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GROUPS OF QUANTUM VOLUME PRESERVING
DIFFEOMORPHISMS AND THEIR BEREZIN REPRESENTATION

HIDEKI OMORI*), YOSHIAKI MAEDA®), NAOYA MIYAZAKI*) AND AKIRA YOSHIOKA®)

INTRODUCTION

In [0.2], the first author gives the notion of generalized Lie groups. An idea of defining
this notion is intuitively to view one parameter subgroups in a topological group as a sort
of straight lines. Since one can regard infinitesimal components of differentiable curves
as infinitesimal segments of one parameter subgroups, it is possible to make a notion of
derivatives in terms of group operations. Therefore, infinite products of such infinitesimal
components are defined as product integrals.

A generalized Lie group is in a sense a minimal notion in which deriwvatives and product
integrals are well-defined, but the manifold structure is not requested. Though one may
loose a manifold structure, this notion has a categorical advantage:

(1) every closed subgroup of a generalized Lie group is a generalized Lie group
(2) every factor group by a closed normal subgroup is a generalized Lie group.

Since we are dealing only with first derivatives and first order differential equations, it is
not so strongly requested that the total space is a locally Euclidean space. Every projective
limit of a system of Banach Lie groups is a generalized Lie group, and hence every locally
compact group is a generalized Lie group.

However, a manifold structure is the most fundamental structure to consider higher-
order calculus. A regular Fréchet Lie group defined in [OMYK1] or in [Mil] is a combined
notion of generalized Lie groups and C* Fréchet manifolds where the group operations are
C°°. In other words, a regular Fréchet Lie group is a Fréchet Lie group defined in [Les] on
which product integrals converge. Any covering group of a regular Fréchet Lie group is a
reqular Fréchet Lie group.

A strong ILH-Lie group or a strong ILB-Lic group defined in [0.1] is a combined notion
of Fréchet Lie groups and manifold structures given by inverse limits of separable Hilbert
or Banach manifolds. Every Hilbert (resp. Banach) Lie group is a strong ILH-Lie (resp.
ILB-Lie) group, and an automorphism group of a primitive structure on a closed manifold
is a typical example of a strong ILH-Lie group (cf. [0.2]).

However, strong ILH-Lie groups provide a very solid notion. Such groups appear only
in a concrete examples.

In contrast, regular Fréchet Lie groups are amenable objects to treat. The reason is that
the following two theorems holds which has been developed in [OMYK1]:
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Theorem I. Let G be a connected, simply connected regular Fréchet Lie group, and let H
be a regular Fréchet Lie group. Let g, b be the Lie algebras of G, H respectively. If there
is a continuous homomorphism ¢ : g — b, then there is a C* homomorphism ® : G — H
such that d® = .

Thus, the local structure of a reqular Fréchet Lie group is determined by its Lie algebra.

Theorem II. (Extension theorem) In the exact sequence of Fréchet Lie groups
1-NL5G5G— 1,

suppose that N and G are regular Fréchet Lie groups, i and m are C™ and there exists a
C* local section v : U — G where U is an open neighborhood of € of G satisfying wy =id..
Then, G is a regular Fréchet Lie group.

In this paper, we apply Theorems I, IT to make an example where these three kind of
infinite dimensional Lie groups appear on the same stage.

Statement of theorems and comments
Let Dqa(S5?) be the group of all volume preserving C* diffeomorphisms on 5 2. This is
a connected strong ILH-Lie group with the Lie algebra of all divergence free vector fields
To(Ts2) (cf. [0.2]). T'a(Ts2) is isomorphic to (CF(S?)/R,{, }); the space of all Cc*>
potential functions with the canonical Poisson bracket {, }
I'o(Ts2) and Do (S?) coincide with the space of all derivations of the Poisson algebra
(C$(8?),,{, }) and the group of all automorphisms of (C¥(5%),-,{, }) respectively.
In this paper, we present the following items:
(C.1) a complete topological associative algebra (V, x) over C with a special central ele-
ment p as a quantum version of the Poisson algebra (C(SH,{, }:
(C.2) amatrix representation of the algebra (V, *) such that p is represented as a diagonal
matrix i = —diag{l1,2" s, - k11, -} where Iy is the identity matrix of rank
k.

Moreover, we show

(C.3) Matrices obtained by (C.2) coincides with the Berezin representation on the Rie-

mann sphere by using Kihler polarization (cf.[CGR]).

Minding that j is invertible, we consider an algebra V[u~] by joining the inverse Tt

to the algebra V. Since p is represented as above and every a € V commute with u by
(C.1), a € V is represented as a blockwise diagonal matrix such that each block is finite
rank. Next, we show:

(C.4) p~ 1%V forms a Lie algebra under the commutator bracket, and there exists a
matrix representation of the Lie algebra (u= 1V, [, ]) as a projective limit of finite
dimensional Lie algebras of matrices.

By (C.4), we can consider the group Gy generated by exp(p~'*V) as a projective limit of
finite dimensional Lie groups, hence Gy is a generalized Lie group. We denote these by

Gy =lmG,, p 'xV=limgn.

Remark that the projective limit topology on p 1%V is much weaker than the original

topology.
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On the other hand, we see that V consists of functions which is written asymptotically
in the form

oo fotmeft o p s fiob e, fi € CSY).

Let = '+ Vg be the Lie subalgebra of all p~ !« f such that fo € vV—1CF(S?) with the
relative topology from p~! x V. Such Lie algebra is called a top term pure imaginary Lie
subalgebra. The following is the list of claims for the Lie algebra p Vg

(C.5) There exists a simply connected regular Fréchet Lie group Gy with the Lie algebra
nwo Ty Vk.

(C.6) There exists a continuous homomorphism 7 from Gy onto Dq(S?), whose kernel is
the group generated by the Lie subalgebra with constant top terms {fo = const.}.

(C.7) There is a homomorphism ¢ from Gy into Gy such that the derivative (d®). at the
identity is the natural inclusion of the Lie algebra p % Vg into =+ V.

We remark that the existence of ® in (C.7) is a direct conclusion by Theorem I. Let p, be
the natural projection p~'xV — g,, which is viewed as a Lie algebra homomorphism from
1+ YV with the original topology. Since Gy and G, are regular Fréchet Lie groups and
Gy is simply connected, there exists a C* homomorphism @, : Gy — Gp,and & = lim @,
is the desired homomorphism.

It is known that there is no strong ILB-Lie group with the complexified Lie algebra
I'o(Ts:) ®C as the Lie algebra (cf. [0.2] §VIL, Corollary 4.4 and a remark after Definition
4.5). There may be no regular Fréchet Lie group with the Lie algebra p~! % V. The
claim (C.4) shows that there is a generalized Lie group with the Lie algebra pu=! %V if the
projective limit topology from finite dimensional Lie algebras is given to this algebra.

To obtain the regular Fréchet Lie group Gy, we first construct the regular Fréchet Lie
group GVy whose Lie algebra is the Lie algebra (V,[, ]«) as the group of all invertible
elements of the algebra (V, *). In fact, GV is an open subset of V.

Since p~1xVgp/V = CF(S?), we next construct a regular Fréchet Lie group G(_1) with
the Lie algebra (C(S?), {, }). Remarking that this Lie algebra is isomorphic to the direct
product R x I'g(Tsz) (cf. [0.2] §VIIL, Theorem 3.2.), we see G(_1) = S1 x Da(S?). This
is in fact a strong ILH-Lie group.

Suppose now there is an abstract group G without topology, such that the following
exact sequence holds:

(0.1) 1 -GV 5 G5 Gy —1

To apply extension theorem (Theorem II), we first have to make G a Fréchet Lie group
such that i, and 7 are C*°, and there is a C local section 7. Such structure is given, if
there is an open neighborhood U of the identity & in G(_1) and a mapping 7 : U — G such
that 7 = id. and with the following properties:
(Ext.1) The mapping (g,n) — 7v(g)n gives a onc-to-one correspondence of U x GV, onto
T~ HU). ) ) )
(Ext.2) The mapping 7y : V x V — GV, defined by (g, h) = v(gh)"v(g)v(h), is C*,
where V is a neighborhood of € such that VicUandV-1i=V. ‘
(Ext.3) The mapping a. : V x GV, — GV, defined by a.(§,m) = v(g)~ m~(g) is C*°.
3
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The group G without topology in (0.1) is constructed at first in the group GF 0 of
invertible Fourier integral operators on R* (cf. Theorem 1.1), and the properties (Ext.1- 3)
are shown also in this group. Hence, we make G a regular Fréchet Lie group. Gy is the
universal covering group of G.

We use this routine at several stages to construct regular Fréchet Lie groups, though we
do not give details.

1. WICK ALGEBRA AND ITS EXTENSION

We recall the Wick algebra W: a noncommutative associative algebra W over C gener-
ated by {h, (1, (1, (2, (2} with the relations:

(1) (G & = —2R8s;, (GG = (G &) =0,

where h is a positive real parameter. The parameter i commutes with every element of
W. W has a canonical involutive anti-automorphism a — @. We emphasize the product in
W by *. Set p as

(1.2) p=CxC+Gxlo=CG*xC+Gx*Ca

Our first task is to make a topological completion (in a sense) of W. Let ¢1,81,C2, 6o
be complex coordinates on C? x R,. We consider C[(, ¢, 1] as the set of polynomials on
C? x R,. The Wick algebra W is linearly isomorphic to C[¢, ¢, B and the product * is
given by the Moyal product formula:

(1.3) a*b:aexph{%-gg—a-%}b.

where
e —_ o —_ .
F(3g -8 — 0 - Br)g =Y (0, f - 0c.9— 0¢.f - 9¢.9)

%

(cf. [MO] for these notations and several properties). Thus, we have
(1.4) p="C G+ GG

Now, we define a class £™(C2 x Ry) (m € Z) of smooth functions on C? x R as
follows: Take a cut-off function ¢(t) such that ¢(t) = 0 around ¢ = 0, and ¢(t) = 1 for
¢t > 1/2. Then, f is an element of Y™(C? x Ry) if for every integer k < m, there exists a
set of functions fim, fm—1,--- »fx on §® x Ry such that

m=1 k _ k1

¢(p)(f_fmp%“fm—l'/) 2 V—fkpf)p 2

is smooth and bounded on C? x R, where p~% is computed by the ordinary product -.
We write

(15) F~ fmp® + o1 p™ T 4t frop® 0 fr = fulp,h) € C(S® x Ry).
4
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and we call the right hand side an asymptotic expansion of f.
We set

£T0(C? x Ry) =[J57™(C* x Ry), S¥(C?xRy) = J=™(C? x Ry).
The topology for %(C? x R ) is given as follows: For every m € Z,, we set
(1.6) LO(C?xRy) = @C“’(S3><R+)¢(p)p_§ @ M HD(CITxRy).
k=0

Giving the product topology of the uniform C* topology, which is denoted by Tr,, we
give the projective limit topology lim Ty, to £°(C2xR..). L%(C?xRy) is then a complete
topological vector space containing $7°(C?2xR,) as a closed subspace.
We make £™(C? x R;) (m > 0) a topological space by identifying this space with
$0(C? x R4 )(¢(p)p)™, and give the inductive limit topology for £°(C? x Ry).
Identifying C? with R*, x-product extends continuously to the space L®(C? x Ry) by
the following oscillatory integral formula:

frg= os—// Flz+ X,y +hY)glz + X',y + hY )XY -YXD gx ay ax'ay’,

where = = (x1,72), XY’ =YX’ = 3 (X;Y/ - Y;X]) and dX = dX,1dX>. By taking the
Taylor expansions of f and g with respect to X,Y, X', Y' up to an appropriate order,
x-product f * g is actually obtained from the above oscillatory integral.

It is known that

TF(CZ x Ry) * BHC? x Ry) € TFHHC? x Ry)

(17) [Zk(cz x R+),Zl(02 x R.},)} c Ek-+l—2(CZ x R+)

It follows that $2(C? x Ry) forms a Lie algebra under the commutator bracket. Let
¥2(C? x Ry) be the top term pure imaginary Lie subalgebra of T2(C?% x Ry); Le.

FeEYLICExR,) &=
oI ap+fapt 4+ fot+ fir i+, foa(ph) € CF(S® x Ry).

Let D,,(5%) be the group of all contact transformations on S3. This is a strong ILH-Lie
group (cf.[0.1]) with the Lie algebra I,(S?) of all infinitesimal contact transformations.
I,(53) is the space C%(S%) with the Liouville bracket { , }.. It is easy to see that the
factor space L%(C? x R4)/2'(C? x Ry ) is the Lie algebra of all smooth maps from
R, into I3, (S?). The factor space $%(C? x R4)/EZ%(C? x Ry) is a semi-direct product
of the Lic algebra $%(C? x R1)/Z'(C? x R,) and the commutative Lie algebra
LE(C? x Ry)/E9(C? x Ry), and we see that

(1.8)

(1.9) (8% x Ry)[[p ] 2 £°(C? x Ry)/E7°(C? x Ry).

Thus, the algebra (Z°(C? x R.),*) defines an associative product = on the space
C=(8% x Ry)[[p~2]].
Using these facts combined with Theorem II in the introduction, we can see the following;:

5
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Theorem 1.1. There is a reqular Fréchet Lie group GF®° with the top term pure imaginary
Lie algebra £%(C? x Ry.) as its Lie algebra.

The above theorem is proved by a similar manner as in [OMYK], and indeed this has been
proved by Miyazaki [M] by a careful calculation of the product formulas of the invertible
Fourier integral operators involving the parameter i on T*R2. Here we remark for the
later use that Fourier integral operators used in [M] is written in the form:

(1.10) Fu(z) = 0s- / / a(Z,y, v)er HEV2)=v-2)y(3) dF dy.

2. EXISTENCE OF 7,, 771 IN (3°%°(C? x Ry), %).

*

It is not obvious that the square root {/p or its inverse \-/Z)—1 of p are defined in the
algebra (£°°(C? x R ), x). To ensure the existence of such elements, we compute first the
x-exponential atid

Suppose for a while that Fi(p) = e:t%p7 and F(s) is a function of one variable. Differ-
entiating and using the product formula (1.3), we have

a 1 1 9 1
(2.1) i Fulp) = —gpx Filp) = —5p- Filp) + WF(p) + B 5 p- F (p).
Hence, F; must satisfy the differential equation
0 1 2711 1 1"
(22) &Ft(g‘?) = ~53Ft(8) +h (Ft(s) + 53Ft (5))

with the initial condition Fy(s) = 1. Solving (2.2), we have
_t
Lemma 2.1. The *-ezponential e, 2P s given by

iy 4eM P ht
(2.3) S PN TE exp{ htanh 5 }

In particular, for every t > 0, e, 2 € £7°(C? x Ry).

ol

(w4 Can " B
P =0, but lim e, 3(GxCiHGaxCa) _ i o 2Pl = g K.
t—oo t—o0

(2.4) i ex
The second equality of (2.4) plays an important role. In the following, we denote the
limit limy_, 0 €z 7€ = 4™ by w € E7°(C? x Ry).

Corollary 2.2. }p — z is invertible in (29(C?% x Ry), ) for Rez < h. In particular, p is
invertible.

—t(ip—
Proof. By Lemma 2.1, we see foooe,, #2724t exists for Re z < h. Since

1 oo ~t(1p—2) oo d —t(Lp—2) 1y —t(hp=2)
(ip—z)*fo ey ° dt = -/, 2% dtzl--tl_l_)r{.te* z =1,
6
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i1
1p - z has the inverse foooe* Har=2) gy,

We denote the inverse by p; 1. Using the formula of Laplace transform, we define

(25) o= [ Vit
0

and denote 17! = {/ps'. Then, we see (r;1)2 = p;1, r;! € £71(C? x Ry). We define r,
by r. = r:l * .
By the product formula (1.3), we see that

(2.6) Grw=0=wx(, =12
This shows also that
(2.7) pxw = 2hw

By (2.6) we view w as the vacuum. Since the right multiplication xw by w kills out every
Ci by (2.6), the polynomial approximation theorem gives that f(¢, ¢, h)*w is a holomorphic
function in ©~°°(C? x R.). Hence the space ¥°(C?% x Ry ) * w is reduced to the space
O (R4 )®&Hw[C1, (o] ¥w, where Hy (1, (2] is the space of all holomorphic functions h{(1,C2)
such that h* @ € £7°(C? x R4). We use this space as the regular representation space.
That is, for every f € £°(C? x R4 ) we define the operator

(2.8) f:C®(R)OH[C, ) * w — C®(Ry)OMo[(r, (o] ¥ @

by flaxw) = fxaxm.
Since the representation space C® (R )&H[(1, (2] * w is the topological completion of
space:
C*(R4) ® {polynomials of (1, (s degree up to n}

in the projective limit topology of {T}.}, every clement w € £°(C? x Ry) is represented
by the following blockwise matrix:

By Bip
By1 B2z DBags
B3, Bzs Bza -
Bsys Bsa Bas . J
Bss Bss Bsg

£,
f

(2.9)

where B;j is ¢ x j-matrix with a suitable growth condition for |i — j| > 1. In fact, for
the generators of W matrix representation satisty B; ; = 0 for Ji — j| > 2 and have the
following form:

/s

Bsi1,s(C1) = V2h \/§ , other blockes are 0.
0 Vi

0

7
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v - .
Bsi1,5(C2) = V2R | v2 o S other blockes are 0.

NG
We also have E, = ;. The matrix expressions of w = 2¢~f, and r, are given by

@ = diag{1,0,0,---,0,---}

(2.10) 7‘:\/ﬁdiag{h,\/ﬁb,”'ﬁfk“'}-

We construct matrix representations of V etc. as subalgebras of the above matrix alge-
bra. A matrix is called blockwise diagonal, if it has the blockwise form such that B; ; = 0
for ¢ # j.

By (2.10), every element which commutes with r is represented by blockwise diagonal
matrices with finite rank blocks.

Remark. In [OMMY1], the parameter i and the element u after section §2 was treated
as formal parameters so that the element w did not appear. Thus, we had to consider
asymptotic behaviors of represented operators to describe the relation to the Berezin rep-
resentation. Such unnatural description is removed in this paper by using the element
w.

3. ENERGY SURFACE

In classical mechanics, we take here a Hamiltonian H = r?/2 and consider the energy
surface H = ¢. However, it is difficult to define the notion of submanifold in terms of
noncommutative algebra in general. Thus, instead of energy submanifold, we consider a
subalgebra C of (£°(C? x Ry), *) defined as follows: Set

(3.1) R(e)G = €'¢i, R(e)Gi = e'Ci, R(e")h = e*h

on generators. We see easily that R(e?) extends to a one parameter group of automorphisms
of (Z9(C% x R4 ), *). We denote by C the closed subalgebra of all R(et)-invariant elements.

By identifying C? with T*R? = R* with coordinate functions 1,22, y1,Yy2, R(et) acts
R(e)z; = 'z, R(et)y; = ely;, R(e')h = e*'h. Using the form (1.10), we see that R(et) also
acts on the group GF°. G¢ denotes the subgroup of GF?° consisting of all R(e!)-invariant
elements.

Knowing the existence of 771 in £°(C? x Ry ), we see that C is the minimal closed
subalgebra containing the elements

p= -2t G=riixG, L=rltxG, G=Gxrl H=Garl

Since & * w = 0 and p~! * w = —w by (2.6) and (2.7), we have

(3.2) Crxw = Hgllr, 2] *w.
8
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This can be used as the regular representation space of the algebra C.
We see that

(3.3) —p~t = diag{Iy, - kIx,- -+ }

where Iy is the k x k identity matrix, and éi, éz are easily obtained via the representations
of r, and (;, (.
By using the product formula (1.3) carefully we have (cf.[OMMY1])

Lemma 3.1. p, &, & are in £°(C? x R.) with the following relations:

Erx&+&xb=1 Gx&E+ExG=144p
[u’lﬂgi] = _£i> [,ufilvg'i] = éia
(€1,62) = [€1,6) =0, [&,&] =px* (6 —&*&) for i,j=1,2

Equalities of first line of Lemma 3.1 give a constraint in classical level, and the equalities
in the second line show that every polynomial of &;, & is an eigenfunction of ad(u~!).

Let C~® = C(£7°°(C? x R;). Then, we see that C/C~ is linearly isomorphic to the
space C*°($%)[u]]. Thus, (C,*) defines an associative product * on the space C°°(S5%)[[u]].

(C,*) can be viewed as a deformation quantization of the contact algebra algebra
C>=(5%), and (C=(S%)[[1]], ) can be viewed as its formal deformation quantization. Ac-
tually, we give the following property:

Theorem 3.2. Set B = C=(S§3).

A1) [p,C] C p*Cxp.

A.2) [C,C] C puxC.

A.3) C = B @& uxC (topological direct sum).

A.4) Mappings px : C — uxC, *p: C — Cxp defined by a — p*a, a — a* p respectively
are linear isomorphisms.

5) a — a is an involutive anti-automorphism such that i = p.

6

) () pheC =Cm.
k

(
(
(
(

(
(

>

By the property (A.3), C is decomposed as
(3.4) C=BouxB® - & p" «Bau"«C

for every positive integer N.
In [OMMY1], the algebra C is called the non-commutative contact algebra on S3. The
notion is motivated as follows: Set for every a,b € B

(3.5) axb= Ekzo/v‘k xmp{a,b), wk(a,b) € B.

We see mo(a,b) = a-b (usual commutative product), and the skew part 7y of 71 gives a
biderivation of B x B into B. By setting [~ 1, a] = —p~ 1 * [p,a] * 71, ad(p™!) gives a
derivation of C, and it is decomposed as

(3.6) ad(u™*)(a) = Eo(a) + - + p* x (@) + -+,
9
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where £ is a derivation of (B, ). Hence v/—1& is a vector field on 53, which is called the
characteristic vector field, It gives an S'-free action on 83, (B,,vV/—1&,7{ ) defines the
ordinary contact structure on S3.

It is easy to see that
[wixC,ClCC, [t C,ptHC) C pThRC.

Since C is characterized as the subalgebra of all R(e?)-invariant elements in £%(C? x Ry),
we see that the group G(c(') ) of all invertible elements in C is an open subset of C and hence
a regular Fréchet Lie group.

Let Cg be the top term pure imaginary subspace of C. Then, we see that u~ 1 xCg forms
a Lie algebra. The Lie algebra p~* *Cr/C is isomorphic to the Lie algebra I', (T*83) of all
infinitesimal contact transformations of S°. Using this fact and the extension theorem, we
have the following theorem by the similar proof that Theorem A in [OMYK], and Theorem
A in M}:

Theorem 3.3. Let Gc be the subgroup of GEQ consisting of all R(e*)-invariant elements.
Then, Ge is a regular Fréchet Lie group with the Lie algebra ulxCr.

Remark that elements of G¢ in general may not be regularly represented, but as it is seen
in §3, its Lie algebra is regularly represented as blockwise matrices and this representation
is faithful.

4. REDUCTION

We now consider the subalgebra ¥ = {f € C; [u, f] = 0} of £°(C*x R). Viewing pi as a

Hamiltonian %rz, we think V as the algebra obtained by the ordinary reduction procedure.
By Lemma 3.1, we have [u~%, &) = —&, [u™' &] = &. It follows that V is generated

(topologically) by the elements
(4.1) p, E1x&1, ExEy, Eoxby, EFx&hrwrl(xE3; (K+1=m+n).

Remark that &€ = (£1x€2)~ and that E¥x&lxw«EP+£3 is the (k ® 1) x (m ® n) matrix
element. (See (2.6), (2.7).)

Remark that w*V = V * w = Cw. Thus, we continue to use C * w as the regular
representation space of V. Since every element of V commute with p, every element of V is
faithfully represented as blockwise diagonal matrices. Setting V™ = VNEZ ®(C?xRy),
we see

(4.2) Vv~ = 0(S?)[[pl)-

Through the identification (4.2), (V,*) defines a noncommutative associative product on
the space C°°(S?)[[u]]. This associative product gives a deformation quantization of the
Poisson algebra (C*(S2),-,{, }). By the uniqueness of the deformation quantization on
$2 (cf. [G], [OMY3]), (C*(S?)[[ul], *) is the algebra obtained by the standard defor-
mation quantization of the Poisson algebra (C°°(5?),-,{, }). Note that the Lie algebra
(C°°(S?),{, }) is the central extension of the Lic algebra of all volume preserving diffeo-
morphisms on $2. In fact, this is the direct product R x I'(Tg).
10
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The Lie algebra (u~ 'V, [, ]) can be viewed as a quantization of the Poisson Lie algebra
of functions (C=(52),{, }). If we set

(4.3) H=¢&x& - B2 Z=§xb, 2" =Gxby,

Lemma 3.1 shows that the algebra generated by (4.3) is an enveloping algebra of the Lie
algebra sl,(2; C):

(4.4) H Z)=—pu*xZ, [H Z=px2Z*, [Z2,2*) = -2u+H

constrained by
r Ko *
(4.5) (H + —2-) +ZxZ" =

1
4
via the constraint relations in Lemma 3.1. Note that (H + £)* + ZxZ* is in the center of
the enveloping algebra.
The matrix representations for H and Z are given as follows:

H = diag{B11,B22,* +Brk, " },

(4.6) o
Z = diag{B} 1, B39, Brgr- " }»

with Z* = tZ. Here we set

By = prding{k—1, k=3, ~(k=3), (k= 1)},

0, V(k-1)1,
0, Vi{k—2)2,
Bip=k" .
0, 1(k-1)
0
Let Vg be the top term pure imaginary subspace of V. Then, we see that u~! * Vg
forms a Lie algebra. The Lie algebra p~! x Vg/V is isomorphic to the Lie algebra of all

infinitesimal volume preserving transformations of S2. By a similar proof in Theorem A
in [OMYK] or Theorem A in [M], we have:

Theorem 4.1. Let Gy = {g € Ge;uxg = g*p}. Then, Gy is a regular Fréchet Lie group
with the Lie algebra p~' x Vg. )
The universal covering group Gy of Gy is also a regular Fréchet Lie group.

Since p is represented as a blockwise scalar times identity matrix (cf (3.3)), every element
of V is represented as a blockwise diagonal matrix. The claims (C.1), (C.2), (C.4), (C.5)
in §I are easily obtained. The claim (C.7) has been already proved in §1. In particular
it follows that Gy has a series of finite codimensional normal subgroups N such that
Ni D N1, Nk = {D}; a discrete subgroup.

To prove the claim (C.6) in §1, we remark that Gy and Dg(S5?) are regular Fréchet Lie
groups and that the Lie algebra of Dg(5?) is isomorphic to the factor algebra plxV/V.
Since Dq(S5?) is connected and G‘v is 1-connected, the natural projection of Lie algebras
is lifted to a C> homomorphism of Gy onto Dg(S2).

Thus, the claim (C.3) in §1 only remains to be proved.

11
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5. LOCAL GENERATORS

We show that the representation given in §4 coincides with the Berezin representation
(cf.[CGR]) via the Kéhler polarization on S?.

For i = 1,2, we define the algebra Em(C x R4 ) by a similar manner as in §1 by using
only h, (;, (; together with the commutation relation [(;, Cz] = —2h. The space E (C xRy)
is defined by the similar manner.

By similar computations as in p, we see that for i = 1,2,

—sad | 2eM c,c, ht
(51) €4’ = E‘t T1 Xp{— ta Ilh‘2—}
* —teCs
and e, CEGG € Z °° C x R.). Remark here that e, THGeG P ALLPES 1)
+
By (5.1), we hdve
(5.2) lim e TEGG = lim e, 2<<' iR~ 2¢ chc».
t—o0 t—00

As in (2.4), we set w; = 2e” St

Similar to Corollary 2.2 , we see that (; - ¢; and G * (; are invertible but {; * ¢; is not
invertible.

For computations, the following general lemma is very powerful, although we do not
give the precise statement and the proof here (see [OMMY1] for the proof):

Lemma 5.1. (Bumping Lemma) For a fairly wide class of functions f(t) involving entire
functions on C, the equality

fulzxZ)xz=2% fu(2x2) Zx[(z2x2) = fu(Zxz)*2Z
holds. Hence we have for instance
Fe(GiGi = h) * Go= Gix fu(GG + R).

Obviously, ¢; has a left inverse (Ci*¢;) ™ *(,, but by expressing (Gix¢)Las foo _tc'*c'dt
and using the bumping lemma, we see that

(5.3) G ((G*G) M xG)=1—m;.
It is not hard to obtain following formulas:

W KWy = W kW =W, Wixw = Wi, Grxwp=0=wi*(
(5.4) Grw;j=wjxG fori#y

Wik = [ Wi, T4 * Ty = Ty * Wj.

Using the formula of Laplace transforra, we define

— -1 P00 _
s . = L — "tCi*Cidt'
(5.5) V Gi*G \/;/0 \/; €,

12
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— -1
Lemma 5.2. (;* v/(*x(; € E%](C x Ry ), but this is not the unitary part of (;.

Set as follows:

Ve — 1 1
(5.6) T = e:ic’ g‘, Ti=G*yG*xG , I = \‘/ GxG  *Gie

Using the bumping lemma, we have

Lemma 5.3. T)+T, =1, Ti*xT=1~w;, 7x*xT;= e~ T % 7,
(T3, T3] =0, [T,,T7] =0 (i #J)

In fact, {T}, T} generates a Toplitz algebra. We see easily that T * w; = 0 = w; * T;,
but T *x w; = w; * T, T + w; = wj * T
We denote by E?i](C2 x Ry) for i = 1,2 the algebra generated by

o(C? xRy) and E?-

7(C x Ry).
Let é[i] be the subalgebra of all R(et)-invariant elements, and let l}[i] be the subalgebra of
é[i] consisting of elements which commute with .

Now, we fix the notion of localization of the algebra £°(C?*xR), C or V.

This means simply its embedding into other algebras, or more generally a homomorphism
into another algebra. Thus, i‘[)i](C2 x R, ) is considered as a localization of £°(C? x R ).

Since | — p is invertible and 72 % ¢; = (; * (1 — pu) * 72, there exists the inverse (& x &)™
in the localized algebra é[i], but &; * & is not invertible. Hence & has the right inverse
(€& * &)~ x &, though we have

(5.7) Ex((Ex &) x&) =1~ mi.

Hence §&; is invertible in the factor algebra é[i]/{wl} where {oo;} is the two-sided ideal
generated by w;. .
Define z € Vjy}, w € Vg by

(5.8) 2= {(Ex&) T b} = G {(GrQ)T G
. w=E x{(E2% &) x Lo} =G {({ax )7t x (2}

Though (& * &)~ ! * & is not the genuine inverse of &;, z, w play the role of complex
coordinate z = £ 5;1, w = £ * {;1 of Riemann sphere. Namely, V) is viewed as the
algebra of V localized on the set C by a stereographic projection of §? from north/south
pole.

Remark that (5.4) gives

(5.9) zxwy =wox2=0, wrxwy=wirw=0, wW=w*ws=ws*w.

Using these we have
' 13
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Lemma 5.4. 1+ zx 2, 1+ zZ 2z are invertible in f)[l] and

(l+zxz) ' =& x&-peV
(1+2*z)'1:51*§_1+w1€1>[1]

Proof. Since 1+ z x 2 = r2 % ({1 * (1)}, we see (1 + z x Z)™! exists and using & * & =
rrlx € G vyt =172 x (3 * (1, we have the inverse is given as £ * & — p. Using the
bumping lemma, we have 1 — zx(1 + z+Z) "%z is the inverse of 1 + Z * z. For the second
equality, remark that & * 2z = o % (1 — wy), wy * & = 0. Using Lemma 3.1, (5.3-4) and

(5.7-9), we obtain Lemma 5.4. ]

We see easily that zxw =1—- 1w € f/[g], wrz=1—w; € f)[l]. Note that
(5.10) Ea=2x&, &L=wxb, wxé =0, wxb=0.

By the first two equalities, & can be viewed as a section of the canonical line bundle L over
S2. We see also that {u, 2, 2, €1, &1} and {p, w0, , &, &,} topologically generate Clll and 6[2
respectively.

Following relations also hold;

[2%Z,2x2] = 0, [w*@, wrw] = 0,
(5'11) [z’gl} * (1 - wl) =0, [’Uhéz} * (1 - wz) =0
[3’62] =0, [wy 51] =0.

By Lemma 5.4, we get

(5.12) wx(l+zx2)=—p lew, m*x(1+Zxz)=w.

(5.11-12) gives
Z) = pr(l+zxz)x(1+2%2)+p " xwy

(2,
[w, w] = pr(l+wsw)* (1+w*w)+p " xws

(5.13)
Though first terms of the right hand side of (5.13) have the same shapes as the standard
Kihler form on S2, we need the terms g~ ! « w; at the quantum level where h and p are
not formal parameters.

Remark that by Lemma 3.1 and (5.10), w in (5.8) is rewritten as

w=E& (1 - x&) 7 xbyx2,
and ) B B
1—&x&=Cxb—p=—(1—-p) x&*&

Since 1 — p is invertible, there exists the inverse (1 — & * £)~! in the localized algebra
C[Z]. Hence we can use the bumping lermna for the first equality, and we have w =
14
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(1 —¢& x&)7 *& 2. By Lemma 5.4, 1 — & * & = 1—p— (14 zxz)~L Thus,
w can be written only by using u, z, 2z, i.e. w = f(u, 2z, Z), where we need the variable 2.

This means some difficulty to define the notion of holomorphic structure for which # is
not treated as a formal parameter.

Remark that 1}[1] (resp. 17[2] } is the algebra topologically generated by {u, z, Z} in 5[1],
(resp {p,w,w} in é[z]) We see then V = \)[1] n f)[z].

For the variables &, &1, we have the following relations:

(5.14) 5’1*(1+z*z)*§1:1, 571*(1‘*'5*2):(5_1*51)_1*51,

(5.14) gives the constraint relation of the variables £y, £&1. To avoid such constraint relations,
we set T, Ty as follows with some similarity to unitary parts:

(5.15) Ti=&x(Ex&) =T, Tho=Lx(lxb) VP=T

which are well-defined respectively in é(ll and 5[2]. Sets of elements {y,z,Z, T1, Tl"},
{p, w, w, Tg, TZ*} define local generator systems without constraint relations, and by denot-
ing the unitary part of the polar decomposition of z by ef,e*, the coordinate transformation
between above two generator systems may be understood as

(5.16) {, w, W, T} = {p, 274, 274, P+ aTn}

The existence of such a unitary part e s given only in C/{w;,w2}. Intuitively, this
corresponds to the fact that the coordinate transformation between z and w is defined on
the space S2 — {N, S}. By using z = & * {({1 * (1) ™' * (1 x 1.}, it is not hard to see that

64 104

(5.17) el x Ty =Ty xelt =Ty

The coordinate transformation (5.17) may be understood as that of quantum version of
Hopf fibration of §3 over the Riemann sphere P'(C) = 52

Since [z,&1) % (1 — @) = 0, [2,&] = 0 by (5.11), we see that {§ x w = (2% &) v w =
2K« €8x w (resp. €' = w™ x € x w). (5.9) gives

(5.18) Fr&lMsxw=0, for k>m.

Thus, we see that £€¥ « &b xw, (k+1 = m) can be viewed as a linear basis of the space
H,, of all holomorphic sections of the holomorphic line bundle L™. We see easily that
Hy = {0} for m < 0 and Hy, = P (2) * £+ w for m > 0.

On 17[1] (resp. \}[2]), we see that

ff*ﬁé*WZZl*ﬂn*zm (resp. :wk*.g;”*w).
The coordinate transformation of the line bundle L™ is given by

(5.19) e xéy=whx g = (wh ") x 2™ = 2w gl
15
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Combining Lemma 5.3 with the bumping lemma, we have also
(5.20) [2,2% (1 + 2% 2)7 = p + s,

which implies that Z * (1 + z * 2)~! play the similar role of the canonical conjugate element
of z. Indeed, by (5.18) we must set 2m+D 4 €1« o = 0. Hence, we see

(521) {2’ ["*82] = {u+w1}’\'

Remark that g x w = —w by (2.6-7).
By direct computation using formulas (5.18-21) and Lemma 2.3, we see that the localized
algebras V) can be represented as matrices as follows; for k +1 = m,

(5.21) M G rw) = ——— 2 x @
b xlrw) = w e v w, gl= =0
W(Ef ) =G T rw, &= =0,
(5.23) (e x & x @) = bpobhx @

o (EF + b w) = 60,8F x @

fﬂ({{“ * Eé * w) = 0 000, * W

We also have for k +1=m:

(5.24) \/—m m(l G =v~ " HJ =0 V1+jﬂ'* ﬁf{c*gé
Since =1 = —(m + 1) on I'(L™), we obtain on 13[1]
m ! !
(5.25) e A a (= el e g = /R
An orthonormal bases of the space H,, of all holomorphic sections is given for k+1 =m
by
(m+1)!

Cxn) B T Z*&Mxw (on 1)[1])

kgl _
(5.26) A S1xEer @ = (m4D)! g rm Y
Vo £ xw (on Vi)

Thus for each non-negative integer m, the matrix representations for the above genera-
tors are written as

(Exba) s/ EER A w7 v — 25 [ B D+ w,
_ FRTY V1)1 =
(5.27) (€rxa) s/ Tty gy oo — VIEEDL [ bl s o,
= m k(14+1) 1
(Eaxa): /Tt g v — Vm&l A A 1 L2
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where we set 271 = 2™t = (.

Here, note that the set {€; * &1, €2 % &1, & % &2} also forms a system of generators. To
obtain the Berezin representation, it is convenient to use {€1 % &1, &2 % &1, &1 x &}, rather
than {&; * &1, &1 % &a, €2 % £1}. We have easily:

(5.28) El*le—ﬁ i“*EI*CIs Er6 =L«

1 _
2n " 1 T et

These have also matrix representations as follows:

c 1)! m
(Erx&a): /Bl o € v — L [ ol el x o,

z (k1)

(5.29) (TETIE (";c',};,l)' sl v w — r(nr;) \/z_%t;)ll),z’ P xw
& 7 n c(I+1)
(Eax &)/ el » 60 w0 - U el ity 2 e x w,

where we set z7! = 2™+l = (.
To obtain the Berezin representation we now define integral operators:
Lemma 5.4. Let z and v denote the complex variables on C. Then, for every non-negative
integer the mapping
(5.30) Im(p)(z) = 28 [ p(v) Eiizﬁ)m (1+w)2 = dvd
is the identity on the space Pp, of all polynomials of degree up to m.
Since Hﬁ)—ﬁ)gdvdﬁ is the volume form on S2, the right hand of (5.30) is considered as

the integral over S2. Using Lemma 5.4, we define the projection operator P,, by

(5.31) (Puf)(2) = 2L [ F(0,0) ot s dvdo

For any a € C*(S5?), we define B(a)f for f = >, fm * &7, fm € Pm by
(532) B(a)f = ZmZOP'n(a ) fm) * £

Then B(a) defines a linear operator of Y @P,, % £7* * w into itself.
A direct computation gives:

(5.33) (ex&)=B(i35), (Lax&)=B(5), (Lx&Y=B(F)

This constitutes the Berezin representation. Since (5.33) generates V, we see that the
regular representation of the algebra V coincides with the Berezin representation.

It also coincides with the matrix representation given in (2.9). B(a)f can be expressed
as an integral operator

B@)f = Sozol L [ alv,0) f(v) ST L dudo} » €.

We remark again that any element of the algebra C are represented as matrices, although
these are not blockwise diagonal matrices. It extends the Berezin representation.
17
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