Suppose pin,0n,pn € P(RY), pn — p,

on = 0, and py, = Oy * py. Then p, converges through a subsequence of n.

Now suppose u € f?(H, b,Q). Then there exist {X;}, {an}, {¢n} and {k.}
satisfying (1.1)-(1.3) in Definition 1.1. We have

(2.5)

kn kn_1
a;? ZXJ' t+en =az%7 | a7 Z Xj+cna
j=1 =1
kn
+ (a;Q E X;+en— cn__la;Qa,?_l)

J=kn_1+1

and denote the distributions of the left hand side of (2.5) and of the first and
the second terms on the right hand side of (2.5) by pp, on, and p,, respectively.
By (1.3), ptn — p, and by (1.3) and (1.1), G,(2) = f(b9 z). Thus by Lemma
2.1, pn converges, through a subsequence of n, to p (say) in P(R?). However,
since £(X;) € H and H is Q-completely closed, we conclude that p € H and
i(z) = (b9 2)5(2) in the limit.

(ii) We only show that K(H,b,Q) is closed under convergence. Let up, €
I?(H,b,Q) and suppose f, — fieo. By (i), for each n > 1,

fin(2) = Bn(b92)Pa(2),  pn € H,

12
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Again by Lemma 2.1, p, converges, through a subsequence of n, to ps (say) in

P(RY). Since H is closed under convergence, we see that
Poo(2) = Poo(89 2)P(2),  poo € H.

Thus by (i) again, we conclude that p, € I:’(H, b, Q). Closedness under convo-

lution and Q-type equivalence can be shown similarly. O

Proof of Proposition 1.1. Denote by §, the unit mass at z. First note that
S0 € H. In fact, £(X) € H implies that & = limp—eo £L(9X) € H when b, | 0.
Next note that 1 € Dg p(), which follows from that o € H. Let by and by be
in Dg g(p). Then, for j = 1,2, ji(2) = ﬁ(b?’z)ﬁ](z) with some p; € H. Hence

fi(z) = AT bF 2)p2 (b3 2)p1(2).

Note that b?lb?l = (byb;)?" and that ﬁg(blqlz)ﬁl(z) is the characteristic function
of a distribution in H. Hence bjby € Dg u(u). Now we can show that 0 €
Do u(p). In fact, we can choose ¢ # 1 in Dg g(u). Then ¢ € Dg g(p) for
n =1,2,... and hence 7i(z) = fi(c"? 2)pn(z) for some p, € H, which implies
that p, — u, p € H, and 0 € Dg g(p). Closedness of Dg () is proved from
Lemma 2.1. [

Proof of Proposition 1.2. (i) Restatement of Theorem 1.2 (i).

(ii) If H is Q-completely closed in the strong sense, then, by its definition,
H=HNI (Rd). Thus the assertion follows from Theorems 1.1 and 1.2.

(iti) If u € K(H,b,Q), then it is (b, @, H N I(R%))-decomposable by Theo-
rem 1.1. If p is (b,Q, H N I(R?))-decomposable, then p € K(HNIR),b,Q) =
K(HNI(RY),b,Q) by (i) and (ii). Finally, K(H n I(R%),b,Q) C K(H,b,Q) by
(1.7). O

Proof of Proposition 1.3. We have I(R?%) D Lo(b,Q) by (1.6). It fol-

lows from (1.7) and the definition that Lo(b, @) D Ly(b, Q). Hence L,,(b,Q) D
L41(b, Q) by induction and (1.7). The other assertions are proved similarly. O

13
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Proof of Proposition 1.4. For m = 0, we have

Lo(C1,Q) = K(P(RY),C1,Q) = ]| K(P(R%,b,Q)

beC\{0,1}
> () K(PRY,5Q) =K(PR?),C,Q)
beC2\{0,1}
=L0(027Q)'

If Lip(C1,Q) D Li(Cq, @), then

Lnt1(C1,Q) = K(Lm(C1,Q),C1,Q) = [ E(Zm(C1,Q),5,Q)

beCi\{0,1}
D) ﬂ K(Lm(C%Q)abaQ) (by (17))
beC1\{0,1}
D ﬂ R’(Lm(cb Q)»ba Q) = I((Lm(C%Q)’C%Q)
' beC2\{0,1}
- Lm+1(c2a Q)

The assertion for L can be proved in exactly the same way if we use (1.8) instead

of (1.7) above. O

THEOREM 2.1. Let 0 < m < oo. pu € Lp(b,Q) if and only if there
ezists pm € Lm—1(b,Q) such that fi(z) = A(b? 2)pm(2), where L_1(b,Q) and
Loo-1(b,Q) are understood as I(R%) and Loo(b,Q), respectively. Furthermore,

- L, (b,Q) is @-completely closed in the strong sense.

PROOF. Obviously I(R?) is Q-completely closed in the strong sense. Thus
the assertion for m = 0 comes from Proposition 1.2 (iii). Then we can prove the
assertion for 1 < m < oo by induction, using Theorem 1.1 (i), (ii), and (iii). Let
p € Lo(b, Q). Then, since fi(z) # 0, po is determined uniquely, and p € Lo (b, Q)
if and only if pg € Leo(b, Q). The assertion for m = oo thus follows. [

REMARK 2.1. The statement of Theorem 2.1 remains valid for L in place
of L, if L_1(b,Q) is understood as P(R?) and if we delete “in the strong sense”
at the end. Proof is straightforward from Theorem 1.2 in case 0 < m < co. If

p € Loo(b,Q), then for every m < oo, u € Lm(b, Q) and Ji(z) = G(69 2)pm(2)
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with some pm € Lm—-1(b,Q). By Lemma 2.1, p,, tends to some poo as m — 0o
through a subsequence, and [i(z) = ﬁ(lez)ﬁoo(z). Since pp € Zm(b,Q) for
m' > m, we see po € zm(b,Q) and hence po, € Eoo(b,Q). Conversely, if y is
(b, Q, Loo(b, Q))-decomposable, then it is (b, Q, Lm (b, Q))-decomposable for all
m < oo, and hence y € zoo(b, Q).

REMARK 2.2. The class Lo(b,Q) is the largest class that is invariant
under the operation K(-,b,Q). The class Loo(C,Q) is the largest class that
is invariant under the operation K(-,C,Q). These statements remain valid if
we replace L and K by L and K , respectively. Proof is as follows. L (b,Q) =
K(Loo(b,Q),b, Q) by Theorem 2.1 and Proposition 1.2. If H satisfies K (H, b, Q)
= H, then Lo (b,Q) D H since, by the repeated use of (1.7), L.(b,Q) D H for
0 <m < oco. For C €€ L,(C,Q) D K(Lo(C,Q),b,Q) by Proposition 2.1,
and hence Loo(C,Q) O K(Lo(C,Q),C, Q). On the other hand,

Loo(CaQ): ﬂ Lm(CaQ): ﬂ I{(Lm—l(CvQ)aCaQ)

m< oo m<oo

= [ EZwn-1(CQ),bQ),
m<o0 beC\{0,1}
and hence pt € Loo(C, Q) implies that fi(z) = (b2 2)pp(z) for b € C\ {0, 1} with
pb € Ly—1(C, Q). This py does not depend on m and thus py € Loo(C, Q). Hence
Lo(C,Q) C K(Lo(C,Q),b,Q) for b € C\ {0,1}. It follows that Lo.(C,Q) C
K(Lo(C,Q),C,Q). Hence the equality holds. If K(H,C,Q) = H, then we
have Lo(C,Q) D H from that K(P(R%),b,Q) D K(H,b,Q) and, similarly
L, (C,Q) D H for all m, that is, Loo(C,Q) D H. The assertion for L and

K is proved similarly by use of Lemma 2.1.
PROPOSITION 2.5. I(R?%) D OL(Q) = Lo([0,1],Q) = Zo([O, 1], Q).

PROOF. The following three statements are equivalent: 4 € OL(Q); p is
(b, Q, P(R?))-decomposable for all b € (0, 1); u is (b, Q, I(R?))-decomposable for
all b € (0,1). This is essentially Theorem 2.1 and Corollary 2.4 of Sato (1980).
See also Theorem 3.3.5 of Jurek and Mason (1993). On the other hand, p is
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(b, Q, P(R%))-decomposable for all b if and only if u € EO([O, 1],@), by Theorem
1.2. Also, u is (b, @, I(R%))-decomposable for all b if and only if u € Lo([0, 1], @),
by Proposition 1.2 (iii). Thus the proposition is proved. O

Now, let us compare L,,(C, @) and ﬂbec\{o,1} L., (b,Q). In general, we see

that, for 1 < m < oo,

(2.6) Lm(C,Q) = K(Lm—1(C,Q),C, Q)
= [ E@Zma(C,Q),5Q)

beC\{0,1}

C m I{(Lm-—l(blv Q)’b2sQ)

b1,b2€C\{0,1}

C ﬂ I((Lm—l(bv Q))bv Q)

beC\{0,1}

= ﬂ Lm(baQ)-

beC\{0,1}
The resulting inclusion for m = oo follows from the case m < co. Then a natural

question is when two sides are equal. The answer is the following.
THEOREM 2.2. For 0 <m < oo,
(1) Lm([0,1], Q) = Mye(o,1) Lm (b, Q),
(i) L (10,11, Q) = Mhe(o,1y Lm (5, Q),
(iif) Zm ([0, 1], @) = L ([0, 1], Q)-

REMARK 2.3. If C' # [0, 1], the statement of Theorem 2.2 is not necessarily

true. A counterexample for (i) and (ii) will be given in Section 5.

Proof of Theorem 2.2. We first show (i). Let 0 < m < co. Let b, = 272",
Then b, = b%; and lim,_,4 b, = 1. Thus by Proposition 2.2,

(2.7) Lin(bnt1,Q) C Lim(bn, Q).

Let

(2.8) Kpn = ﬁ L (br, Q).
n=1

16
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If we could show

(29) A’m = Lm([07 1]7 Q)7

then, by (2.6), we would get (i) for 1 < m < co. On the other hand, (i) for
m = 0 is true by Definition 1.4.

For any b € (0, 1), there exist N(k) 1 co and n(k) 1 oo as k — oo such that

(2.10) lim b3\ = Jim 2° n(k2= N g

k—o0 N

It follows from (2.7) and (2.8) that

>0

ﬂ m(bN k), @)

Let 4 € K,,. Then, by Theorem 2.1, there exists p € Lm—1(bn(k), Q) for each
k>1and

n(k)—1
~ ~ ! ~, n k n(k
i(2) = R(bF 4y 2)B(2) = AR 2) H PN 2) = b )k (2),

where pr € Liyn_1(bn(k), Q). Here we understand L_; (bn(xy, @) = I(R?) as in
Theorem 2.1. Let & — co. Then we have from (2.10)

(2.11) A=) = (b9 2) lim pi(=),

and peo = limg 00 P € iy Lim—1 (bn(r), @) = Kp,—1, with the understanding
that K_; = I(R?). If m = 0, then (2.11) means that [i(z) = (b9 2)peo(z),
poo € I(R?), for any b € (0,1), and hence p € Lo([0,1], Q). Thus we have (2.9)
for m = 0. This together with (2.6) and (2.11) implies (2.9) for 0 < m < oo by

induction. For m = oo, we have

() Leo(6,Q) = ﬂ ) Ln(5Q) = ﬂ m((0,1],Q) = Loo([0,1], Q).
be(0,1) m=0b€(0,1) m=0

This shows (1).

17
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To show (ii), use Remark 2.1 instead of Theorem 2.1. Note that (2.6) holds
with L and K in place of L and K, respectively. Then the proof of (i) works with
replacement of L by L. The only place we must be careful is the convergence of
pk(2) in (2.11), as px(z) can possibly vanish for some z € R?. But here we can

use Lemma 2.1, to see convergence through a subsequence.

We finally show (iii). We have, by their definitions,

Ll([0> 1], Q) = I{(LO([(L 1], Q), 0, 1}3 Q)

and

Ly([0,1], Q) = K(Lo([0,1],@),[0,1], Q).
Recall that Lo([0,1],Q) = Lo([0,1],Q) by Proposition 2.5. Since Ly (b, Q) is
Q-completely closed in the strong sense, so is L,,([0,1],Q) by (i). Hence, by
Proposition 1.2 (ii), L1{[0,1],Q) = L1([0,1],Q). Repeating this argument, we
conclude that, for any m > 1, L (0,1}, Q) = L([0, 1], Q). This completes the
proof. [

3. Characterization for L,,(b,Q),0 < m < oco. We are going to charac-
terize the classes L, (b, @),0 < m < oo, in terms of Gaussian covariance matrices

and Lévy measures in the Lévy representation of their characteristic functions.

The characteristic function of any x4 € I{R?) is uniquely expressed in the

form

(3.1 (o) = exp [itr2) = 3o ) + [ o).

i(z,x (Z ‘T>
r(z,z) =% —1 - 1+’|x|2’

where v € R?, A (called the Gaussian covariance matrix of p) is a symmetric
nonnegative definite d x d matrix, and v (called the Lévy measure of p) is a
measure on R? satisfying v({0}) = 0 and [g. |z[*(1 + |z[*)"'v(dz) < co. We
call (v, A,v) the generating triplet of 1 € I(R?).

18
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For a d x d matrix B we use the following notation: BE = {Bz : z € E}
for E ¢ RY, (Tgv)(E) = v({z : Bz € E}) for a measure v on R?. We use a
mapping ¥p from the class of symmetric d x d matrices into itself defined by
Up(A) = A — BAB'. lts iteration is ¥4 = ¥go \Ilg_l for £ = 2,3,--- with
UL = Up.  Also let Bo(R?) be the class of Borel sets E in R¢ such that
E C {|z]| > €} for some ¢ > 0.

Following (3.4.3) in Jurek and Mason (1993), we introduce a norm |- |g in
R? depending on Q:

11,9
|m[Q=/O lu zldu, z € RY.

u

Since, for @ € My (R%), there exist ¢; > 0 (1 < j < 4) such that c;u®?|c| <
[u@z| < czu|z|,0 < u < 1, |z|g is well defined. The norm |- |g is comparable
with the Euclidean norm |-|. An advantage of the norm |- |q is that for any = €
R?\ {0}, t — [t9z|g (t > 0) is strictly increasing (Proposition 3.4.3 in Jurek and
Mason ((1993)). Thus for any b € (0,1) and Q € My (R?),sup,, <; 09 < 1.
We write B = b9 and define

Sp={z€R%:|z|]g <1 and |B7'zlg>1}.

PROPOSITION 3.1. ([Luczak (1981), pp.289-290.) For each z € R%\ {0},
let 7, = {B"z :n € Z}. Then

(i) {z e R*: |z|¢ =1} C S5,

(i) if 2,y € Sp,x #y, then 7, O 7y = 0.
(iii) if = € Sp, then o N Sp = {z},

(iv) for any = € R4\ {0}, 7, N Sp # 0,
(v) B"Sp N B™Sp =0 for n # m,

vi) {z e R :0< [z]g <1} = Unso B"Sp and {z € R?: jz|g > 1} =
Un<o B"SB-
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PROPOSITION 3.2.

(i) If v is the Lévy measure of u € I(RY), then there exist a finite measure
vg on Sg and a Borel measurable function g, : Sp — [0,00) for each n € Z

satisfying the following conditions.
(a) For E € B(Sp),v(E) = 0 if and only if v(B"E) = 0,Yn € %,
(5) Js, v0(de) ez (1B~ 23 A Dga(x) < 00,
(¢) Snez9a(x) >0, vo-ae,
(d) v(B) = Jy, vo(dz) ez 9n(2)16(B~"2), VE € B(RY).

These {vo,gn,n € Z} are uniquely determined in the following sense. If
{v0,gn,n € Z} and {Vo, Gn,n € Z} satisfy the above conditions, then there exists

a Borel measurable function h(z) with 0 < h(z) < oo such that
to(dz) = h(z)vo(dz),
gn(z) = h(z)Gn(z), wo-a.e.,Vn e Z.

(i1) Conversely, if v, a finite measure on Sp, and gn,n € Z, Borel mea-
surable functions from Sp into [0, 00), are given, and satisfy (b) and (c), then v

defined by (d) is the Lévy measure of some p € I(R?) and (a) is also satisfied.

We call {vg,gn,n € Z} determined uniquely from v in (i) above the Sp-

representation of v. In the following, we may write g(n, z) for g,(z) occasionally.

PROOF. (i) Define

» _ _lnl I/(BnE)
O(E)“ng By’ E € B(Sg),

with the convention that v(B"E)/v(B"Sp) = 0 when v(B"Sg) = 0. It is
obvious that v is a finite measure and satisfies (a).

Let [v]prs, be the restriction of v to B"Sp. Then [v]gng, is absolutely

continuous with respect to Tgn1y. Then by the Radon-Nikodym theorem, there
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exists h,(z) on B"Sp such that
v(de) = hp(z)(Tprip)(dz) on B"Sp.
Hence

v(E) = v(ENB"Sg)
ne€Z

= Z/ z)(Tprvo)(dx)

nez EnB"SE

= Z/s 1g(B"z) "z)vo(dz).

nez
Thus, if we define g_,(z) = hy(B"z), then (d) holds.
As to (b), we have, by using (d),
(3.2) ./.;“ vo(dz) Z |B~ m}Q Al)gn(z) = /Rd(imlé Alv(dz) < oo
n€Z

As to (c), if E € B(Sg), then by (d),

(3.3) v(B-"E) = /5 vo(d2)gn(2)1 () = [E vo(dz)gal).

Thus, if 1p(E) > 0, then

/Zgn )vo(dz) = Y v(B™E) >0

ncZ nez

by (a).

We are going to show the uniqueness of {vg,gn,n € Z}. Suppose that
{vo,gn,n € Z} and {o, gn,n € Z} satisfy (a)—(d). If follows from (a) that v
and 7 are absolutely continuous each other so that vo(dz) = h(z)vo(dz) for
some Borel measurable function h with 0 < h(z) < co. For any FE € B(Sg), b
(3.3),

V(B~"E) = [E vo(da)gn(c)
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and
vBE) = [ A(de)iu(e) = [ wde)he)g(e).
Hence we conclude that gn(z) = h(z)gn(z), vo-a.e.
(ii) For given {vg, gn,n € Z} satisfying (b) and (c), define v by (d). Then
by (3.2) and (b), we have [p.(|z|* A 1)v(dz) < oo, and by (d), »({0}) = 0.
Hence v is the Lévy measure of some u € I(R?). (a) also follows from (c) by

(8.3). This completes the proof. 0O

PROPOSITION 3.3. Suppose that u € I(R?) has the generating triplet
(v, A,v). A necessary and sufficient condition for that u € Lo(b, Q) is that

(1) Tp(A) is nonnegative definite, and
(ii) ¥(E) — v(B™1E) > 0 for any E € Bo(RY).

PROOF. By Theorem 2.1, u € Lo(b, Q) if and only if p(z) = (z)/f(B’'z)

is infinitely divisible characteristic function. We have, form (3.1),
1
P(2) = expli{(I ~ B)y + . ) — 3((A~ BAB')z,2)

" /Rd\m r(z,2)(v(dz) — v(d(B~'a))},

where

/ ( ! L > zv(dr)

c= = — .

R4\ {0} 1+IB_1.TC|2 1+|:c|2

Therefore, for that p € I{R?), it is necessary and sufficient that A — BAB' is

nonnegative definite (which is (i)) and
v(E)—=v(B™'E) >0, VE € By(RY),
(which is (ii)). O

The following theorem is an extension of the results of Sato (1980), Jurek

((1983), and Maejima and Naito (1998).

THEOREM 3.1. Let 0 < m < oo,u € I(R?4), A its Gaussian covariance
matriz, v its Lévy measure, and let {vy, g(n,z),n € Z} be the Sp-representation

of v. Then the following three statements are equivalent.
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(i) € Lm(b,Q),

(ii) T4(A),1 < £ < m + 1, are nonnegative definite, and (I — Tpg)'v >
0,1 <€<m+1, on By(RY),

(i) 45 (A),1 < £ < m+1, are nonnegative definite, and (—1)*(A’g)(n,z)
> 0,n € Z, vg-a.e.x for 1 < £ < m+ 1, where for k(n),n € Z,(Ak)(n) =
k(n+ 1) — k(n).

(In the above, when m = 00,1 <€ <m + 1 should be read as 1 < ¢ < c0.)

PROOF. Note that the condition that (—1)¢(Afg)(n,z) for vo-a.e.x does
not depend on the choice of our Sp-representation of v, as the representation
has uniqueness in the sense described in Proposition 3.2 (i). Also note that,
since E € Bo(R?) implies that B~'E € Bo(R?), (I — Tg)'vo is well-defined on
Bo(RY) for £ > 1.

We first show the equivalence of (i) and (ii). Since
(I - To))(E) = u(B) — (B E),

we have (i) < (ii) for m = 0 by Proposition 3.3. Next we suppose (i)  (ii) for
m and will show it for m + 1. By Theorem 2.1, u € L;41(b, @) if and only if
b(z) = 7i(b9' 2)p(z) for some p € Ly (b, Q). The Gaussian covariance matrix A,
of pis A, = ¥p(A). Hence

V3(4,) = T (4),

and therefore ¥4 (A,) are nonnegative definite for 1 < £ < m + 1 if and only if
T4 (A) are nonnegative definite for 2 < £ < m + 2. Similarly, the Lévy measure

v, of p satisfies v, = v — Tgv on Bo(R?). Hence
(I —Tg)v,=(I-Tg)*'v on By(RY)
and therefore

I-T)v,>0, 1<f£<m+1, onB R¢
P
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if and only if
(I-Tp)'v>0, 2<L<m+2, onBy(RY).

This proves the case for m + 1.

We next show the equivalence of (ii) and (iii). We have, for E € Bo(R%),
((I = Tp)v)(E) = v(E) — v(BT'E)

L vo(dz) (Zgn Zgn N g-1g(B "x))

nez n€Z

= [ wold) Y (90(2) = gnss (@))1£(B ")

n€Z

:/S vol(dz) 37 (~Ag(n,2))1e(B~"2).

n€z

Hence for E € B(Sg),

(I =Tg)v)(B™"E)
:/S Yo dl?) Z gn gn+] ))1B_"E(B_n'r)

n€Z

— / (=Ag(n,z))vo(dz),
E

and thus
(I-Tg)v >0 on By(RY)

if and only if

(—Ag)(n,2) >0, Vné€Z,np-ae z.

Using the above expression of (I — Tg)v in place of (d) of Proposition 3.2, we
get
(T =ToPw)(B) = [ wolde) Y- (~A)g(n,2)15(B~"2).
Sp

n€Z

Repeating this argument, we conclude, for each £ > 1, that

(I- TB)ZV >0 on Bo(Rd)
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if and only if
((—A)eg)(n,;r) > 0, Vn € Z, Vp-a.e. T.

This completes the proof. [

REMARK 3.1. In Proposition 1.3, we have seen that

(34) Lin(5,Q) D Ln41(b,Q), 0<m < oo,

(35) Lm(C, Q) D L+t (C, Q), 0<m < oo.

The inclusion (3.4) is proper, and the inclusion (3.5) is also proper for any C € €.
We show below that the inclusion in (3.4) is proper by giving an example of
u € Liyn(b,Q) \ Lpt1(b,Q). To show that the inclusion in (3.5) is proper, we
need Theorem 4.4 in the next section, and thus we shall show it in Remark 4.2

right after Theorem 4.4 in the next section.

To show that the inclusion in (3.4) is proper, fix zo € R?\ {0}. For

0 <m < oo, define

Vm(dz) = km(n)8p-n gz, (dz).

ncZ
If we assume that ky,(n) > kn(n+1) > 0,Vn € Z, then

(I-Tg)vm({B "z0})
= vm({B"20}) = vm({B"Vao})
= km(n) — k‘m(n + 1) > 0.

Hence, by Theorem 3.1, v,, is the Lévy measure of some p € Lg(b, Q), provided
that

(3.6) Z km(n) < oo and }: |B 20> km(n) < oo.

n>0 n<0

Fix 0 < ¢ < 1 and let
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Then
(I = T)rvo({B™"w0}) = ko(n) — ko(n + 1)
_{ l-=¢)c", n>0
B 0, n <0
20, neiZ,
and

(I —Tg)?v({B ™z0}) <0 ifn=-1.
Thus, by Theorem 3.1, vy is the Lévy measure of a u € Lo(b, Q) \ L1(b, Q).

Starting with {ko(n),n € Z} above, define {k,,(n),n € Z},m > 1, induc-

tively as follows:

o n>0

(38) ) ={ 11 Y knoa(G), <0,

Then ‘

(I = T)vm({B™"20}) = km(n) = km(n +1)

_{(1—C)Cn’ nz0
- (1 - C)km—l(n)7 n<0
= (1= Wmar({B~"20}).

Thus

(I =T)'vm({B "20}) >0 for£=1,2,--- ,m+1, foranyncZ

and

(I —Tg)™ ?vm({B "z0}) <0, for some n € Z.
Thus, v, is the Lévy measure of some y € L, (5,Q) \ Ly+1(b, @), once again
by Theorem 3.1. In the above, it is easily seen that (3.7) and (3.8) satisfy the
condition (3.6). If one wants to construct a full measure in Ly, (b, @)\ Lm+1(b, @),
then it is enough to choose a set of linearly independent d vectors {zy, -+ ,z4}
in R¢, and to define v,, by
d
Vn(dz) = Y km(n) Y Sy-nas, (dz).
j=1

n€Z
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4. The class Lo.(C, Q). Define

Pogn () = € PRY : [ (g1 + ) "ule) < o0}
—o0
The following two theorems are extensions of some results in Bunge (1997). In
the following, C € € and Q € M, (RY).
THEOREM 4.1. Let 0 < m < 0.

G) If o € Ln(C,Q), then for any b € C\{0,1}, there ezists
m € Plogm+1(Rd) such that

(4.1) Hﬁ "9 ) ("),

where (m;") are the binomial coefficients.

(i) Let 0 < b < 1 and take p € P(R?). If there ezists my € Progm+1 (RY)
satisfying (4.1), then u € Ln(C,Q) with C = {v"}2, U {0}.

THEOREM 4.2. Lo.(C,Q) C I(R%).

Bunge (1997) showed the above theorems when d = 1. However a slight
modification of his proofs concludes Theorems 4.1 and 4.2, and thus we omit

their proofs here.

We see, from (1.5), (1.7), (1.8), and the definitions, that
(42) Ln(C,Q) CLm(C,Q), 0<m<co.

On the other hand, Bunge (1997) also showed that Ln(C,Q) N (I(R%))° # 0 if
0<m <ooandif C ={b"}22,U{0}. Hence for 0 < m < co and such a C,

Ln(C,Q) G Lin(C, Q).

However, because of Theorem 4.2, it is worthwhile to compare L (C, Q) and
Loo(C, Q). (This problem was already proposed in Maejima and Naito (1998).)
Actually we have the following.
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THEOREM 4.3. Loo(C, Q) = Loo(C, Q).

PROOF. Because of (4.2), it is enough to show that Leo(C, Q) C Leo(C, Q).
We have by Remark 2.2, Theorem 4.2 and (1.8), and Proposition 1.2 (iii)
that Loo(C, Q) = K(Lw(C,Q),C,Q) € K(I(R),C,Q) = K(P(RY),C,Q) =
Lo(C,Q). Repeating this argument, we conclude that EOO(C, Q) C
Nim<oo Lm(C, Q) = Leo(C, Q). O

As we have announced in Section 1, our main theorem in this section is the

following. Recall the definition of Z(C) stated in Section 1.
THEOREM 4.4.
(1) When =(C) # 8, Loo(C, Q) = Loo(bo, @), where by = inf Z(C).
(i) When Z(C) = 0, Loo(C, Q) = Loo([0, 00}, Q).
We need several lemmas.

LEMMA 4.1. Let 0 < m < oo. A necessary and sufficient condition for
that u € Lm(C,Q) is that u € I(R?) with the Gaussian covariance matriz A
and Lévy measure v of u satisfying the following. For any n < m + 1, for any
not necessarily distinct b; € C\{0,1} (7 = 1,2,... ,n), with B; = b?,

(4.3) (I-Tp,)---(I-Tp,)v>0 onBs(RY
and
(4.4) ¥p, 0---0¥p (A) is nonnegative definite.

PROOF. If m = 0, then the assertion is just Proposition 3.3. We assume
that the assertion is true for m, and will show for m + 1. Recall the definition

of Lm+1(C, Q), that iS,

Lynt1(C, Q) = K(Lm(ch)vch) = m K(Ln(C, Q)’baQ)
beC\{0,1}
Thus g € Ly41(C, Q) if and only if, for any b € C'\ {0, 1}, p satisfying fi(2) =
ﬁ(bQ‘z)ﬁb(z) is in L,,,(C, Q). By Proposition 3.3, the Lévy measure v,, and the
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Gaussian covariance matrix A,, of p; satisfy v,, = (I — Tye)v on Bo(R?) and
A,, = Yo (A). By the assumption of the induction, py € L,,(C, Q) if and only
if (4.3) and (4.4) hold for v, and A,, in place of v and A. Then it is equivalent
to (4.3) and (4.4) for all n < m + 2. This is the assertion for m + 1. 0O

Lemma 4.1 yields

LEMMA 4.2. p € Loo(C,Q) if and only if (4.3) and (4.4) hold for any

n>1.

REMARK 4.1. If C = {b"}22,U{0}, then, by Proposition 2.3, L,,(C, Q) =
L, (b,@) and Lemma 4.1 is reduced to Theorem 3.1 (i) & (ii). Note that if
v—Tyev > 0 on By(R?) and ¥q (A) is nonnegative definite, then v — Tynov > 0

on By(R?) and Wynq(A) is nonnegative definite for any n > 1.
In Theorem 3.1 with m = oo, the condition for {g(n,z),n € Z} is called

complete monotonicity. Namely, in general, {k(n),n € Z} is called a completely

monotone sequence if
(-1)(A%k)(n) >0 for£>0, neZ.

The following gives us an integral representation of completely monotone se-

quences.

LEMMA 4.3. If {k(n),n € Z} is completely monotone, then there exists a

unique measure p on (0,1] such that
(4.5) k(n) = / 2"p(dz), n€Z.
(0,1]

Conversely, {k(n),n € Z} having the representation (4.5) is completely mono-

tone.

PROOF. Suppose {k(n)} is completely monotone and not identically zero.
Then k(n) > 0 for all n € Z. In fact, if k(n) = 0 for some n, then, choosing
ng € Z that satisfies k(ng) > 0 and k(ng + p) = 0 for any p > 1, we have

¢
0< (—1)*A%(no —1) = (?)(—1)%(% +j—1) = k(ng — 1) — £k(ng)

j=0 M
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and thus

0 < k(no) < %k(no —1)—=0 asf— oo,

which is a contradiction. For p € Z,, we apply Theorem 1 on the Hausdorff
moment problem in p.225 of Feller (1971) to k(n — p)/k(—p), n € Z, where Z
is the set of all nonnegative integers. Then there exists a unique measure p, on

[0,1] such that

(4.6) k(n—p) = / z" pp(d), ne€Z;.
[0.1]

In particular,

(4.7) k(n) = / x"po(dz), ne€Zy.
[0,1]
On the other hand, since

k(n)=k(n+p—p) = /[ ]:c"+”pp(dm),

)

we have by the uniqueness of p, that
(4.8) po(dz) = zPpy(dz),

implying po({0}) = 0. This together with (4.7) implies (4.5) for n > 0, if we take

po as p. Furthermore, since

k(n—p)=k(n+1l-p—-1)= / 2" ppy1(da), née€Zg,
[0,1]

we have again by the uniqueness of p, that

pp(dz) = zppi1(de),

implying p,({0}) = 0. Thus from (4.6) with n = 0 and (4.8),

K(-p) = /[] pp(de) = /(O‘Hoc-"po(dm= [ a7ro(aa),

(0,1]
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which is (4.5) for n < 0. The uniqueness of p is trivial. Conversely, k(n) in (4.5)

satisfies

(—1){(A%)(n) = (‘f)(-l)% +3)

J

(§)ry /m,l]””"””(d“’)

z"(1 —z)%p(dz) > 0,
(0,1]

~IM-

=0

~

and hence {k(n),n € Z} is completely monotone. O

COROLLARY 4.1. Let0 < b < 1. If {k(n),n € Z} is completely monotone,

then there ezists a unique measure I' on [0,00) such that
k(n) :/ b"°T(da).
[0,00)

PROOF. In (4.5), change the variable z € (0,1] to a € [0,00) by a =
log z/logb, and define for E & B([0,00)),

D(E) = p ({x : lli’)iz € E}) .

k(n) = /(0’1] 2" p(dz) = /[O‘OO) T (da).

This completes the proof. [

Then from (4.5)

We extend the notion of complete monotonicity for functions on Z to that

for functions on Z*, k > 1. Let F be a function on Z*. For 1 < j < k, define
(A]F)(nl, ,nk) =F(n1,... ,n]’—{—l,... ,nk) —F(nl,... LI TREE ,nk),

and denote the ¢ times iteration of A; by Aﬁ.

DEFINITION 4.1. A function F on ZF is said to be completely monotone
if for any £; € Z4 (1 < j <k) and (ng,...,nx) € Z*,

(1)t Al AL P(ny, L) > 0.
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LEMMA 4.4. If F on ZF is completely monotone, then there exists a unique

finite measure p on (0,1]% such that

(49) F(na,... yng) = /( o),

where = (z1,... ,zx). Conversely, if (4.9) holds for F' on Z* then F is com-

pletely monotone.

PROOF. The latter part is obvious, because

(_1)£1+”'+ekA€1 e AikF(nlv . ,nk>

- /(0 1]* 2yt (1 - 1) e (1~ i) p(dz) 2 0.

We show the first part by induction with respect to k. The case k = 1 is Lemma
4.3. Suppose the assertion is true for k. Let F(ni,...,nx+1) be completely
monotone on Z*¥*1. For a fixed n € Z, F(ny,... ,ng,n), (R1,...,ng) € ZF, is
completely monotone. Thus for any n € Z, there exists a unique finite measure
pn on (0,1]% such that

(4.10) F(ny,... ,ngyn) = /(0 L)

Using the Hahn decomposition, we can verify the uniqueness even among the

class of finite signed measures. Since F(ni,...,ng,n) is completely monotone
on Zk+1
F([»")(nh vt 7nk) = (_1)ZA£+1F("‘1= e 7nk7n)
= [ e (1) A pu(e)
(0,1]*
is completely monotone on Z¥. Here we are using the notation App, = pn41—pn-

Thus by the induction hypothesis, (—1)*Afp,, should be the unique measure in

the representation of ﬁ(gyn)(nl, ... ,nk), and so

(4.11) (=1)!A%p, >0, W>0, VYneZ
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From this, we observe that p, is absolutely continuous with respect to pg for
any n € Z. Let E satisfy po(E) = 0. Then (4.11) implies that p,(E) = 0 for any
n € Z by the argument at the beginning of the proof of Lemma 4.3. Thus we

get the absolute continuity and there exists Fy such that
(4.12) pn(dz) = Fy(n)po(da).
1t follows from (4.11) and (4.12) that

(-1)*AfF.(n) >0, V£>1,

for pp-a.e. x. Use Lemma 4.3. Then, for pp-a.e. z, there exists a unique finite

measure p; on (0,1] such that

(4.13) Fy(n) = /(0 ) y" pz(dy)

and p,(F) is measurable in z for any E € B((0,1]). Combining (4.10), (4.12),
and (4.13), we have

F(ny, ... ,ng,nkq1) = /(0 et it '”x::—-‘ilp(d(l’vxk+1))7

where

= x x k41
pB) = [ polde) [ pu(teten), VB € BOI),

and conclude that the representation (4.9) is true for k£ 4+ 1 in place of k. The
uniqueness of p in the representation (4.9) is evident by the standard argument,
as the class of functions z7* --- z* with (n1,... ,nx) € Z% generates all contin-

uous functions on [0,1]¥. O
We are now ready to prove Theorem 4.4.
Proof of Theorem 4.4.

Step 1. Fix d and let I and Iy be the class of Gaussian distributions

on R? and that of purely non-Gaussian infinitely divisible distributions on R,
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respectively. We let point distributions belong to both I and Iny. Any u €
I(R?) has the decomposition p = pg * uny with pg € I and py € Iy, uniquely
up to factors of point distributions. Theorem 3.1 says that g € Loo(b, Q) if and
only if 4 € I(R?) and both g and pn are in Loo(b, Q). Also, by Lemma 4.2, we
have that i € Loo(C, Q) if and only if 4 € I(R?) and both g and puy belong to
L.(C,Q). Hence, in order to prove the theorem, we can handle Lo(C,Q) N Ig
and Lo(C, Q) N In separately.

Step 2. Let us prove that
(1)’ LOO(C, Q) NIy = Loo(b()’Q) N IN? when E(C) :/'é wa
(ii)’ Loo(C,Q) NIy = Loo([0,1],Q) N Iy, when Z(C) = 0.

We first show (1)’. Suppose p € Loo(C, Q) N In with Lévy measure v. Let
D € Bo(R?). For any k > 1, any b; € C\ {0,1}, 1 < j <k, and (ny,... ,nx) €
Z*, define with B; = b7,

(4.14) Fp(ny,...,ng) =v(By™ -+ B ™ D).
Notice that for any ¢; > 1,1 <7 <k,
(=)t AL AR Fp(ny,... nk)
=(I~Tp,)" - (I-Tg,)*v(B{™ By D).
In Lemma 4.2, we can choose the identical b; as many times as we want. Hence
(I—Tp) - (I-Tg,)%v>0 on Bo(R?).

Thus, by Lemma 4.4, there exists a finite measure pp on (0,1} such that

Fp(ny,...,ng) = / zyt - 2p*pp(de).
(O)I]k

As in Corollary 4.1, by the change of variable z = (z1,...,2%) to a =
(a1,...,ar) by a; =logz;/logh; and by defining I'p(de) = pp(dz), we have

(4.15) Fp(ni,...,ng) = / byt - b ** I'p(de).
[0,00)%
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Since by € Z(C), there exist (pi1,...,px) € ZF and b; € C \ {0,1}, 1 < j < &k,
such that

k

— P
(4.16) bo = [ 0%

=1

To show this, we start with that any b € C'\ {0,1} can be expressed as b = bé(b)
for some £(b) € Z. Let

Cn={be C\{0,1}: £(b) < n},
then C, 1+ C\ {0,1}, and thus C,, # 0 for sufficiently large n. If we let g(n) =
g.c.d{(b) : b € C,}, then Z(Cp) = bg(n). Since g(n)(> 1) is nonincreasing as

n 1 oo, there exists ng such that g(n) = g(no) for n > no. Thus

[o o]

C, C {(bg(no))k}

k=1
Since Cp, 1 C \ {0,1}, we have 5" € Z(C). Since by € Z(C) is the minimum
of Z(C), it must be that g(no) = 1. Thus

g(no) = g.c.d{L(b) : b e Cp} =1,

and there exist k > 1,b; € Cp, and p; € Z (j = 1,2,--- ,k) such that
Sk #(b;)p; = 1. Thus

=1

k
k ; ; .
bo = 1551 0 _ T

i=1
showing (4.16). Furthermore, for any 1 < i < j < k, there exist ¢;,q; € Z4 such
that b]* = b}’. Hence

Fp(ni,... ,ni+ @iy snjyooonk) = Fp(na, ... yni, .o ,n5 + 45, -, k),
which we denote by ﬁ‘D(nl,... ,nk). By (4.15),
ﬁp(nl,... ,nk) = f b?lal ~--b2"""b§‘a‘l"p(da)
[0,00)%

= /[0 " b’flal "'bzkakbjjajrp(da).
,00
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Since Fp is completely monotone in Z¥, by the uniqueness of p in the represen-

tation (4.9), we have

%% = p¥%  for T'p-ae. «
§ D

implying a; = «;. Thus
Ip([0,00)* \ {1 =g =+ = au}) =0,
and by (4.14) and (4.15),

V(bO_nQD) = Fp(np1,... ,npx)

— / b?plﬂ"'bzpkﬁfD(dﬁ).
[0,00)

= / b5 Tn(dp),
[0,00)

where we define ' p(E) = I'p({(8,...,8) : B € E}) for E € B([0,00)). Hence
v(by "QD) is completely monotone with respect to n, and thus for any £ > 1,

(I -T,e)v(D)20.

Thus by Theorem 3.1 (m = o), we conclude that p € Loo(bo, @) N In.

Conversely suppose p € Loo(bg, Q) N In. Let by,... b, € C\ {0,1}. Note
that there exists a positive integer m(j) such that b; = bg'(j). Hence

n n
H(I—Tqu)ll——- (H I+TbQ + T 2Q +"'+Tbl()m(j)—1)q)> (I——Tbg)nuzo
j:l =1

by Theorem 3.1 (m = oo). Thus by Lemma 4.2, p € L(C, Q)N Iy. This proves
(i)

We next show (i1)’. Since Loo(C, @)NINn D Loo([0, 1], @)NIN by Proposition
1.4, it is enough to show that L.(C,Q)N Iy C Ly ([0,1],Q) N Iy. We consider

two cases. Let Q be the set of all rational numbers.
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Case 1. There exist by,bs € C'\ {0,1} such that
10g bz
4.17 .
(417) 22 g q
Case 2. For any by,b, € C\ {0,1},
lOg b2
4.18 .
( ) log by

We first treat Case 1. Suppose p € Loo(C,Q) N In. Let D € Bo(R4) such that
v(8D) = 0, where 0D means the boundary of D. Choose by,by € C\ {0,1}
satisfying (4.17). Let

Fp(ni,ny) = v(b7™9b;™°D),  (n1,n2) € Z°.
We have proved (4.15) without using that Z(C) # 0. Hence
Fp(ni,n2) =/ b7t 0522 p(da),

[0,00)2

where a = (a1,a;). We can choose, by (4.17), m(k),n(k) € Z, such that

m(k) — oo, n(k) — oo and a; := b;n(k)b;n(k) — 1 as k — oo. Thus

p(b7 ™ P39 D) = Fp(m(k), —n(k))

= ‘/[ ] b;n(k)(a’—%)a(,:zf‘p(da).
0,00)

If I p({ay < az}) > 0, then we have a contradiction from the above equality, by
letting k — oo and using Fatow’s lemma. Thus, Ip({a1 < a2}) = 0. Similarly
we can show that I'p({e1 > as}) = 0 and conclude that Ip({ay # a2}) = 0.

Hence

Fp(ni,na2) =/ (b7 b52) T p(dB),

[0,00)
where T'p is defined as before. By (4.17), for any a > 0, we can choose
m(k),n(k) € Z such that bl—m(k)b;n(k) decreases to a as k — oo. Thus

v(a®D) = Jlim Fp(m(k),n(k)) = / a=PTp(dp).

100)
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This means that, for any b € (0,1) and n > 1,

v(b—"9D) = / 5"PT p(dB)

[0,00)

and thus, for any £ > 1,
(4.19) (I — Tye)'v(D) > 0.

By approximation, we observe that (4.19) is true for any D € Bo(R%). Thus
by Theorem 3.1, we get that 4 € Loo(b,Q) N In. Hence, by Theorem 2.2, u €
Loo([0,1},Q) N InN.

We next consider Case 2. In Section 1 we have defined =Z(C) for C' € €.
But, here we will use Z(C) for any C C [0,1] in the same definition. Let
p € Loo(C,Q) N In. By the assumption (4.18), we can find {Cp,n =1,2,...},
a sequence of finite subsets of C, such that b, := inf =(Cr), n 2 1, satisty

log b,
log bn+1

(4.20) €z,

and b, 11 as n — oo. To show this, we start with choosing an a; € C'\ {0, 1}
and defining C; = {ay}. Trivially, b; = inf Z(C}) = a;. Next suppose that we
are given C,, C C'\ {0, 1} consisting of n elements. By (4.18), Z(C,) # 0. Then
as in (4.16), there exist k > 1,e; € Cp, and pj € Z (j =1,2,--- , k) such that

k
(4.21) by =[] €.
Jj=1

Since Z(C) = 0, there exists ap+1 € C'\ {0,1} such that

log Ap+1
log b, #

b

and define Cpy1 by Cpy1 = Cp U{ant1}. By (4.18) again, E(Chy1) # 0, and
since Z(Cp41) C E(Cp), we have that byyq > b,. Since ¢j € Cp, C Cryq,7 =

1,2,-- ,k, we have

ej = bi’fl’(ej) for some £,,11(e;) € Z.
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Thus by (4.21),

k

b _ bpj£n+1(ej) . bzf=1 Pj£n+1(€j)

n = n+1 - Yn+1 .
i=1

Hence
log b,
log bn+1

k
= ijgnﬂ(ej) €2y,
=1

which is (4.20). Since byq; > by, logh,/logbyyy > 2. Thus b, 1 1 as n — oo.
By (4.20), we see that b, = b}, ; for some m > 2. Thus, by the repeated use of

Proposition 2.2,
Loo(bn+la Q) C Loo(bna Q)

If we let C,, ( C C') be the smallest closed multiplicative subsemigroup including
Cn U {0, 1}, then the assertion (i)’ of this theorem gives us

Loo(Crny Q) N IN = Loo(bn, Q) N In,

and thus

Loo(C,Q)NIN C () Loo(bn, @ N In = ] [ Lm(bn, Q) N In.

n>1 m<oon>1

Since b, 1 1, for any b € (0, 1), we can find n(k), m(k) > 1 such that n(k), m(k)
— oo and b:((kk)) — bas k — oo. Hence we can show, as in the proof of Theorem
2.2, that ﬂnZI L, (b,,Q) C Lyn(b,Q). Thus by Theorem 2.2, Lo(C,Q) NIy C
Lo([0,1],Q) N Iy and we conclude the assertion (ii)’.

Step 3. Next we consider Loo(C,Q) N Ig. Let pu € Ig with Gaussian
covariance matrix A. Define, for any k > 1 and b; € C \ {0,1},1 < j <k,

k k
(4.22) F,(ny,--- ,nk)=<AHb?jQ z,HbJ"-jQ z>
i=1 j=1
We note the following two facts about y € I¢. By Theorem 3.1,
(i) p € Leo(b, Q) if and only if for any z € RY,

k.(n):= (Ab"Q' 2, b”QIz)
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is completely monotone in Z, and by Lemma 4.2,

(ii) p € Loo(C, Q) if and only if for any k > 1,b; € C'\ {0,1},1 < j <k,
and any z € R%, F, in (4.22) is completely monotone in Z*.
Then we can apply the argument in Step 2 to show the statement of Theorem

4.4 for p € Lo(C,Q) N Ig by using F, above in place of Fp in Step 2. O
REMARK 4.2. As we promised in Remark 3.1, we apply Theorem 4.4 to

show that

(4.23) Ln(C,Q) 2 Lin4+1(C, Q)

for any C' € €. To show (4.23), we first note that Theorem 6.2 of Jurek (1983)
implies that (4.23) is true for C' = [0, 1], namely

(4'24) Lm([oa 1]’ Q) 2 Lm+l([0a l]a Q)

Now suppose L,,(C, Q) = L,4+1(C, Q) for some C € € and m < co. Then

Lin+2(C, Q) = K(Ln+1(C,Q),C,Q) = K(Ln(C,Q),C,Q) = Lmt1(C,Q),
and thus
Lin(C,Q) = Lo(C, Q).

By Theorem 4.4, Loo(C,Q) equals either Lo (bo, @) or Loo([0,1],Q). If
Loo(C,Q) = Leo(bo,Q), then C C {b7}52, U {0}, and thus L, (b, Q) C
L,,(C,Q) by Proposition 1.4 and by the repeated use of Proposition 2.3, which
implies

Lm(bo, Q) C Loo(C, Q) = Loo(bo, Q),
and contradicts that L, (bo, Q) 2 Lyn+1(bo, Q) as shown in Remark 3.1. If
Loo(C,Q) = Loo([0,1],Q), then

Lm([07 1]5 Q) - Lm(caQ) = Loo(c7 Q) = Loo([o’ 1]’ Q),

which contradicts (4.24). We thus conclude (4.23).

40



KSTS/RR-08/004
April 17, 1998

5. Examples for the relationship between L,,(C,1) and
anC\{O,l} L, (b,1). Let us recall Theorem 2.2, where we have proved that

for 0 < m < oo,

Ln((0,1,@) = () Lam(5,Q)

bE(0,1)

and

m([0,1,Q) = [] Lum(bQ).

be(0,1)
Then a natural question arises. If we replace [0, 1] by a general C' € €, then do
similar relations hold ? The answer is yes for m = 0 just by the definition, and
in general, as we have seen in (2.6), L,,(C,Q) C ﬂbeC\{o,l} L (b,Q). In the
following, we explicitly give C € € for which the reverse inclusion does not hold,

to answer the above question negatively.

THEOREM 5.1. Let d — 1 and 1 < m < oo. Let p and q be two prime
numbers satisfying 2(m + 1) < p < q, and let

C = {p_nlq—-n2 Ny, No (S Z+} U {0}

Then

(i) Lm(Ca 1) ;C/; ﬂbec\{o,l} Lm(ba 1)

and

(i) Zm(C1) & Miecrjouy Lm(b,1).
PROOF. We first show (i). Let u € I(R?) be a purely non-Gaussian with

Lévy measure v given by

(5.1) v=" 3 f(ni,n2)dpnigmns,

(n1,m2)€D

where
D= {('I’Ll,ng) Ny Z O,TLZ 2 3}U{(n1,2) Iy Z 1}
U{(ni1,1) : ny >3} U {(n1,0) : ny >4}
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and f(ny,n2) is determined below. Let F' be the boundary of D, that is,
F = {(0,n3) : ng 23} U {(n1,0):ny >4} U{(1,2),(2,2),(3,1)}.

Let Do = D\ (FU{(3,2)}). The function f(ni,nz) in (5.1) is determined as
follows : First define f for (ny,n,) € F by

f(O,TLQ) = 07 ng > 3)

e
(5.2) f(2,2) =imiz

and

(5.3) f(3,2) =m+ 1.

For (ny,ny) € Dy, define

(5.4) f(n1,n2) = (m+ D{f(n1 —1,n2) + f(n1,m2 — 1)},

starting from the nearest points to F' successively. We define, for convenience,
f(ny,ng) =0, (n1,n2) € Z*\ D.

The function f(ni,n2) is thus nondecreasing both in n; and in ny. Observe that

(5.5) f(na,ng) < (2(m+ 1))+,

For, first this relation is obvious for (ny,n2) € F U {(3,2)}. For (ny,nz) € Do,
if f(ny,ne — 1) and f(ny — 1, ny) satisfy (5.5), so does f(ny,n3) by (5.4). Thus
(5.5) is true. It follows from (5.5) that

(5.6) /:Oa:u(da:)z Y P f(n1,na)

(n1,m2)ED

3, (25"

ny,n2>0

- (o) <=
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Thus v in (5.1) can be the Lévy measure of some u € I(R?). We see from

(5.2)—(5.4) that

(5.7) f(n1,n2) > (m+D{f(n1 —1,n2)+ f(n1,ne — 1)} for (n1,n2) # (3,2)

and

(58) f(372) = ﬂ;_zf(za 2)'

By the monotonicity of f(ny,n,) and (5.7), for any (ni,ng) € Z? (including
(n13n2) = (3a2) )7

(5.9) f(ni,n2) > (m+1)f(ny — k1,ne — ks)

ifk; >2and ky, > 0orif ky >0 and ky > 1. Now define, for ky, ks € Z with
(k1,k2) # (0,0),

A(kl,kg)f('ﬂl,m) = f(nlanZ) - f(nl —ki,ng — kz),
and denote the ¢ times iteration of A, ,) by Aflﬁ,kg)' Write Ay for A ) and
Ay for Agqy. If welet, for j > 0and 1 <€ <m+1,

£—2j

G]' = f(‘nl —2jk1,n2 —2]]62) —_ 2] T 1

flna = (25 + ki, na — (25 + 1)k2),
then

)4
(5.10) Al fmn) =3 (f)(—l)ff(nl ~ jkung — k)

0

- [i] (;]) G, +R,

=0

~
-

where [z] is the greatest integer less than or equal to z, and

R { f(ny — Lk1,ng — Lky), if £ is even,
1o, if £ is odd.
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We are now going to show that for any (n1,n2) € Z?andany 1 <4 <m+1,

(5.11) Afkl,kz)f(nl,nz) 2 0.

If k; > 2 or if ks > 1, then (5.11) follows from (5.9) and (5.10), since

¢—2j
25 + 1

<f<m+1 forj=>0.

It remains to show (5.11) for k; = 1 and ks = 0. Namely, it is enough to show

that for 1 < £ < m +1, (n1,n2) € Z2,
(5.12) Al f(n1,n2) > 0.

Rewrite G with k; =1 and k; =0 as

6=
2 +1

g = f(nl - 2j7n2) f(nl - 2.7 - 17”2)a ] > 0.

When ny # 2, g; > 0 for j > 0 by (5.7) and thus (5.12) holds by (5.10). Let
n, = 2. Notice that

£—25 e m +2

274+1 7 2
We have g; > 0 for j > 1 by using (5.7) when ny — 27 # 3 and (5.8) when
ny —2j = 3. Also, if ny # 3, then go > 0 by (5.7). Thus if ny # 3, then g; > 0
for j > 0, and we have (5.12) for n; # 3, ny = 2. Finally, we have

for 3 > 1.

AFB.2) = 1(3,2) - 5(2,2) + Lo p(1,2)

2
2Am+1)  Ll—1) 2
= — ¢
(m+1) = =17 2 mt2
1
=E¢§wt4%ﬂﬂy+mﬂ4xm+m}2u

This concludes (5.12) for all (nq,n2) € Z? and thus (5.11).

We next examine AT'A; f(nq,ns). For (ny,ng) = (3,2), we see

(5'13) ATAlf(& 2) = Agnf(?’a 2) - Ag‘f(z’Q)
:f(372)_"mf(371) _f(272) = “m

m

0.
132 <
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We observe
(514) A?Alf(nl,ng) 2 0, V(nl,ng) ?‘—' (3,2)

To show it, let

) m—2j . .
H; = A1 f(ny,ng —2j) — 2j+i]A1f(n1,n2—2]—l), Jj=0.
Then
m ‘
(5.15) ap ot n) =3 (7 )17 - )
=0
[=22]
= H *
> ()i
=0
where

R Ay f(ny,ng —m), if m is even,
~ o, if m is odd.

By (5.7), for (n1,n2) # (3,2),

(5.16) Ay f(ni,na) > mf(ny —1,ne) + (m+1)f(ny,ny — 1)

> (m+1)f(n1,n2 — 1)

> (m+1)A1 f(n1,n2 — 1).
From this together with (5.15), we have (5.14) for ny # 3. When n; = 3, we
have H; > 0 by (5.16) if ny — 25 # 2. When ny = 3 and ny — 25 = 2, note that

m(m + 1)

Alf('?’az) = +2

Alf('?’v 1)

and

m —2j < m(m + 1)
274+1 7 m+2
Altogether we have shown that H; > 0 for j > 0 when n; = 3 and ny # 2, and

for 7 > 1.

thus we have (5.14). Particularly, notice that

(5.17) APALF(1L,2) = AP F(1,2) = £(1,2) > 0.
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On the other hand,
(5.18) ATA; f(ni,n) =0 for (nq,ny) satisfying f(n1,n2) =0,

and for (n1,ng) € D, by (5.4)

(5.19)

IA

IA;nAlf(nlanH
(n.z)f(”l,nz -7)+ Z (m)f(nl —1,n9 —j)
=0 \J =0 ™

<23 (7) 2tm e

i=0

= 2™*+(2(m + 1))mrtne,

Choose any b = p~*1¢7*2 ¢ C \ {0,1}. Then by (5.11), we have that, for any
1<<m+1,

(1-Ty)'v= Z Afkl,kz)f(nl7n2)5p“"l g2 = 0.
(n1,n2)€Z2

Thus by Theorem 3.1,
U E ﬂ L, (b,1).

beC\{0,1}

On the other hand, it follows from (5.13) that
(1= Tp-1)™(1 = Tp-1)v({p™*¢7?}) = AT'A1£(3,2) < 0.
Thus by Lemma 4.1,
#¢ Ln(C,1).
This completes the proof of (i).

We next show (ii). For ¢ > 0, define p; = p**, using the same p. We can

similarly show that

me [} Lm®1)C () Lm(b1).

beC\{0,1} beC\{0,1}
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Choose the drift to be 0. Then
f(z) = exp {t/ (e — 1)V(da:)}
0

with v in (5.1). Let us show that, for any sufficiently small ¢ > 0
(5.20) e ¢ En(C,1).

Suppose that this is not true. Then there is a sequence t,, | 0 such that p;, €
zm(C, 1). Write t = t,, for a while. Note that ¢™' € C. Then, there exists
Ptm—1 € fm_l(C, 1) such that

(5.21) fi(2) = (g™ 2) pr,m—1(2)-

Repeating this, we can find p; j—1 € Zj-l(C’, 1), 1 €7 <m—1, such that
(5.22) pri(2) = De,i(a7" 2)pr,j-1(2)-

Now, using p~! € C, we can find 7, € P(R?) such that

(5.23) pro(z) = Peo(p™ 2)(2).

It follows from (5.21)—(5.23) that

(5.24) n(z) = exp {t /Ooo(eiw - 1)1/0(dw)} )

where

vy = Z AT AL f(n1,12)0pn1 g=nz-

(n1,n2)€Z?
If we put ¢ = p~3¢”? and € = ;75, then, from (5.13), (5.14), (5.17), (5.18), and

(5.19), there exists a measure vy on {p~™1¢7"? : (ny,ng) € D} such that
(5.25) vo = —€bc + 11,

the support of 11 does not contain ¢, and fooo zvy(dz) < co. If we denote by
£, an infinitely divisible distribution on [0,00) with its characteristic function

(5.24) with the replacement of 1o by v, then by (5.24) and (5.25),

ne = ét % (Z eet(_—;:__!t_)_nécn) — est Z (5;')”(—1)n€t *Jcn-

n=0 n=0
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If we choose h € (0,¢) as small as v1([¢, ¢ + h]) = 0, we have
(5.26) (e, e+ R)) = e {&([e, ¢ + R]) — et€:((0, )}

Now recall that ¢ = ¢,, and let n — co. Then,

(5.27) ?1;5tn([c,c+h]) S ur(fe,c+ b)) =0
and
(5.28) £ ([0,h]) = 1.

Combining (5.26)-(5.28), we see that 7, ([c,c + h]) < 0 for sufficiently large n,
which is absurd. This completes the proof of the theorem. O
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