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REMARKS ON SEMI-SELFSIMILAR PROCESSES

Makoto Maejima1, Ken-iti Sato2 and Toshiro Watanabe3

1. Introduction

In the paper [MSat97], two of the authors have introduced the notion of

semi-selfsimilar processes extending that of selfsimilar processes. In this paper,

we give some supplementary results on semi-selfsimilar processes.

An Rd-valued stochastic process {X(t), t ≥ 0} is called semi-selfsimilar if

there exist a, b ∈ (0, 1) ∪ (1,∞) such that

{X(at), t ≥ 0} d= {bX(t), t ≥ 0},

where d= denotes the equality in all finite-dimensional distributions. If

(1.1) {X(at), t ≥ 0} d= {bX(t) + c(t), t ≥ 0}

for some a, b ∈ (0, 1) ∪ (1,∞), and a nonrandom function c : [0,∞) → Rd, then

{X(t)} is called wide-sense semi-selfsimilar.

In Section 2, we improve a result on the existence of exponents of semi-

selfsimilar processes in [MSat97] by relaxing the condition on their stochastic

continuity, and give some examples. In Section 3, we discuss the joint distribu-

tions of selfsimilar and semi-selfsimilar processes with independent increments.

In Section 4, we give some examples of infinitely divisible semi-selfsimilar pro-

cesses.
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2. Existence of the exponent

A stochastic process {X(t), t ≥ 0} is called trivial if, for each t, P{X(t) =

const.} = 1. Otherwise it is called nontrivial. We prove the following.

Theorem 2.1. Let {X(t), t ≥ 0} be an Rd-valued, nontrivial, wide-sense semi-

selfsimilar process. Suppose that it is stochastically continuous at t = 0. Then

there exists a unique H > 0 such that, if a, b ∈ (0, 1) ∪ (1,∞) and c(t) satisfy

(1.1), then b = aH .

The constant H is called the exponent of {X(t)}. In [MSat97] the same

conclusion has been proved under the condition that {X(t)} is stochastically

continuous in t ≥ 0. Our theorem above shows that it is enough to assume the

stochastic continuity only at t = 0. By this, the class of semi-selfsimilar pro-

cesses having unique exponents is actually enlarged, as will be seen in Example

2.1 below. In Example 2.2 we shall further show that a nontrivial semi-selfsimilar

process does not necessarily have an exponent, unless it is stochastically contin-

uous at t = 0.

Proof of Theorem 2.1. Let Γ be the set of a > 0 such that there are b > 0 and

a function c(t) satisfying (1.1). By Lemma 2.2 of [MSat97], the nontriviality of

{X(t)} implies that b and c(t) are uniquely determined by a. Thus we write

b = b(a) and c(t) = c(t, a) for a ∈ Γ. We know that b(a) > 1 if a ∈ Γ ∩ (1,∞),

since the proof of this fact in the proof of Theorem 2.1 of [MSat97] uses only the

stochastic continuity at t = 0. Denote by log Γ the set of log a with a ∈ Γ. As

in [MSat97], log Γ is an additive subgroup of R and (log Γ) ∩ (0,∞) 6= ∅. Let

r0 be the infimum of (log Γ) ∩ (0,∞).

Suppose that r0 > 0. Then r0 ∈ log Γ. In fact, if r0 /∈ log Γ, then there are

sn, n = 1, 2, · · · , in log Γ strictly decreasing to r0 and we have r0 > sn − sn+1 ∈
(log Γ) ∩ (0,∞) for sufficiently large n, contrary to the definition of r0. As in

[MSat97], r0 ∈ log Γ implies log Γ = {nr0 : n ∈ Z}, and hence there is a unique
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exponent H > 0.

In the rest of the proof, assume that r0 = 0. In this case the proof for that

log Γ = R in [MSat97] does not work, since the argument to show the closedness

of log Γ uses the stochastic continuity of {X(t)} in t ≥ 0. (Actually log Γ is not

necessarily closed under the condition that {X(t)} is stochastically continuous

only at t = 0 as will be seen in Remark 2.1 below.) So we have to use another

idea to show the existence of an exponent. Suppose that H > 0 with the desired

property does not exist. Then there exist 0 < H1 < H2 such that, for i = 1, 2,

the set Γi defined by Γi = {a ∈ Γ : b(a) = aHi} contains some ai 6= 1. If

a ∈ Γi, then a−1 ∈ Γi, since b(a−1) = b(a)−1 = a−Hi . Hence, for each i, there

is ai ∈ Γi ∩ (1,∞). For any sufficiently large integer m, there exists a positive

integer n such that ∣∣∣∣n−
H2 log a2

H1 log a1
m

∣∣∣∣ ≤ 1.

Therefore we can find two sequences {mk}, {nk} such that mk, nk →∞ and

−nkH1 log a1 + mkH2 log a2 → b as k →∞

for some b ∈ (−∞,∞). Let sk = a−nk
1 amk

2 . Since

nk

mk
→ H2 log a2

H1 log a1
as k →∞,

we have as k →∞

log sk = mk(− nk

mk
log a1 + log a2) → −∞,

namely sk → 0. Take t0 > 0 so that X(t0) 6= const. a.s. Then

(2.1) X(skt0) = X(a−nk
1 amk

2 t0)
d∼ a−H1nk

1 aH2mk
2 X(t0) + ck

for some ck ∈ Rd expressible by the function c(t, a). Here d∼ means the equality

in distribution. Denote the distribution of X(t) by µt, and its characteristic

function by µ̂t. Then by (2.1)

|µ̂skt0(z)| =
∣∣∣µ̂t0(a

−H1nk
1 aH2mk

2 z)
∣∣∣ .
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Let k tend to ∞ here. Use the stochastic continuity of {X(t)} at t = 0 and

the fact that X(0) = const. proved in Remark 1.1 of [MSat97]. Then we

have |µ̂t0(e
bz)| = 1, which contradicts that X(t0) 6= const. a.s. Therefore the

exponent H uniquely exists. This completes the proof of Theorem 2.1. ¤

We give below three examples. Throughout those examples, Let {Y (t), t ≥
0} be a stochastically continuous, H-selfsimilar process in the sense that

{Y (at), t ≥ 0} d= {aHY (t)} for any a > 0, such that Y (t) is nonconstant for

every t > 0. Note that Y (0) = 0 a.s., since Y (0) d∼ aHY (0) for any a > 0.

The first example is a nontrivial H-semi-selfsimilar process which is

stochastically continuous at t = 0 but not at any other t > 0.

Example 2.1. Define {X(t), t ≥ 0} by

X(t) =
{

0, if t = 0 or log t /∈ Q,

Y (t), if log t ∈ Q,

where Q is the set of all rational numbers. Obviously {X(t)} is stochastically

continuous at t = 0 but not at any other t > 0. We have

(2.2) {X(at)} d= {aHX(t)}, if log a ∈ Q,

because log at ∈ Q if and only if log t ∈ Q. If a > 0 and log a /∈ Q, then there

are no b > 0 and c(t) satisfying (1.1), as is seen by choosing t = a−1. Thus we

have log Γ = Q, and it follows from (2.2) that {X(t)} is H-semi-selfsimilar.

Remark 2.1. This example shows that, under the condition in Theorem 2.1.,

log Γ is not necessarily closed.

The second example is a nontrivial semi-selfsimilar process which does not

have an exponent and therefore, by Theorem 2.1., is not stochastically continuous

at t = 0. By this example, we see that we cannot entirely remove the assumption

of the stochastic continuity at t = 0 to prove the existence of a unique exponent.

Example 2.2. Define {X(t), t ≥ 0} by

X(t) =
{

0, if t = 0 or log t /∈ Q +
√

2Q,

Y (er+s), if log t = r + s
√

2 ∈ Q +
√

2Q.
4
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It is easily seen that {X(t)} is not stochastically continuous at any t ≥ 0. Let

α ∈ Q. Then

X(eαt) = X(eα
√

2t) =
{

0, if t = 0 or log t /∈ Q +
√

2Q,

Y (eα+r+s), if log t = r + s
√

2 ∈ Q +
√

2Q.

It follows that {X(eαt)} d= {X(eα
√

2t)} d= {eαHX(t)}. Thus {X(t)} is semi-

selfsimilar but does not have an exponent, and log Γ = Q +
√

2Q.

If {X(t)} is H-selfsimilar (H > 0), then {X(t)} is always stochastically

continuous at t = 0. For, X(0) = 0 a.s. and

P{|X(t)| > ε} = P{tH |X(1)| > ε} → 0

when t → 0. This is not true for semi-selfsimilar processes. The third exam-

ple below is a nontrivial H-semi-selfsimilar process which is not stochastically

continuous at t = 0.

To construct such a process, let g : R → R be a function satisfying

g(u + v) = g(u) + g(v), ∀u, v ∈ R,(2.3)

g(1) > 0,(2.4)

lim sup
u→−∞

g(u) = +∞, lim inf
u→−∞

g(u) = −∞.(2.5)

The existence of such a function is shown in [H05]. It follows easily from (2.3)

that

(2.6) g(ru) = rg(u), ∀r ∈ Q,∀u ∈ R.

Therefore

(2.7) g(r + u) = rg(1) + g(u), ∀r ∈ Q,∀u ∈ R.

Let f(t) = eg(log t), t > 0, and H = g(1). We see from (2.7) that

f(at) = aHf(t), if log a ∈ Q.
5
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Example 2.3. Define {X(t), t ≥ 0} by

X(t) =





0, if t = 0,

f(t), if t > 0 and log t /∈ Q,

Y (t), if log t ∈ Q,

By the same reasoning as in Example 2.1, we have {X(at)} d= {aHX(t)}, if

log a ∈ Q. Also if a > 0 and log a /∈ Q, then there are no b > 0 and c(t)

satisfying (1.1). Thus we have log Γ = Q, and {X(t)} is semi-selfsimilar with a

unique exponent H. On the other hand, since

lim
u→−∞

u∈Q

g(u) = −∞

by (2.4) and (2.6), we have

lim sup
u→−∞

u/∈Q

g(u) = +∞

by (2.5). Hence,

lim sup
t↓0

log t/∈Q

f(t) = +∞.

Namely, {X(t)} is not stochastically continuous at t = 0. (Actually, this {X(t)}
is not stochastically continuous at any t ≥ 0.)

3. Joint distributions of selfsimilar and

semi-selfsimilar processes with independent increments

If {X(t), t ≥ 0} is a stochastically continuous selfsimilar process with in-

dependent increments on Rd, then, for each t, X(t) has a selfdecomposable dis-

tribution. Conversely, any selfdecomposable distribution induces such a process

uniquely in some sense ([Sat91]). But the joint distribution of (X(t1), · · · , X(tn))

for the process {X(t)} is not always selfdecomposable (Proposition 4.2 of
6
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[Sat91]). We shall give conditions for the joint distributions to be selfdecom-

posable, and further, conditions for them to belong to the subclasses Lm. The

relations between selfsimilar processes with independent increments and self-

decomposable distributions are generalized in [MSat97] to those between semi-

selfsimilar processes with independent increments and semi-selfdecomposable

distributions. We shall also discuss joint distributions of those processes.

Let us recall some definitions. An Rd-valued stochastic process {X(t)} is

called selfsimilar if, for any a > 0, there exists b > 0 such that {X(at), t ≥ 0} d=

{bX(t), t ≥ 0}. It is called wide-sense selfsimilar if, for any a > 0, there exist

b > 0 and c(t) such that {X(at), t ≥ 0} d= {bX(t) + c(t), t ≥ 0}. The class of

selfdecomposable distributions on Rd is called the class L and denoted by L0 or

L0(Rd). A sequence of its subclasses Lm = Lm(Rd),m = 0, 1, · · · ,∞, is studied

in [U72], [Sat80], and others. A description of the classes is as follows. Let

P(Rd) and I(Rd) be the collections of all probability measures on Rd and all

infinitely divisible distributions on Rd, respectively. A distribution µ ∈ P(Rd)

belongs to L0(Rd) if and only if, for any b ∈ (0, 1), there is ρb ∈ P(Rd) such

that

(3.1) µ̂(z) = µ̂(bz)ρ̂b(z), ∀z ∈ Rd.

If µ ∈ L0(Rd), then µ ∈ I(Rd), ρb is uniquely determined by µ and b, and

ρb ∈ I(Rd). Let m be a positive integer. A distribution µ ∈ P(Rd) belongs to

Lm(Rd) if and only if µ ∈ L0(Rd) and, for every b ∈ (0, 1), ρb in (3.1) belongs

to Lm−1(Rd). The class L∞(Rd) is the intersection of the classes Lm(Rd),m =

0, 1, · · · . Thus we have

I(Rd) ⊃ L0(Rd) ⊃ L1(Rd) ⊃ · · · ⊃ L∞(Rd) ⊃ S(Rd),

where S(Rd) is the class of all stable distributions on Rd.

For any fixed b ∈ (0, 1) a sequence of the subclasses Lm(b) = Lm(b,Rd),

m = 0, 1, · · · ,∞, is recently introduced by [MN97]. A distribution µ ∈ P(Rd)
7
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is in L0(b,Rd) if and only if (3.1) holds with some ρb ∈ I(Rd). If µ ∈ L0(b,Rd)

with some b ∈ (0, 1), it is called semi-selfdecomposable. Again, if µ ∈ L0(b,Rd),

then µ ∈ I(Rd) and ρb is uniquely determined. A distribution µ ∈ P(Rd)

belongs to Lm(b,Rd) with a positive integer m if and only if µ ∈ L0(b,Rd) and

ρb ∈ Lm−1(b,Rd). The class L∞(b,Rd) is the intersection of all Lm(b,Rd),m =

0, 1, · · · . We have

I(Rd) ⊃ L0(b,Rd) ⊃ L1(b,Rd) ⊃ · · · ⊃ L∞(b,Rd).

We see that

Lm(Rd) =
⋂

0<b<1

Lm(b,Rd), m = 0, 1, · · · ,∞.

This follows from the characterization of Lévy measures of distributions in

Lm(Rd) and Lm(b,Rd), actually from the combination of Theorem 3.2 of [Sat80]

and Theorem 4.2 of [MN97].

Now let us prove the following result. The distribution of a random vector

X is denoted by L(X).

Theorem 3.1. Let {X(t), t ≥ 0} be a stochastically continuous, wide-sense

selfsimilar process with independent increments. Let m be a positive integer or

∞. Then the following four conditions are equivalent. We understand m−1 = ∞
if m = ∞.

(i) L(X(t)) ∈ Lm(Rd), ∀t ≥ 0.

(ii) L((X(t1), · · · , X(tn))) ∈ Lm−1(Rnd), ∀n,∀t1, · · · , tn ≥ 0.

(iii) L (
∑n

k=1 ckX(tk)) ∈ Lm−1(Rd), ∀n,∀t1, · · · , tn ≥ 0,∀c1, · · · , cn ∈ R.

(iv) L(X(t)−X(s)) ∈ Lm−1(Rd), ∀s, t ≥ 0.

Lemma 3.1. Let m ∈ {0, 1, · · · ,∞}. Let d1, · · · , dn be positive integers. If

µ ∈ Lm(Rd1) and if T is a linear transformation from Rd1 to Rd2 , then µT−1 ∈
8

KSTS/R-97/013
December 1, 1997



Lm(Rd2), where (µT−1)(B) = µ(T−1(B)). If µk ∈ Lm(Rdk) for k = 1, · · · , n,

then µ1 × · · · × µn ∈ Lm(Rd) with d = d1 + · · ·+ dn.

This lemma is essentially found in Theorem 2.4 of [Sat80]. The proof is

based on the decomposition (3.1).

Proof of Theorem 3.1. Let 0 ≤ t1 ≤ · · · ≤ tn. Let Y1 = X(t1) and Yk =

X(tk)−X(tk−1) for k = 2, · · · , n. Then X(tk) = Y1 + · · ·+ Yk. By Lemma 3.1

we see that L((X(t1), · · · , X(tn))) ∈ Lm−1(Rnd) if and only if L((Y1, · · · .Yn)) ∈
Lm−1(Rnd). Since Y1, · · · , Yn are independent, Lemma 3.1 shows that

L((Y1, · · · , Yn)) ∈ Lm−1(Rnd) if and only if L(Yk) ∈ Lm−1(Rd) for k = 1, · · · , n.

Hence we see that (ii) and (iv) are equivalent. By Lemma 3.1, (ii) implies (iii).

Obviously (iii) implies (iv). Hence (iii) is equivalent to (ii) and (iv).

Let us prove the equivalence of (i) and (iv). The process {X(t)} has an

exponent H > 0, that is

(3.2) {X(at), t ≥ 0} d= {aHX(t) + c(t, a), t ≥ 0}, ∀a > 0.

Let 0 ≤ s ≤ t. Denote µt = L(X(t)) and µs,t = L(X(t)−X(s)). Then

(3.3) µ̂t(z) = µ̂s(z)µ̂s,t(z) = µ̂t

((s

t

)H

z

)
ei<c(t,s/t),z>µ̂s,t(z),

where we have used the independent increments property and (3.2) with a =

s/t. On the othe hand, as we have mentioned at the beginning of this section,

Sato [Sat91] proved that if {X(t)} is the process assumed in Theorem 3.1, then

µt ∈ L0(Rd). Thus for any b ∈ (0, 1), there exists ρt,b ∈ I(Rd) such that

(3.4) µ̂t(z) = µ̂t(bz)ρ̂t,b(z), ∀z ∈ Rd.

Since µ̂t(z) 6= 0, it follows from (3.3) and (3.4) that

ρt,(s/t)H = µs,t ∗ δc(t,s/t).
9
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Hence ρt,(s/t)H ∈ Lm−1(Rd) if and only if µs,t ∈ Lm−1(Rd), comcluding that (i)

and (iv) are equivalent. ¤

Note that if L(X(1)) ∈ Lm(Rd), then (i) is true. This is because X(t) d∼
tHX(1) + c(1, t) by (3.2).

Example 3.1. Let d = 1. Consider the case where

µ̂(z) = exp
(∫ ∞

0

(eizx − 1)
k(x)
x

dx

)
.

Let h(x) = k(e−x). We have that µ ∈ L0(R) if and only if k(x) is nonicreasing.

The necessary and sufficient condition for that µ ∈ L1(R) is the convexity of

h(x), (see Theorem 3.2 of [Sat80]).

(i) Let k(x) = ce−ax with a, c > 0. Then µ is a gamma distribution. It is in

L0(R) but not in L1(R), since h(x) is not convex. Thus some joint distributions

(in fact, all joint distributions with dimension greater than or equal to 2) of the

corresponding process {X(t)} are outside the class L0. More properties of this

example are studied in [Sat91] and [W96].

(ii) Let k(x) = cx−αe−ax with a, c > 0 and 0 < α < 2. It is easy to find

the condition for the convexity of h(x). Thus µ ∈ L1(R) if and only if α ≥ 1/4.

Hence inverse Gaussian distributions (that is, α = 1/2) are in L1(R). (As to

inverse Gaussian distributions, see, e.g. [Se93].)

Let us consider a generalization of Theorem 3.1 to semi-selfsimilar case.

Let {X(t), t ≥ 0} be a nontrivial, stochastically continuous, wide-sense semi-

selfsimilar process on Rd with independent increments. Let H be its exponent.

We assume that it is not wide-sense selfsimilar. As in Section 2, let Γ be the set

of a > 0 such that there are b > 0 and c(t) satisfying (1.1). Then there is a0 > 1

such that Γ = {an
0 : n ∈ Z}, (see the proof of Theorem 2.1 of [MSat97]). We have

L(X(t)) ∈ L0(a−H
0 ,Rd) for every t. The distributions {L(X(t)) : t ∈ [1, a0)}

determine all distributions of X(t), t ≥ 0, modulo translations. Theorem 3.1 has

the following counterpart.
10
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Theorem 3.2. Let {X(t), t ≥ 0}, H, and a0 be as above. Let m be a positive

integer or ∞. Then the following four conditions are equivalent.

(i) L(X(t)) ∈ Lm(a−H
0 ,Rd), ∀t ≥ 0.

(ii) L((X(u1t), · · · , X(unt))) ∈ Lm−1(a−H
0 ,Rnd), ∀n,∀t ≥ 0,∀u1, · · · , un ∈ Γ.

(iii) L (
∑n

k=1 ckX(ukt)) ∈ Lm−1(a−H
0 ,Rd),

∀n,∀t ≥ 0,∀u1, · · · , un ∈ Γ,∀c1, · · · , cn ∈ R.

(iv) L(X(u2t)−X(u1t)) ∈ Lm−1(a−H
0 ,Rd), ∀t ≥ 0,∀u1, u2 ∈ Γ.

Lemma 3.2. Let 0 < b < 1. The statement of Lemma 3.1 remains true if we

replace Lm(Rdk) and Lm(Rd) by Lm(b,Rdk) and Lm(b,Rd), respectively.

This is proved similarly to Lemma 3.1.

Proof of Theorem 3.2. Using Lemma 3.2 in place of Lemma 3.1, we can prove

the equivalence of (ii), (iii), and (iv) in the same way as in the proof of Theorem

3.1. To show the equivalence of (i) and (iv), let u, v ∈ Γ with 0 < u < v and let

t ≥ 0. Then, since u/v ∈ Γ,

µ̂vt(z) = µ̂ut(z)µ̂ut,vt(z)

= µ̂vt

((u

v

)H

z

)
ei<c,z>µ̂ut,vt(z)

= µ̂vt(a−nH
0 z)ei<c,z>µ̂ut,vt(z)

with some c ∈ Rd and some positive integer n. To see that (iv) implies (i), it is

enough to choose v = 1 and u = a−1
0 in the identity above. Conversely, suppose

that (i) is satisfied. Then

µ̂vt(z) = µ̂vt(a−H
0 z)ρ̂(z)

with ρ ∈ Lm−1(a−H
0 ,Rd). Hence

µ̂vt(z) = µ̂vt(a−2H
0 z)ρ̂(a−H

0 z)ρ̂(z)

= µ̂vt(a−nH
0 z)ρ̂(a−(n−1)H

0 z) · · · ρ̂(z).
11
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Since µ̂vt(z) 6= 0, it follows that

µ̂ut,vt(z) = ρ̂(a−(n−1)H
0 z) · · · ρ̂(z)e−i<c,z>,

where u = va−n
0 . Since Lm−1(a−H

0 ,Rd) is closed under convolution (Theorem

3.3 of [MN97]), we see that µut,vt ∈ Lm−1(a−H
0 ,Rd). That is, we get the condi-

tion (iv). ¤

We note that (i) is true if L(X(t)) ∈ Lm−1(a−H
0 ,Rd) for 1 ≤ t < a0.

Comparing Theorems 3.1 and 3.2, one might ask whether in Theorem 3.2

the condition (i) implies that all n× d-dimensional joint distributions of {X(t)}
are in Lm−1(a−H

0 ,Rnd). We show, by an example, that the answer is negative.

Example 3.2. Let d = 1 and 0 < b < 1. Consider an infinitely divisible

distribution with Lévy measure

ν =
∑

n∈Z

knδb−n ,

where kn ≥ 0 and
∑

n≥0 kn +
∑

n<0 b−2nkn < ∞. Then, µ ∈ L0(b,R) if and

only if

(3.5) kn − kn+1 ≥ 0, ∀n ∈ Z,

and µ ∈ L1(b,R) if and only if, in addition to (3.5),

(3.6) (kn − kn+1)− (kn+1 − kn+2) ≥ 0, ∀n ∈ Z,

(see [MN97]). Suppose that we are given µ ∈ L0(b,R) with Lévy measure of

this form. Choose a > 1 and H > 0 such that b = a−H . If gn(t), n ∈ Z, are

chosen to be nondecreasing continuous functions on [1, a) satisfying gn(1) = kn

and limt↑a gn(t) = kn−1, then we can construct a stochastically continuous, H-

semi-selfsimilar process {X(t), t ≥ 0} with independent increments such that

L(X(1)) = µ and L(X(t)) has Lévy measure

(3.7) νt =
∑

n∈Z

gn(t)δb−n
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for 1 ≤ t < a (Theorem 6.2 of [MSat97]). Now assume that the given kn, n ∈ Z,

satisfy (3.5) and (3.6) with strict inequalities (e.g. kn = bn/H with H > 1/2).

Let

hn(t) = kn
a− t

a− 1
+ kn−1

t− 1
a− 1

, 1 ≤ t < a.

Then, for any fixed t, hn(t), n ∈ Z, satisfy the inequalities corresponding to (3.5)

and (3.6). Choose ε > 0 so small that

kj − 2hj+1(1 + 2ε) + kj+2 > 0 for j = 0,−1,−2.

This is possible, since kj − 2hj+1(t) + kj+2 → kj − 2kj+1 + kj+2 > 0 as t ↓ 1.

Next choose gn(t), n ∈ Z, as follows:

gn(t) = hn(t), 1 ≤ ∀t < a,∀n 6= 0,

g0(t) = h0(t), 1 + 2ε ≤ ∀t < a,

g0(t) = k0, 1 ≤ ∀t ≤ 1 + ε,

and g0(t) is continuous and nondecreasing for 1 + ε ≤ t ≤ 1 + 2ε. We claim that

(3.8) gn(t)− gn+1(t) ≥ 0, 1 ≤ ∀t < a,∀n ∈ Z,

(3.9) (gn(t)− gn+1(t))− (gn+1(t)− gn+2(t)) ≥ 0, 1 ≤ ∀t < a,∀n ∈ Z,

(3.10) g0(t)− k0 < g1(t)− k1, 1 < ∀t ≤ 1 + ε.

In fact, (3.8) follows from that gn(t) ≥ kn ≥ gn+1(t). If n 6= 0,−1,−2 and

t ∈ [1, a) or if n ∈ {0,−1,−2} and t ∈ [1+2ε, a), then (3.9) is identical with the

corresponding inequality for hn(t), n ∈ Z. If j ∈ {0,−1,−2} and t ∈ [1, 1 + 2ε),

then

(gj(t)− gj+1(t))− (gj+1(t)− gj+2(t)) ≥ kj − 2hj+1(1 + 2ε) + kj+2 > 0.
13
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Hence (3.9) is true. The inequality (3.10) is obvious. Consider the process

{X(t)} that corresponds to gn(t), n ∈ Z. That is, for 1 ≤ t < a, L(X(t)) has

Lévy measure (3.7). Then L(X(t)) ∈ L1(b,R) for 1 ≤ t < a by (3.8) and (3.9),

and also for all other t by the semi-selfsimilarity. However, L(X(t) − X(1)) /∈
L0(b) for 1 < t ≤ 1 + ε by virtue of (3.10), because

ν1,t =
∑

n∈Z

(gn(t)− kn)δb−n

for the Lévy measure ν1,t of L((X(t) − X(1))). Hence L((X(t), X(1)))

/∈ L0(b,R2) for 1 < t ≤ 1 + ε.

The proof of Theorem 3.1 shows that, for any process {X(t)} with indepen-

dent increments, the conditions (ii) and (iii) in Theorem 3.1 are equivalent. A

related problem is for what more general processes (not necessarily having inde-

pendent increments) those two conditions are equivalent. This will be discussed

in another paper.

4. Infinitely divisible semi-selfsimilar processes

In this section, we shall give several examples of infinitely divisible semi-

selfsimilar processes. We say that an Rd-valued process {X(t)} is infinitely

divisible (resp., α-stable) if for any n and any 0 ≤ t1 < · · · < tn, d×n-dimensional

random vector (X(t1), · · · , X(tn)) is infinitely divisible (resp., α-stable).

In the following, for B ⊂ Rd and x ∈ Rd, denote

B

x
= {t ∈ R : tx ∈ B} ⊂ R.

Proposition 4.1. Let X be a real-valued nonnegative infinitely divisible ran-

dom variable with its Lévy measure ν and with 0 as its drift. Let Zα be an

Rd-valued strictly α-stable random vector, independent of X. Then

X̃ := X1/αZα
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is infinitely divisible on Rd and its Lévy measure ν̃ is given by

ν̃(B) = E

[
(Tαν)

(
B

Zα

)]
, ∀B ∈ B(Rd \ {0}),

where Tαν is a measure on R defined by

(Tαν)(A) =
∫

IA(t1/α)ν(dt), ∀A ∈ B(R)

and IA is the indicator function of the set A.

Proof. Let {X(t)} and {Zα(t)} be independent Lévy processes on R and on Rd,

respectively, such that X(1) d∼ X and Zα(1) d∼ Zα. Here by a Lévy process we

mean a process which has independent and stationary increments, is stochasti-

cally continuous, and starts from the origin. Notice that X(t) is a nondecreasing

process. Then a subordination Y (t) := Zα(X(t)) is also a Lévy process.

For any B ∈ B(Rd), we have

P{Y (t) ∈ B|X(t)} = [P{Zα(s) ∈ B}]s=X(t) =
[
P{s1/αZα(1) ∈ B}

]
s=X(t)

and hence

P{Y (t) ∈ B} = P{X(t)1/αZα(1) ∈ B}.

Thus X̃
d∼ Y (1), which is infinitely divisible.

The Lévy measure of a subordination is given by

ν̃(B) =
∫

(0,∞)

P{Zα(t) ∈ B}ν(dt), ∀B ∈ B(Rd \ {0}),

(see [Z58]). Therefore, for any B ∈ B(Rd \ {0}),

ν̃(B) =
∫

(0,∞)

P{t1/αZα(1) ∈ B}ν(dt)

=
∫

(0,∞)

ν(dt)
∫

Rd

IB/t1/α(x)L(Zα(1))(dx)

=
∫

Rd

L(Zα(1))(dx)
∫

(0,∞)

IB/x(t1/α)ν(dt)

=
∫

Rd

(Tαν)
(

B

x

)
L(Zα(1))(dx)

= E

[
(Tαν)

(
B

Zα

)]
.
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This proves our theorem. ¤

Example 4.1. Let {Zα(t), t ≥ 0} be Rd-valued strictly α-stable, H-semi-

selfsimilar. Let X be the same as in Proposition 4.1, independent of {Zα(t)}.
Then

X̃(t) = X1/αZα(t)

is an Rd-valued, infinitely divisible, H-semi-selfsimilar process. If {Zα(t)} has

stationary increments, then so does {X̃(t)}.

Proof. For any 0 ≤ t1 < · · · < tn, consider

(X̃(t1), · · · , X̃(tn)) = X1/α(Zα(t1), · · · .Zα(tn)).

Since (Zα(t1), · · · .Zα(tn)) is Rnd-valued symmetric α-stable, independent of X,

it follows from Proposition 4.1 that (X̃(t1), · · · , X̃(tn)) is Rnd-valued infinitely

divisible. The H-semi-selfsimilarity and the property of stationary increments

(if any) of {X̃(t)} follow from those of {Zα(t)}. ¤

Remark 4.1. In Proposition 4.1, it is known that if X is a nonnegative strictly

β-stable random variable (β < 1), then X̃ is strictly αβ-stable. In [MSam97],

it is proved that if X is nonnegative strictly β-semi-stable (β < 1), then X̃

is strictly αβ-semi-stable. Therefore, if we choose X as a nonnegative strictly

semi-stable random variable in Example 4.1, then we can construct examples of

strictly semi-stable semi-selfsimilar processes.

Lemma 4.1. (Theorem 3.10.1 and Exercise 3.15 of [SamT94].) Suppose 0 <

α < 2. Let {εj} be i.i.d. random variables such that ε1 takes two values ±1 with

probability 1/2, respectively, {Wj} be i.i.d. Rd-valued random variables with

E[|W1|α] < ∞, and let {Γj} be a sequence of Poisson arrival times with unit rate,

namely Γj =
∑j

i=1 ei, where {ei} are i.i.d. exponentially distributed random

variables with E[e1] = 1. Suppose that {εj}, {Wj} and {Γj} are independent.
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Then

(4.1) X :=
∞∑

j=1

εjΓ
−1/α
j Wj

converges almost surely and X is Rd-valued symmetric α-stable.

Example 4.2. Let 0 < α < 2 and let {W (t), t ≥ 0} be an Rd-valued, H-

semi-selfsimilar process with E[|W (t)|α] < ∞. Let {Wj(t)}, j = 1, 2, , · · · , be

independent copies of {W (t)}. Then

X(t) :=
∞∑

j=1

εjΓ
−1/α
j Wj(t)

is a symmetric α-stable, Rd-valued, H-semi-selfsimilar process. If {W (t)} has

stationary increments, then so does {X(t)}.

Proof. Let 0 ≤ t1 < · · · < tn. Denote the components of Rd-valued random

vectors X(tk),Wj(tk) by X`(tk),Wj,`(tk), ` = 1, · · · , d. For any ck,` ∈ R (k =

1, · · · .n; ` = 1, · · · , d), we have

X :=
n∑

k=1

d∑

`=1

ck,`X`(tk) =
∞∑

j=1

εjΓ
−1/α
j

n∑

k=1

d∑

`=1

ck,`Wj,`(tk)

and

E

[∣∣∣∣∣
n∑

k=1

d∑

`=1

ck,`Wj,`(tk)

∣∣∣∣∣

α]
< ∞.

Hence X is symmetric α-stable on R by Lemma 4.1, and thus (X(t1), · · · , X(tn))

is symmetric α-stable on Rnd by Theorem 2.1.5 of [SamT94]. As to the H-semi-

selfsimilarity of {X(t)}, since {Wj(at)} d= {aHWj(t)}, we have




∞∑

j=1

εjΓ
−1/α
j Wj(at)





d=





∞∑

j=1

εjΓ
−1/α
j aHWj(t)



 ,

concluding that {X(at)} d= {aHX(t)}. As to its increments, by the same rea-

soning as above, if {W (t)} has stationary increments, then so does {X(t)}. ¤
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An example of Rd-valued H-semi-selfsimilar process {W (t)} with station-

ary increments and with the α-th moment, which we need in Example 4.2, is

found in Theorem 9.3 of [MSat97]. It is constructed in the following way: Let

0 < H < 1 and 0 < β ≤ 2 with H 6= 1/β. Define

W (t) =
∫ ∞

−∞
(|t− u|H−1/β − |u|H−1/β)dSβ(u), t ≥ 0,

where {Sβ(t), t ∈ R} is a nontrivial Rd-valued symmetric β-semi-stable Lévy

process. Then {W (t)} is an H-semi-selfsimilar and β-semi-stable process in the

sense of Definition 8.2 of [MSat97]. As is well known, β-semi-stable random

vectors have the α-th moment if α < β. Therefore, if β > α, then E[|W (t)|α] <

∞.
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