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A confluent hypergeometric system associated with Φ3

and a confluent Jordan-Pochhammer equation

By Shun Shimomura

Abstract. We treat a confluent hypergeometric system associated with Φ3. Near one
of the singular loci of irregular type, asymptotic expansions and Stokes multipliers are

obtained. Applying our results, we also clarify the asymptotic behaviour of linearly

independent solutions of a confluent Jordan-Pochhammer equation.

1. Introduction

The series

(1.1) Φ3(β, γ, x, y) =
∑

m,n≥0

(β)m

(γ)m+nm!n!
xmyn (|x| < ∞, |y| < ∞)

with (β)m = Γ(β + m)/Γ(β) (m ∈ Z) is one of the confluent hypergeometric

functions derived from Appell’s hypergeometric function F1(α, β, β′, γ, x, y) ([5],

[6], [9]). It satisfies a system of partial differential equations

(1.2)
xzxx + yzxy + (γ − x)zx − βz = 0,

yzyy + xzxy + γzy − z = 0

([2; §§5.7, 5.9]) for (x, y) ∈ P 1(C) × P 1(C). Since xzxy − zx + βzy = 0, this

system is equivalent to a completely integrable Pfaffian system with respect to

the unknown vector function (z, xzx, yzy), which possesses the singular loci x =

0, x = ∞, y = ∞ of irregular type, and y = 0 of regular type. The solutions of

(1.2), which are analytic in R2, constitute a three-dimensional vector space over

C, where R denotes the universal covering of C − {0}. In [11], we studied the

asymptotic behaviour of linearly independent solutions of (1.2) near the singular

loci x = ∞ and x = 0. Eliminating the derivatives with respect to x from (1.2), and

putting x = κ ∈ C− {0}, we obtain an ordinary differential equation of the form

(1.3) y
d3z

dy3
−

(y

κ
+ (β − γ − 1)

) d2z

dy2
−

(
1 +

γ

κ

) dz

dy
+

z

κ
= 0,
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2 Shun Shimomura

which has the singular points y = 0 of regular type and y = ∞ of irregular type. It

is easy to see that, for each fixed x = κ (∈ C−{0}), every solution of (1.2) satisfies

equation (1.3). This is also derived from the Jordan-Pochhammer equation

y(1− y)(y − κ)
d3z

dy3

+
[(

(β′ + 1)y + βκ
)
(1− y) +

(
(γ + 1)− (α + β′ + 3)y

)
(y − κ)

]d2z

dy2

+ (β′ + 1)
(
γ − (α + β′ + 1)y − βκ− (α + 1)(y − κ)

)dz

dy
− αβ′(β′ + 1)z = 0

(see [4; §3.4]) by a process of making a confluence of singular points. In fact,

replacing (α, β′, κ, y) by (1/ε, 1/ε, εκ, ε2y) and letting ε → 0, we arrive at equation

(1.3), which is one of the confluent Jordan-Pochhammer equations.

The present paper gives asymptotic expansions and Stokes multipliers of lin-

early independent solutions of (1.2) near the irregular singular locus y = ∞, and

clarify the global behaviour of the solutions of equation (1.3). As in [11] we assume

that none of the complex numbers β, γ, β − γ is an integer, and use the notation

e(λ) = exp(2πiλ) (λ ∈ C).

Recall solutions of (1.2) expressible in the form

z−1 = z−1(x, y) = (1− e(−β))−1

∫

C−1

f(β, γ;x, y, t)dt,

za = za(x, y) =
∫

Ca

f(β, γ;x, y, t)dt (a = ±2),

where

(1.4) f(β, γ;x, y, t) = tβ−γ(t− x)−β exp
(
t +

y

t

)

([11; §2]). This integrand is obtained from one corresponding to Φ2(β, 1/ε, γ, x, εy)

([1]) by the limiting procedure ε → 0. (For confluences of the cycles of integral

representations, see [3].) In each integral, the path and the branch of the integrand

are taken under the condition

(1.5) 0 ≤ arg y < π/2 < arg x ≤ π
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Confluent hypergeometric system 3

so that they have the following properties:

(1) The path C−1 starts from t = 0, encircles t = x in the positive sense, and

returns to t = 0. Then, along C−1, (arg t, arg(t − x)) varies from (π + arg y,−π +

arg x) to (π + arg y, π + arg x).

(2) The path C2 (or C−2) starts from t = 0 and terminates in t = ∞. Then,

along C2 (or C−2), (arg t, arg(t− x)) varies from (π + arg y,−π + arg x) to (π,−π)

(or (−π,−π)).

Each integral is continued analytically to the whole domain R2, if we modify the

path continuously preserving conditions imposed on (arg t, arg(t−x)) at both ends of

it. We consider the triplet of linearly independent solutions z−1, z2, z−2 of (1.2) near

the sigular locus y = ∞. (The linearly independence follows from [11; Proposition

2.1 and Theorem 3.1].) The main results concerning asymptotic expansions and

Stokes multipliers of these solutions are stated in Section 2. The proofs of them

are given in Section 3 and Section 4. In the calculation of asymptotic expansions,

the saddle point method is employed, and in the derivation of Stokes multipliers,

the monodromy matrices obtained in [11] are used. It may be interesting to treat

these Stokes multipliers from a group-theoretic point of view ([8]). In the final

section, we apply our results to equation (1.3), and clarify the global behaviour

of its solutions, namely asymptotic expansions, Stokes multipliers (near y = ∞),

and convergent series expansions in 0 < |y| < ∞. They are described explicitly by

well-known special functions. These solutions of (1.3) are expected to be applicable

to a global study of a third or higher order linear differential equation with one or

more irregular singularities (cf. [7], [10]).

2. Main results

In what follows, δ denotes an arbitrary small positive constant, R an arbitrary

one satisfying R ≥ 2.44, and δR an arbitrary one satisfying

(2.1) sin−1(2R(R2 − 1)−1) + sin−1(R−2) < δR < π/2.

For example, we can take δR = π/100 (if R ≥ 65), δR = π/5 (if R ≥ 4), and

δR = π/2− π/821 (if R ≥ 2.44).

2.1. Asymptotic expansions
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4 Shun Shimomura

Let P
(a,b)
m (s) be the Jacobi polynomial

P (a,b)
m (s) =

m∑

j=0

(
a + m

j

)(
b + m

m− j

)(
s + 1

2

)j (
s− 1

2

)m−j

(see [2; §10.8,(12),(16)]).

Theorem 2.1. The solution z−1 admits an asymptotic expansion of the form

z−1 ∼U−1(x, y) = −e(β)Γ(1− β)x−β−γ+2yβ−1ey/x+x

×
∑

m≥0

(1− β)m(1− x2y−1)β−1−2mP (1−γ,β−1−2m)
m (1− 2x2y−1)(y/x)−m

uniformly for |xy−1/2| < 1/R as y tends to ∞ through the sector | arg(y/x) + π| <
3π/2− δR.

Theorem 2.2. (i) The solution z2 admits an asymptotic expansion of the form

z2 ∼ U2(x, y) = −√πe(2β−γ)πiy−γ/2+1/4 exp(−2y1/2)

×
∑

m≥0

(m + 1)m4−m(1 + xy−1/2)−β−2mP
(−3/2+γ−m,−β−2m)
2m (1 + 2xy−1/2)y−m/2

uniformly for |xy−1/2| < 1/R as y tends to ∞ through the sector | arg y| < 3π −
δ, | arg(y/x)| < 3π/2− δR.

(ii) The solution z−2 admits an asymptotic expansion of the form

z−2 ∼ U−2(x, y) = e(γ−β)U2(x, e2πiy)

uniformly for |xy−1/2| < 1/R as y tends to ∞ through the sector | arg y + 2π| <

3π − δ, | arg(y/x) + 2π| < 3π/2− δR.

2.2. Stokes multipliers

Let S = S(θ1, θ2) denote a sector defined by

S(θ1, θ2) =
{
(x, y) ∈ R2

∣∣ | arg y − θ1| < 2π − δ, | arg(y/x)− θ2| < π − δR

}
.

We call a matrix T (S) (∈ GL(3,C)) a Stokes multiplier corresponding to the sector

S with respect to (z−1, z2, z−2), if linearly independent solutions zS
−1, zS

2 , zS
−2 such

that
t(z−1, z2, z−2) = T (S) t(zS

−1, z
S
2 , zS

−2)

satisfy

zS
−1 ∼ U−1(x, y), zS

2 ∼ U2(x, y), zS
−2 ∼ U−2(x, y)

uniformly for |xy−1/2| < 1/R as y tends to ∞ through the sector S.
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Confluent hypergeometric system 5

Theorem 2.3. We write S1 = S(−π,−3π/2), S2 = S(−π,−π/2), S3 =

S(π,−3π/2), S4 = S(π,−π/2). Then the Stokes multipliers Tj = T (Sj) (j =

1, 2, 3, 4) corresponding to these sectors with respect to (z−1, z2, z−2) are given by

T1 =




1 0 0
1− e(β) 1 0

0 0 1


 , T2 =




1 0 0
0 1 0

1− e(−β) 0 1


 ,

T3 =




1 0 0
1− e(β) 1 0

0 e(−β) + e(γ−β) 1


 , T4 =




1 0 0
0 1 0

1− e(−β) e(−β) + e(γ−β) 1


 .

3. Proofs of Theorems 2.1 and 2.2

3.1. Preliminaries

Consider the functions

τ =g(t) = t + y/t,

τ =h(t) = g(t) + (β − γ) log t− β log(t− x),

where Im log s = arg s. Integrand (1.4) is written in the form f(β, γ;x, y, t) =

exph(t). In the proof of Theorem 2.2, we use the saddle points of h(t) and g(t),

namely the roots of h′(t) = 0 and g′(t) = 0. In the following three lemmas, we

assume that |xy−1/2| < 1/2, and that |y| is sufficiently large.

Lemma 3.1. The saddle points of g(t) are t± = ±y1/2, and those of h(t) are

t±1 and t2, where t±1 = ±y1/2+O(1), t2 = x−βx2y−1(1−x2y−1)−1(1+O(y−1/2)).

Lemma 3.2. Let µ be an arbitrary positive constant.

(i) For |t− t−| ≤ |y|1/2−µ,

(3.1) g(t)− g(t−) = −y−1/2(t− t−)2(1 + O(|y|−µ)).

(ii) For |t− t±1| ≤ |y|1/2−µ,

h(t)− h(t±1) = ±y−1/2(t− t±1)2(1 + O(|y|−µ)),(3.2)

h′(t) = ±2y−1/2(t− t±1)(1 + O(|y|−µ)).(3.3)

(iii) For |t− t2| ≤ |y|−µ|x2y−1| (0 < µ ≤ 1/2),

h(t)− h(t2) = (2β)−1x−4y2(1− x2y−1)2(t− t2)2(1 + O(|y|−µ)),(3.4)

h′(t) = β−1x−4y2(1− x2y−1)2(t− t2)(1 + O(|y|−µ)).(3.5)
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Lemma 3.3. We have

h(t±1) = ±2y1/2 − (γ/2) log y + O(1),(3.6)

h(t2) = x−1y(1 + x2y−1 + O(y−1/3)).(3.7)

Let α be an arbitrary complex constant. For every non-negative integer k and

for a fixed positive integer N, we write

RN+1(α− k, σ) = (1− σ)α−k −
∑

n≤N

(k − α)n

n!
σn,

where the branch of (1 − σ)α−k is taken such that arg(1 − σ) = 0 for σ < 1. The

following lemma is a special case of [11; Lemma 5.1].

Lemma 3.4. If N ≥ Re α, then |RN+1(α−k, σ)| ≤ 2k(k +1)N+1KN |σ|N+1 in

the domain |σ| < 1/2, where KN is a positive constant independent of k.

Lemma 3.5 ([11; Lemma 5.2]). For any complex numbers a, b and for any

non-negative integer m,

(3.8)
∑

k≥0

(b)k(a + k)m

k!
ξk = m!(1− ξ)−b−mP (a−1,−b−m)

m (1− 2ξ)

in the domain |ξ| < 1.

In order to calculate the asymptotic expansion of z2 as y tends to ∞, we need

to modify the path of integration C2, for each (x, y) satisfying |xy−1/2| < 1/R, in

such a way that C2 possesses the following properties.

(a) C2 consists of three curves Γ−, Γ0, Γ+ such that

(a.1) Γ0 is an arc passing through t = t− and lying inside the circle K0 defined

by |t− t−| = |y|1/3;

(a.2) both ends a+, a− of Γ0 are located on K0;

(a.3) Γ− (or Γ+) is a curve starting from a− (or a+), tending to ∞ (or 0), and

lying outside the circle K0.

(b) C2 lies outside the circles |t− t1| = |y|1/4, |t− t2| = |β||y|−1/4|x2y−1|.
(c) g(t)− g(t−) ≤ 0 for t ∈ Γ0.

(d) (d/dρ)Re h(t) ≤ −c, for t ∈ Γ− (or t ∈ Γ+), in which c is a positive

constant and ρ = ρ(t) denote the length of a part of h(Γ−) (or h(Γ+)) from h(a−)

(or h(a+)) to h(t).
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Confluent hypergeometric system 7

Lemma 3.6. If (x, y) (∈ R2) satisfies |xy−1/2| < 1/R (R ≥ 2.44), |y| > R∞,

(3.9) | arg y| < 3π − δ, | arg(y/x)| < 3π/2− δR,

then we can modify the path C2 continuously with respect to (x, y) preserving the

properties above, where δ and δR are positive constants given in Section 2 and R∞

is a sufficiently large positive constant.

Proof. First consider the special case where arg x = arg y = 0, |xy−1/2| <

1/R, and β, β − γ ∈ R− Z. Take the path C2 to be the negative real axis passing

through t = t− = −y1/2. It is expressed as C2 = Γ−∪Γ0∪Γ+ with Γ− : t ≤ a0
−, Γ0 :

a0
− ≤ t ≤ a0

+, Γ+ : a0
+ ≤ t < 0, where a0

− = t− − y1/3, a0
+ = t− + y1/3. Then the

images S0 = g(Γ0), T 0
− = h(Γ−), T 0

+ = h(Γ+) are included in the negative real

axis and expressed as S0 : g(a0
+) ≤ τ ≤ g(t−) = −2y1/2, T 0

− : τ ≤ h(a0
−), T 0

+ :

τ ≤ h(a0
+), respectively. Observing that t1 − (−t−) = O(1), we can verify that C2

has the properties above.

Next we consider the case where arg x = arg y = 0 is not necessarily satisfied

and β, β − γ ∈ C − Z. Take the segment S : τ = g(t−) − σ (−2|y|1/6 ≤ σ ≤ 0)

in the τ -plane. By (3.1) the inverse image g−1(S) passes through t− and intersects

the circle |t− t−| = |y|1/3 at a−, a+, which are continuous in y and, in case arg x =

arg y = 0, coincide with a0
−, a0

+, respectively. We wish to choose curves T− and T+

in the τ -plane with the following properties.

(i) T− (or T+) is a curve starting from h(a−) (or h(a+)) and tending to ∞,

and lies outside the circles |τ − h(t1)| = 2, |τ − h(t2)| = |β|(1 + R2)2.

(ii) (d/dρ)Re τ ≤ −c, for τ ∈ T− (or τ ∈ T+), where ρ denotes the length of a

part of T− (or T+) from a− (or a+) to τ.

(iii) T− (or T+) is a continuous modification of T 0
− (or T 0

+).

Let δ′R be a sufficiently small positive constant such that

(3.10) δR > sin−1(2R(R2 − 1)−1) + sin−1(R−2) + δ′R

(cf. (2.1)). Note that g(±t−) = ∓2y1/2, and that (a± − t−1)2/(a± − t−)2 =

1 + O(|y|−1/2). We have H± = (h(a±) − h(t−1))/(g(a±) − g(t−)) = 1 + o(1) (cf.

(3.1), (3.2)). Hence, by (3.1) and by the definition of S given above,

(3.11.) h(a±) = h(t−1) + H±(g(a±)− g(t−)) = h(t−1)− |y|1/6(1 + o(1))
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Furthermore (3.6) implies that

(3.12) h(t∓1) = g(±t−)− (γ/2) log y + O(1).

Since |xy−1/2| < 1/R, R ≥ 2.44, it follows from (3.7) that

(3.13) |g(±t−)|/|h(t2)| < 2R(R2 − 1)−1 + o(1) < 0.99 + o(1).

By these estimates, if |y| is sufficiently large, as long as

| arg g(−t−)| < 3π/2− δ/2,(3.14)

| arg h(t2)| < 3π/2− θ(x, y)− δ′R(3.15)

with θ(x, y) = sin−1(|g(±t−)|/|h(t2)|) < π/2, we can draw the curves T− and T+

with the properties above (cf. Figures 3.1 and 3.2).

Figure 3.1.

Figure 3.2.

Once these curves are constructed, we obtain the desired modification C2 = Γ− ∪
Γ0∪Γ+, where Γ− (or Γ+) is one of the connected components of the inverse image

h−1(Γ−) (or h−1(Γ+)) tending to t = ∞ (or t = 0), and Γ0 = {t ∈ g−1(S) | |t−t−| ≤
|y|1/3}. Since (3.14) is written as | arg y| < 3π − δ, it remains to verify that (3.15)

is valid in sector (3.9). Note that arg h(t2) = arg(y/x) + arg(1 + x2y−1 + o(1)) (cf.

(3.7)). For sufficiently large |y|, using (3.10), (3.13) and the inequality | arg(1 +

x2y−1 + o(1))| < sin−1(R−2) + o(1), we derive (3.15) from (3.9). Thus the lemma

is proved. ¤
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Lemma 3.7. Under the same hypotheses as in Lemma 3.6, for the path C2 =

Γ− ∪ Γ0 ∪ Γ+ given above, we have
∫

Γ−∪Γ+

exph(t) dt = y−γ/2+1/4 exp(−2y1/2)E(x, y)

with E(x, y) = O(exp(−|y|1/6/2)).

Proof. Since 1/h′(t) is analytic at t 6= t±1, t2, from (b), (3.3), (3.5) combined

with the maximum modulus principle, it follows that |dt| = |1/h′(t)||dh/dρ|dρ =

O(|y|1/4)dρ for t ∈ Γ−. The property (d) yields Re(h(t)−h(a−)) ≤ −cρ for t ∈ Γ−.

Using (3.6), (3.11) and this inequality, we obtain

| exph(t)| ≤ e−cρ| exph(a−)| = e−cρ
∣∣∣exp

(
h(t−1)− |y|1/6(1 + o(1))

)∣∣∣
≤ e−cρ|y−γ/2 exp(−2y1/2)| exp(−|y|1/6/2)

for t ∈ Γ−. From this estimate and a similar one for t ∈ Γ+, the lemma immediately

follows. ¤

3.2. Proof of Theorem 2.2

It is sufficient to show the asymptotic representation of z2, from which we can

derive that of z−2 by using the relation

(3.16) z−2(x, y) = e(γ−β)z2(x, e2πiy)

(see [11; Theorem 3.2]). Assume that (x, y) satisfies the hypotheses of Lemma 3.6,

and that the path C2 has the properties (a),...,(d). Consider an integral of the form

(3.17) I =
∫

Γ0

tβ−γ(t− x)−β exp(t + y/t) dt.

We put t = y1/2(σ − 1), in which σ moves along a curve Γ∗0 inside the circle

|σ| = |y|−1/6. Taking arg t and arg(t − x) into consideration, we can write t =

eπiy1/2(1 − σ), t − x = e−πiy1/2(1 − σ)(1 + xy−1/2(1 − σ)−1) along Γ0, where

arg(1 − σ) → 0, arg(1 + xy−1/2(1 − σ)−1) → 0 as σ → 0, xy−1/2 → 0. Observe

that g(t) = t + y/t = −2y1/2 − y1/2σ2 − y1/2σ3(1− σ)−1. We wish to calculate an

asymptotic expansion of the integral

(3.18) J = e(γ−2β)πiy(γ−1)/2 exp(2y1/2) I =
∫

Γ∗0

w(x, y, σ) exp(−y1/2σ2) dσ,
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10 Shun Shimomura

where

w(x,y, σ) = (1− σ)−γ

(
1 +

xy−1/2

1− σ

)−β

exp
(
−y1/2σ3

1− σ

)
(3.19)

=
∑

k≥0,p≥0

(β)k

k!p!
(−xy−1/2)k(−y1/2)pσ3p(1− σ)−γ−k−p

for |xy−1/2| < 1/R, |σ| ≤ |y|−1/6. Let N be an arbitrary large fixed positive integer.

By Lemma 3.4,

(1− σ)−γ−k−p =
N∑

n=0

(γ + k + p)n

n!
σn + O

(
2k+p(k + p + 1)N+1σN+1

)
.

Hence series (3.19) is written in the form

(3.20)
∑

k≥0

N∑
p=0

N∑
n=0

(β)k(γ + k + p)n

k!p!n!
(−xy−1/2)k(−y1/2)pσ3p+n + E(x, y, σ).

Here, for |xy−1/2| < 1/R, |σ| ≤ |y|−1/6,

E(x, y, σ) = O


∑

k≥0

|(β)k|
k!

Gk(N, y, σ)R−k




with

Gk(N, y, σ) =
∑

p≥N+1

N∑
n=0

|(γ + k + p)n||y1/2σ3|p
p!n!

+ 2k
∑

p≥0

(k + p + 1)N+1

p!
|σ|N+1|2y1/2σ3|p.

Observing that
∑N

n=0(1/n!)|(γ + k + p)n| = O(pN (k + |γ|+N +1)N ) uniformly for

p ≥ N + 1, k ≥ 0, and that (k + p + 1)N+1 ≤ (k + 1)N+1(p + 1)N+1 uniformly for

p ≥ 0, k ≥ 0, we have

(3.21) E(x, y, σ) = O(|y1/2σ3|N+1 + |σ|N+1).

From (c) and the fact that, in case arg y = 0, the path Γ∗0 coincides with the segment

from t = t− + y−1/6 to t = t− − y−1/6, it follows that
∫

Γ∗0

σq exp(−y1/2σ2) dσ(3.22)

=
{ −Γ((q + 1)/2)y−(q+1)/4 + O(exp(−|y|1/6)) (q : even),

O(exp(−|y|1/6)) (q : odd).
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Substitute (3.20) and (3.21) into (3.18), and put N = 2M, n + p = 2m. Then, by

(3.22), the integral J becomes

(3.23) −√πy−1/4
M∑

m=0

(1/2)my−m/2
∑

k≥0

(β)k

k!
Kk,m(−xy−1/2)k + O(y−(M+1)/2),

where

Kk,m =
2m∑
p=0

(m + 1/2)p(−γ − k − 2m + 1)2m−p

p!(2m− p)!
=

(γ − 1/2 + k −m)2m

(2m)!
.

Using (3.8), we have an asymptotic expansion of I:

I = e(2β−γ)πiy−(γ−1)/2 exp(−2y1/2) J ∼ U2(x, y)

uniformly for |xy−1/2| < 1/R as y tends to ∞ through (3.9). Combining this

formula with Lemma 3.7, we arrive at the asymptotic representation of z2.

3.3. Proof of Theorem 2.1

By [11; Proposition 2.2,(2.8)], we have

z−1(β, γ;x, y) = eβπie(β−γ)x−βyβ−γ+1z1(β, β − γ + 2; e2πiy/x, y),

in which z1(β, γ;x, y) is a solution of (1.2) admitting an asymptotic expansion of

the form

z1(β,γ;x, y) ∼ −e−βπiΓ(1− β)xβ−γex+y/x

×
∑

m≥0

(1− β)m(1− x−2y)β−1−2mP (γ−β−1,β−1−2m)
m (1− 2x−2y)x−m

uniformly for |x−2y| < 1/R1 as x tends to ∞ through the sector | arg x − π| <

3π/2 − δR1 (cf. [11; Theorem 4.1]). Here R1 and δR1 are arbitrary constants

satisfying R1 > 2 and 2 sin−1(R−1/2
1 ) < δR1 < π/2. Putting R1 = R2, δR1 = δR,

from the fact above, we obtain the desired asymptotic representation as y/x tends

to ∞.

4. Proof of Theorem 2.3

4.1. Preliminaries

Consider the column vector functions u(x, y) = t(z−1, z2, z−2), U(x, y) =
t(U−1(x, y), U2(x, y), U−2(x, y)) (cf. Section 2). From [11; Proposition 2.1,(2.3)

and Theorem 3.2], we derive the following lemma.
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Lemma 4.1. We have u(xe2πi, y) = M ′
1u(x, y), u(x, ye2πi) = M ′

2u(x, y),

where

M ′
1 =




e(−γ) e(−β) −e(−γ)

e(−γ) − e(β−γ) e(−β) e(β−γ) − e(−γ)

e(−β) − 1 0 1


 ,

M ′
2 =




1 −1 e(β−γ)

0 0 e(β−γ)

0 −1 e(β−γ) + 1


 .

The formal monodromy matrices are given by the following lemma.

Lemma 4.2. We have U(xe2πi, y) = P1U(x, y), U(x, ye2πi) = P2U(x, y),

where

P1 =




e(−β−γ) 0 0
0 1 0
0 0 1


 , P2 =




e(β) 0 0
0 0 e(β−γ)

0 −e(−β) 0


 .

4.2. Proof of Theorem 2.3

By Lemma 4.1,

z2(xe−2πi, y) = (e(β) − 1)z−1(x, y) + z2(x, y),(4.1)

z−2(xe2πi, y) = (e(−β) − 1)z−1(x, y) + z−2(x, y).(4.2)

Assume that (x, y) ∈ S1. By Theorems 2.1 and 2.2, we have

(4.3) z−1 ∼ U−1(x, y), z−2 ∼ U−2(x, y).

Since | arg(y/(xe−2πi)) − π/2| < π − δR, it follows from Theorem 2.2 and Lemma

4.2 that z2(xe−2πi, y) ∼ U2(xe−2πi, y) = U2(x, y). This relation and (4.3) combined

with (4.1) yield the matrix T1. In the sector S2, observing that | arg(y/(xe2πi)) +

5π/2| < π − δR and using (4.2), we can derive T2 in a similar way. If (x, y) ∈ S3

then (xe−2πi, ye−2πi) ∈ S1. Hence, by Lemmas 4.1 and 4.2, we have u(x, y) =

M ′
1M

′
2u(xe−2πi, ye−2πi) = M ′

1M
′
2T1U(xe−2πi, ye−2πi) = M ′

1M
′
2T1P

−1
1 P−1

2 U(x, y),

from which T3 = M ′
1M

′
2T1P

−1
1 P−1

2 follows. Using the fact that (x, y) ∈ S4 implies

(xe−2πi, ye−2πi) ∈ S2, we also derive T4 = M ′
1M

′
2T2P

−1
1 P−1

2 . Thus the proof is

completed.
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5. Confluent Jordan-Pochhammer equation (1.3)

In equation (1.3), assume that the constant κ ∈ C−{0} satisfies −ε < arg κ <

2π+ε, where ε is a small positive constant. Consider the triplet of linearly indepen-

dent solutions (zκ
−1, z

κ
2 , zκ

−2) of (1.3) near y = ∞, in which zκ
−1 = z−1(κ, y), zκ

2 =

z2(κ, y), zκ
−2 = z−2(κ, y). By L

(α)
ν (ξ) we denote the Laguerre polynomial

L(α)
ν (ξ) =

1
ν!

eξξ−α

(
d

dξ

)ν

(e−ξξν+α) =
ν∑

j=0

(
ν + α

ν − j

)
(−ξ)j

j!
.

Let δ be an arbitrary small positive constant.

Theorem 5.1. The solution zκ
−1 admits an asymptotic expansion of the form

zκ
−1 ∼ Uκ

−1(y) = −e(β)Γ(1− β)eκκ−β−γ+2yβ−1ey/κ
∑

n≥0

(1− β)nκnL(1−γ)
n (−κ)y−n

as y tends to ∞ through the sector | arg y − arg κ + π| < 3π/2− δ.

Theorem 5.2. (i) The solution zκ
2 admits an asymptotic expansion of the

form

zκ
2 ∼ Uκ

2 (y) = −√πe(2β−γ)πiy−γ/2+1/4 exp(−2y1/2)
∑

n≥0

Qn(β, γ;κ)y−n/2

with

Qn(β, γ;κ) =
n∑

m=0

(β)n−m(3/2− γ − n)2m

4m(n−m)!m!
(−κ)n−m

as y tends to ∞ through the sector −3π/2 + arg κ + δ < arg y < min{3π/2 +

arg κ, 3π} − δ.

(ii) The solution zκ
−2 admits an asymptotic expansion of the form

zκ
−2 ∼ Uκ

−2(y) = e(γ−β)Uκ
2 (e2πiy)

as y tends to ∞ through the sector −7π/2 + arg κ + δ < arg y < min{−π/2 +

arg κ, π} − δ.

Proofs of Theorems 5.1 and 5.2. It is sufficient to show that, after rear-

ranging the terms of the formal series U−1(κ, y) (or U2(κ, y)) in Theorem 2.1 (or

Theorem 2.2), we obtain the asymptotic expression Uκ
−1(y) (or Uκ

2 (y)). By (3.8),
[
−e(β)Γ(1− β)κ−β−γ+2yβ−1ey/κ+κ

]−1

U−1(κ, y)

=
∑

m≥0

∑

k≥0

(1− β)m+k
(2− γ + k)m

m!k!
κm+2ky−m−k =

∑

n≥0

(1− β)nκnL(1−γ)
n (−κ)y−n
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(n = m + k), which implies Theorem 5.1. Observing that

[
−√πe(2β−γ)πiy1/4−γ/2 exp(−2y1/2)

]−1

U2(κ, y)

=
∑

m≥0

∑

k≥0

(β)k(γ − 1/2 + k −m)2m

4mm!k!
(−κ)ky−(m+k)/2,

and putting m + k = n, we obtain the asymptotic series Uκ
2 (y). Thus the theorems

are verified. ¤

For a sector Σ (⊂ R), we call a matrix Tκ(Σ) (∈ GL(3,C)) a Stokes multiplier

corresponding to Σ with respect to (zκ
−1, z

κ
2 , zκ

−2), if linearly independent solutions

zκ,Σ
−1 , zκ,Σ

2 , zκ,Σ
−2 such that

t(zκ
−1, z

κ
2 , zκ

−2) = Tκ(Σ) t(zκ,Σ
−1 , zκ,Σ

2 , zκ,Σ
−2 )

satisfy

zκ,Σ
−1 ∼ Uκ

−1(y), zκ,Σ
2 ∼ Uκ

2 (y), zκ,Σ
−2 ∼ Uκ

−2(y)

as y tends to ∞ through Σ. Let Σ− and Σ+ be sectors defined by

Σ− =
{
y ∈ R ∣∣ −5π/2 + arg κ + δ < arg y < −π/2 + arg κ− δ

}
,

Σ+ =
{
y ∈ R ∣∣ −3π/2 + arg κ + δ < arg y < π/2 + arg κ− δ

}
.

Then the Stokes multipliers corresponding to these sectors with respect to

(zκ
−1, z

κ
2 , zκ

−2) are given by the following theorem, which immediately follows from

Theorem 2.3.

Theorem 5.3. We have

Tκ(Σ−) = T1, Tκ(Σ+) = T2, if −ε < arg κ ≤ π/2,

Tκ(Σ−) = T1, Tκ(Σ+) = T4, if π/2 < arg κ ≤ 3π/2,

Tκ(Σ−) = T3, Tκ(Σ+) = T4, if 3π/2 < arg κ < 2π + ε,

where Tj (j = 1, ..., 4) are matrices given in Theorem 2.3.

Remark. When arg κ = π/2 (or arg κ = 3π/2), we may also take Tκ(Σ+) =

T4 (or Tκ(Σ−) = T3).
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Around the regular singular point y = 0, we consider linearly independent

solutions zκ
−3, zκ

0 , zκ
3 expressible by the connection formulas

zκ
−3 = (1− e(−β))zκ

−1 + e(−β)zκ
2 − zκ

−2,

zκ
0 = (e(γ−β) − 1)zκ

−1 − e(γ−β)zκ
2 + zκ

−2,

zκ
3 = −e(γ−β)zκ

2 + zκ
−2

(cf. [11; Proposition 2.1 and (3.2)]). From [11; Theorem 3.1], we obtain the con-

vergent series expansions of these solutions.

Theorem 5.4. For y ∈ R, we have

zκ
−3 =

2πi

Γ(γ)

∑

n≥0

1
(γ)nn!

F (β, γ + n, κ)yn,

zκ
0 =

2πieγπiΓ(1− β)
Γ(γ − β)Γ(2− γ)

κ1−γ

×
∑

n≥0

(γ − 1)n(−κ)−n

(γ − β)nn!
F (β − γ + 1− n, 2− γ − n,−κ)yn,

zκ
3 = − 2πieβπi

Γ(β − γ + 2)
κ−βyβ−γ+1

×
∑

n≥0

1
(β − γ + 2)nn!

( n∑
m=0

(β)m(−n)m(−κ)−m

m!

)
yn,

where F (a, c, x) = 1F1(a, c, x) is Kummer’s confluent hypergeometric function.
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g(−t−) g(−t−) g(t−) g(t−)

g(−t−) g(−t−) g(t−) g(t−)

h(t1) h(t1) h(t2) h(t2) h(a−) h(a−)

h(t1) h(t1) h(t2) h(t2) h(a−) h(a−)

θ(x, y) θ(x, y) T− T− 0 0 θ(x, y) θ(x, y) T− T− 0 0

π/2 < arg g(−t−) < 3π/2− δ/2,

−3π/2 + θ(x, y) + δ′R < arg h(t2) < −π/2

−π/2 ≤ arg g(−t−) ≤ π/2,

−3π/2 + θ(x, y) + δ′R < arg h(t2) < −π/2
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