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1. Introduction

This paper is concerned with the regularity of the interface which arises
in the so-called fast chemical reaction problem. In its simplest form, we may
describe the problem as follows: Let Q be a smooth, bounded domain in R”,
and let a; and a, be positive constants. Given an initial condition A : @ — R,
find a function w : Q x [0,00) — R satisfying

ajuy = Au on {u > 0},

sy = Au on {u < 0},
(1.1) g@u—a+ 24 =0 on {u=0},

= =0 on 99 x (0, o0},

u(z,0) = h(z) on .

Here, (=) is the outward-pointing unit normal vector to the subdomain {u >
03N x {t} {u<0}nNQ x {¢t}) for any ¢. The set {u = 0} is presumably a
hyper-surface, which represents an interface separating two diffusing chemical
substances.

J. R. Cannon and C. D. Hill in [CH] established the existence, uniqueness
and stability of the weak solution to (1.1) (see Section 2 for the definition).
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Using the Holder estimates of [LSU], Cannon and Hill verified that the weak
solution u is Holder continuous in the space and time variables. Hence, the
interface {u = 0} is a closed set in Q x (0, 00), while it may or may not contain
interior points. The solution u is smooth away from {u = 0} since u satisfies
the usual heat equation there.

In this paper, we show that, away from degenerate points, the set {u = 0}
is indeed an n-dimensional hyper-surface, except for a set of small measure.
To be more precise, we recall the definition of the n-dimensional parabolic
measure in £ x (0, 00).

Definition 1.1. Let S C © x (0, 00) be a subset. Define the n-dimensional
parabolic measure of S as

Pr(S) —-hmmf{z | S C UL, P (2, t5), 2r; < 6 for allj}.

Here, P.(z,t) is the parabolic cylinder

P (zj,t5) = {(2,1) € Q x (0,00) | |z — x| <7y, |t —t;] <ri}

J

Note that the n-dimensional Hausdorff measure H" has the property H™(.5)
< ¢(n)P"™(S) for some constant ¢(n).

Theorem 1.1. Let u be the weak solution to (1.1) (see Definition 2.1).
Then, there exist an open set @ C Q x (0,00) and a closed set W C 1 x
(0,00) N {u = 0} with the following properties:

(1) 2 x (0,00) =OUW and ONW = 0.
(2) On O, us and Vu = (8;, .- ;”;l) are locally Holder continuous in the
space and time variables.

2 A 72, — Fu
(3) For any open set O CC O, V*u = (affaxj)lgi,jgn

up to the boundary on each domain O N {u > 0} and O N {u < 0}.

(4) On O N {u =0}, |[Vu| # 0.

(5) ON{u = 0} is an embedded n-dimensional hyper-surface, and locally C'**
in space and C'Y*/2 in time for some 0 < a < 1.

(6) W =W, UW, with P*(W,) = 0 and

are Holder continuous

1 2
ll_I)n0 v /P,.(x.t) [Vul*dedt = 0
for all points (z,t) € Wh.

Property (2) shows that the functions u; and Vu are Holder continuous
across {u = 0} on O, while (3) shows that V?u is Holder continuous up to
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{u = 0} on O. In particular, we may define, for each point on the interface

(2,t) € ON {u = 0},

(V2u)* O (a,t) = (V2u)(y, s).

lim
()4 (z.1), (y,5)€{u>0 (<0)}

These two functions (V?u)* and (V*u)~ may not coincide on {u = 0}, result-
ing in a discontinuity of V2u across {u = 0}. Property (6) shows that the “bad
set” W is decomposed into two sets, W; being a set of n-dimensional measure
0 and W, being a set of degenerate points ({Vu| = 0) in the measure-theoretic
sense. We conjecture that P"(W,) = 0 when the initial condition is not triv-
ially equal to 0, but we were not able to prove such a statement. Indeed, we
were not able to exclude the possibility that W, may have non-trivial interior
points.

We also derive an interesting formula for the speed of motion of the inter-
face. Let (z,t) € O N {u = 0} be a point on the interface, and let v be the
unit normal n-vector to the n — 1-dimensional surface ON{u = 0} N (Q x {t})
pointing toward the positive domain {u > 0} N (2 x {¢}).

Theorem 1.2. The speed of motion of the interface {u = 0} N (2 x {t})
in the normal direction v at (x,?) is given by

+ —
_— ul/l/ uVI/

((11 - a'l)uu '

Here,
J*u

_‘(y,S),

uf) = lim e
(v,5)=(2,1), (3,5)€{u>0 (<0)} /2

and u, = 2%(z,1).

These quantities are well-defined at each point (z,¢) € O N {u = 0} by
Theorem 1.1 (3), and u, # 0 by (4). The formula is interesting in that
we would not see it a priori (even heuristically), unless we establish enough
regularity of the solution wu.

In Sections 2-4, we establish the Holder continuity of the space gradient
Vu. The idea of the proof is to show that Vu is Holder continuous whenever
u is close in a wcak sense to some non-degenerate affine plane. Namely, we

define

Definition 1.2. Given an H! function uv and a vector p € R™, let

E(r,(z,t),p) |Vu — p|*dzdt.

1
TP JPt
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Here, |P.| = L™ (P.(z,t)). If |p| # 0 and E(r,(z,t),p) is small enough,
we show in Theorem 3.1 that Vu is Holder continuous by using the so-called
blow-up argument.

In Sections 5-7, we establish the C'** regularity up to the interface as well
as the Holder continuity of u,. The idea of the proof is rather simple: since
the graph of u is proved to be a C'*-manifold in space, and the tangent plane,
with respect to the parabolic scaling, depends only on the space variables,
we view the graph of u as a graph over a vertical plane in 2 x (0,00) x R.
The function v : (21, -, T,_1,y,t) € R™! — R which represents this graph
satisfies the equation

¢ vl?
N oV = Ayv — 5‘;7 (E—Jr—lzvyi[—) on {y > 0},
(1.2) o= Ay D (TP 3
QU = AU — Em (‘—'Ty———) on {y < 0}

We prove Theorems 1.1 and 1.2 by establishing the regularity for v instead of
u.

We note that there are numerous works related to the prcblem in this pa-
per, see [CH,CF,CD E,CaY,ChY], for example. In [CH,CF,CD], Cannon et
al. studied initial boundary-value problems of this type, with various bound-
ary conditions in n space dimensions, and showed the existence, uniqueness
and certain stability results. In [E], Evans showed the existence of the classi-
cal global solution of the one space dimensional problem. In [CaY], Cannon
and Yin studied periodic problems with one space dimension, and showed the
existence of the classical global solution. Also related is the so-called Stefan
problem (see [M] for the references), in which the speed of the interface motion
is given by the gap of the first derivatives across the interface.

Acknowledgment. I would like to thank the members of the Department
of Mathematics at Rice University for their support and hospitality while this
research was conducted, and Hong-Ming Yin at University of Notre Dame for
suggesting this problem to me.

2. Weak formulation and some preliminary estimates

2.1. Weak solutions.

In [CH], the existence and uniqueness of a weak solution to problem (1.1)
with the homogeneous Neumann boundary condition are established. Let
Q C R" be a bounded domain with smooth boundary, and fix some 7' > 0.

Definition 2.1. A weak solution to problem (1.1) with A € H'(Q) is a
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bounded, measurable function u defined on 2 x [0, 7] such that
(2.1) /T / a()22 + unpdrdt + (h)pde =0
. u)— +u a dr =
o Ja ot Qx{o}

for all test functions ¢ satisfying

on  x {T'} and

on 0Q x [0,T]. Here, a(u) is a Lipschitz function defined by

a(u) = au if uw>0
T agu if uw<O

where «; and a3 are positive constants. One may verify, with some modifica-
tions of our proof, that the same regularity results hold if we have

o ai(w) if w>0
a(u) = { ag(u) if u<0

with ay, 9 € C®(R), 01(0) = a2(0) = 0, and 0 < v; < o}, 0}, < ¥, < o0 for
some coustants v; and ~,. For simplicity, we only deal with the former case in
this paper.

As was shown in [CH], u belongs to H'(2 x [0,T]), i.e.,

T
(2.2) /0 /ﬂ(|u|2 IV 4wl dadt < oo.

Here, V is the gradient with respect to the space variables. Next, for L! a.e.
t, a’(v)u; = Au is satisfied in the strong sense on §2. Also, we have

T
(2.3) / / |V2u|?dzdt < oo
‘ o Ja

for all @ CC Q. To see these claims, first fix ¢ € C>(Q) (compactly supported
C'* function defined on ) and ¢ € C°((0,T)). We use the function ¢z, t) =
P(2)((t) € CX(2x(0,T)) as a test function in (2.1). Note that the conditions
¢ =00nQx{I'} and 22 = 0 on I x [0, T] are satisfied for this ¢. Additionally,
¢ =0o0n Q x {0}. By integration by parts,

/0'1' g(f)/ a (W (z, ) (z) + Vu(z,t) - Vi(z)dadt = 0.

Q



KSTS/RR-97/012
December 1, 1997

Since ( is arbitrary, this shows that
(2.4) / o (W, )b(2) + Vau(z, 1) - Vip(a)de = 0
Q

for a.e. t € [0,T] for this fixed ¥(z). Next, since H}(f2) is separable, we may
choose a countable set of functions {v;(z)}2, in C(Q) which is dense in
H}(Q). By the previous argument, (2.4) holds for a.e. ¢t € [0,7'] for each ¢;,
i =1,2,---. Since the collection {1/;} is dense, (2.4) holds for any ¢» € H}(Q2)
for a.e. ¢t € [0,T]. Since u;(-,t) is in L*(Q) for a.e. t € [0,7] and o' is
bounded, the standard elliptic regularity theory shows that u(-,t) € HE_(Q)
for a.e. t € [0,7] and the equation is satisfied pointwise for a.e. = € 2 and

a.e. t €1[0,7].

2.2. A time derivative estimate.

Throughout the rest of the paper, all constants depend only on n, o and
ay unless stated otherwise.

Proposition 2.1. Let u be a weak solution satisfying (2.1) and let Py, =
Py (z,t) CC Q x [0,T] be a parabolic cylinder centered at (x,t). Then there
exists a constant ¢; such that

(2.5) r2/ || *dedt < c,/ |Vu — p|*dadt,
P, P,

where p € R" is an arbitrary n-vector.

Proof. By [CH}, we may approximate the problem (2.1) by

Uy = A on Qx {0}
dum — ) on 00 x[0,7],

{ Dam(tm) = Au, on Q% [0,7]
on

where a,, is a smooth approximation of a. Let ¢(y) = &(|]y — z|) be a smooth
function such that
1 on B(x)
¢ = { 0 on B (z),

and |[V¢| < 2/r. By Fubini’s Theorem, we may choose ¢; € (—(2r)?, —r%) and
ty € (r%,(2r)?) such that

/ IVu,, — pl*¢*de < 2 / |Vu, — pl*¢*dzdl
Bor(@)x{f} 32 dp, "
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for ¢ = 1,2. Multiply the equation by (un,):¢* and integrate over By, x (t1, f2).
Then by integration by parts, it follows that there exists a constant ¢; such
that

m 22d‘dt<ﬂ/ V() — 2 xdt
/Bzrx(t],t'g)I(u ) ¢ dz = p2 P2r| (um) = pl7dz

for any p € R". Hence, we have the inequality (2.5) for u,,. To verify that the
limit u satisfies the same inequality, let ¢ € C=°(€ x [0,77]) be a non-negative
function such that ¢ = 1 on P,,. By subtracting the equations, we have

o, . :
() = a(w)) = A =)

Multiply the equation by ¢(u, — u) and integrate. Then, we have
T a . : T
/0 /Q (&(am(um) - a(u))) (U, —u)dadt = /0 /QQS(um —u)A(u,, —u)dzdt.
We integrate by parts, which yields
r 0
/0 /ﬂ (g(am(um) - a(u))) H(um — w)dedt

— ‘/Or/Q |VUm - Vu|2¢d(17dt — /OT /{Z(um — U)VQS . V(um _ u)d:cdt.

By using Holder’s inequality, we obtain

T
/ / YV — Vul2ddedt
0 Q

, 9 2
= (/OT A (%(“m(“m) - a(u))) ¢dxdt) ( / ' ]Q(um - u)szdwdt)
+ (/OT /ﬂ IV (tm — u)|2|Vq5\2dxdt)1/2 (/OT /Q [t — u|2dxdt) v .

By the strong L2(Q x [0, T]) convergence and the uniform H'(2x[0,7]) bound
for {u,,} and u, we see that

1/2

/P IV (U, — u)|*dzdt — 0

as m — oo. The sequence of functions {(um):} may not converge strongly
in L*(9) x [0,T1]), but the lower semicontinuity under the weak convergence
is enough to conclude (2.5) from the inequalities satisfied by the approximate
solutions. O

-~J
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3. Decay estimate

In this section, we first show

Proposition 3.1. Let u be a weak solution of (2.1) on P, and suppose
that M > 0 is given. Then there exist constants € = ¢(M,n,a;,a2) > 0 and
Kk = k(M,n,ay,az) > 0 such that the following property holds: Whenever

1
E(©2 s———] — p|*dzdt
(2) il Pz]Vu plidzdt < e

holds for some n-vector p with |p| > M~!, we have
E‘_l \Y v 2ddt<lE‘7
(n):m—'/m] u = (Vu)a[dedt < SE(2)

Here,
1
v K:,__/ Vu dad.
(Vu) 7 I u dx
Also, there exists a constant ¢j9 = ¢19( M, n, ay, az) such that
(V) — pl < e E(2)'2.

Proposition 3.1 shows the following: If £(2) is small enough and |p| is away
from 0, then £ in a smaller scale with a different vector can be made smaller
by a definite factor. This is the key step to show that Vu is Holder continuous.
We note that the idea of decay estimates originates from the regularity theory
of minimal surfaces and has been used successfully in various areas such as
harmonic mappings and free boundary problems in recent years.

Proof of Proposition 3.1. For the purpose of eventually obtaining a
contradiction, consider a sequence of solutions {u'}32, satisfying (2.1) on the
parabolic cylinder P, = {(z,t) | |z| < 2, |¢| < 2%}, which are getting closer to
some non-degenerate affine functions. Namely, let p;,ps2,--- € R™ be vectors
with

(3.1) 0< M~ <|p]

and let .
E, = / |Vu! — p;|2dedt.
P

We assume that F; — 0 as i — oo. Denote

, 1 .
U = — u' dzdt
|P1l P
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for: =1,2,---. By Proposition 2.1, we have
(3.2) / i |2 + |V 2dadt < oy B;.
Pryy

With (3.2), one can show (see [EG 6.6.2] and [HT, section 4]) that there exists
a Lipschitz function g* defined on Py, such that

(3.3) sup(|Vg' — pil + lgil) < B,
P32
(3.4) L™ (Pyyp N {u' # ¢'}) < 03]1/?/4,
(3.5) / Vg — pil* + |gi)Pdadt < 3 E;,
Payo

where ¢; depends only on n. We then estimate the distance between g* and
u' + p; - z. Since |g' — @ — p; - x| is a continuous function on Py, there exists a
point (z*,t*) € P, such that

o , 1 S
(@t —ut —picx S——/ C—at —p; - zldedt
lg" (=", ") Piel S 1 9 pi - z|

1 A : . : .
S-——-/ g —u'|+ [u'—u —p; - x|)dadt
B (o' =l b = )

<o [ (V' = V'l 4 lgi = u + [V —pi] + Jui])

1/2
§C5 ’jz/

We used Poincaré’s inequality, and the last inequality holds by (3.2) and (3.5).
With (3.3), we obtain

3. sup |g'(@,t) — ' —p; - 2| SAES 4 s B
3.6 g'(z,t < 4b:/8 E;m
(z,t)eP

Now let . _
Q;EPIO{E,’»#pi'(I:ZO}.

o0

Since the sequence of sets 110 g precompact in the Hausdorff metric, we
+Ji=1 p
can choose a subsequence of e (and we again call it {Q% }%,) so that
: q +Ji=1 \ g +Ji=1
A in the Hausdorfl metric for some closed set + ( P,. Note that Q4
+
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may be empty. Since it is a limit of the sequence of half spaces in the space
variables, @, is of the form

for some b € R and ¢ € R™. Note that we are not excluding the possibility
that @' or |p;| may go off to infinity. We also define Q_ = P; \ Q4. By using
the non-degeneracy condition (3.1), and the estimates (3.4) and (3.6), one sees

that
(3.7) L@y n{u' <0}) =0,
(3.8) L"NQ_n{u' >0})—=0

as ¢ — 00. Note here that the non-degeneracy condition (3.1) is essential.
Since |p;] > M~ and ¢' deviates from @' + p; - = only slightly due to (3.6), we
conclude that ¢' is positive on most of Q. This allows us to conclude that u'
is mostly positive on Qﬁ_ since ¢* and u’ coincide on most of Q+ by (3.4). (See
Remark 3.3 and 3.4 for more discussions.)

We define a sequence of functions {w'} by

w' = (v - - p; - w)Ef]/z.
By (3.2) and the Poluncaré inequality, we have

(3.9) [ 1l i+ VR < e,
1

(3.10) /P IVuw'|? = 1.

Because of these estimates, there exists a subsequence of {w'}2, (again called
{w'}2,) and w>* € H!'(P;) such that the w' converges to w™ strongly in
L*(Py) and weakly in H'(P;), and w™ satisfies

(3.11) /P (0™ ? + [w 2 + [Vw™[?) < er.
1
We claim that w satisfies the equation

(3.12) /P wi”(axg, +a2xg_ )¢+ Vw Ve =0

1

for all test functions ¢ € C§°(Py). Here, o, and xg_ are the characteristic
functions for the sets QO and Q_, respectively.

10
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Proof of claim. By dividing (2.4) by Ez-l/z, note that w' satisfies
/ a'(ui)wfq‘) + V'V drdt = 0.
Py

The second term converges to [p Vw™Ve¢ by the weak convergence in H.
Next, by a telescopic argument,

l/Pl a'(u)wid — /}’1 wy® (e xg, + ang_)¢'

< | [ (@rxa, +anxo_)(wi ~ wi)g
+ ’/Pl{a'(ui)wi — (a1xq, + azXQ_)lvi}QS’

<

[ (arxa, + onxa )ui = wi)g

1

+ </pl pla’(u') — (e1xq, + CY2XQ_)|2)1/2 (/P, I'w§|2¢)

The first term goes to 0 by the weak convergence in H', and the second term
also goes to 0 by (3.7), {3.8) and (3.9). Thus, (3.12) holds. O

1/2

Remark 3.1. By subtracting equations, we obtain
[ {wr(@ixe, +asxe) = @(w)ui}d + V(w™ = w)Vé = 0
b 1

for ¢ € Cg°(Py). Let ¢ € C2°(P;) be a function such that |{] <1and {( =1 o0n
P7s. By using ¢ = (w™ — w')( as the test function in the above expression
and using the strong L?(P,) convergence, we conclude that

(3.13) /P |V(w* —w')|* — 0
Pryg

ast —oo0. O

We next analyze the solution w™ to the equation (3.12). We show that
w™ is C1*(P;) function for any exponent o < 1. We denote w™ by w in the
following, for notational simplicity.

Lemma 3.1. Suppose that w € H'(P,) satisfies (3.12) for all test functions
¢ € C§°(P,), with the estimate (3.11). Then, for any a < 1, there exists a
constant ¢g such that

(3.14) lwllorap ) < es.

11
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Proof. Let n = n(]z|) be a smooth function such that
N 1 on B','/g
() _{ 0 on B
and |Vy| < 10. Also let ¢ = ((¢) be a smooth function such that

) = { L for i < (§)°

0 for |t| >1
and |¢’] <100. In (3.12), we use ¢ = n*C*w. Then,
. wiaxo, + asxo )it + [Vul'nC? + 2wV = 0
By integration by parts and Holder inequality,

. 1 ‘ ,
[o1vuitct <5 [ 1Vwlaict + e [ 1VnPcte?
Py 2 Jp Py

+/P w*(arxg, + caxe_)2¢IC 0.

This shows, with a suitable choice of ¢;q, that
(3.15) / |Vw|® < (335/ w?.
Prg Py

Next, let n and ( be as before. Let w® be the usual mollification of w as a
function in R"*!. Namely, define

(b)) = ,8)pe(x — y,t — s)dyds.
wle)= [ oy ol =yt = s)dyds
Here, p € C5(B71(0,0)), [ pdedt = 1, and

pla,t) = e " p(xe™t te™).

We use (w),n?¢* as a test function in (3.12). Then we compute that
[, wilenxe, +axxo_)(w)a'c®
1

+0**VuV (w), + 2n(w*),*VwVn = 0.
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We use the properties of the mollifier that (w®); = (w,)* and V(w*) = (Vw)*.
Note that, as ¢ = 0,

‘/n (Vw*V(w®); — VoV (ws),)

< U(V“‘E = Vw)V(w)m*(*

= 1- /(_Auf — Aw)(w‘f)m(‘)(j2 + /277(2(ws)t(Vw5 - Vw)Vn‘ — 0

by using Aw, Vw € L{,.(P;). Since

[revurvw) = ¢ [ vuep = [ [utacy?
with a suitable choice of ¢y, it follows that
(3.16) [, Jwb s en [, Vol

Using (3.15), (3.16) (with slight modifications of  and () and equation (3.12),
it follows that

(3.17) / |V2w]? < 012/ Jw]?.
Py /s P

Note also that all of the above estimateb are valid if we replace w by the
difference quotients approximating 2 =y for any j > 1, since (3.12) is satisfied
by such quotients. Since the estimates do not depend on the approximation by
the quotients, they are also valid for %Jt“’ as well. After a bootstrap argument,
we see that there exist constants {cja(7)}32, such that

(3.18) [D{wli2(p, ) < €13(3)
for j = 0,1,2,---. By the Sobolev inequality applied to P, C R"*!,

(3.19) | Diw

| Ty < c1a(g)
for n > 3, while

(3.20) 1D{wllgs(ryye) < €145 9)
with any g < oo for n < 3. By the L? estimate ([GT]),

1D wllwesp, ) < ais(d) (|1 Dfw

Le(Pyye) + 1ADIw + Dij+2w||lls(P5/g))

13
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for j =0,1,2,--- and s = (ii+—1+)1—_)4 Note that ADjw = D{Aw = (exo, +

azxq_ ) DI w, hence, the right-hand side is bounded by (3.19) (or (3.20) for
n < 3 with s replaced by some large ¢ < co). We may repeat such estimates
to obtain

Jwllwzap,,,) < e16(q)

for any ¢ < co. For any given a < 1, we may choose ¢ = ¢(n, @) such that

[[wllcracp,,,) < erllwllwzamp, )

by Sobolev’s inequality. Hence, we obtain (3.14). O
Remark 3.2. The estimate (3.14) shows, by choosing & = 1/2, that there

exists a constant ¢;g such that

o« 1

(3.21) 2 S, 170 = (V). < cien
for all 0 < k < 1/2. Here,

1
= .
(Vw), = 7] /PK Vw dzdt

We are now ready to prove the decay estimate. We choose x > 0 as
% = min{ciy, 1/2}. Assume the contrary to the statement of the proposition.
Then, there exists a sequence of solutions {u'}%2, C H'(P;) and {p;}32, C R"
with |p;] > M1,
1
IPZI P,

Ei(2) |Vu' — p;|*dzdt — 0,

1 1 A |
SE2) < Bi(w) = W/a Vi — (V') |?dedt.

After choosing a subsequence, let w!,w?,---,w™ € H'(P,) be the correspond-
ing sequence of functions and its limit, as was discussed previously. By the
strong convergence (3.13), note that

1 1 . L
= Ei(- — Vu' — (Vu')|*dzdt
352) < o [, Va = (V) s

< I_l—'%l/m IV — p; — (V™) Ei(2)Y?* [ dzdt

= F;(2)- |—;——1/P V' — (Vw™), |

14
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— E(2) (I;—I /P VW™ — (V)| + 0(1)) < E(2) G + 0(1)) ,

which is a contradiction. Thus the first part of the theorem is proved. The
second part follows from

1
(V) =9l < 1 [, V= pldede
1 1/2
§ C19 <m /}; |Vu - pl2d$df) S ClgE(Z)l/Q. ]
2 2

Remark 3.3. We note that we cannot use the Holder continuity estimates
of [LSU] in showing the conclusions (3.7) and (3.8). The reason is the following:
To obtain the Holder continuity estimates, one would need to convert the
problem so that the equation in question is in divergence form. Namely, one
defines v = a(u), where a is the function defined in section 2.1, and notes that
v satisfies

vy = div((a™1) (v) V)

in an appropriate weak sense. Here, a=! is the inverse function of a. Since

(a7')(v) is a bounded positive measurable function, one may apply the result
from [LSU] to obtain the Holder continuity estimates. However, we may not
conclude, for example, that v is close to any affine function or piece-wise affine
function, since we would lose the control of the H' norm of v after such a
conversion. We have no control over the upper bound of |p;] in the proof, so
that such an attempt would destroy the control of the H' norm inevitably.
The Lipschitz approximation thus fills the gap nicely to conclude (3.7) and
(3.8). O

Remark 3.4. The statement of Proposition 3.1 can be improved slightly,
even though it is unnecessary to do so to prove Theorem 3.1. Namely, given
0<d< %, we can replace the non-degenerate condition

pl =M™ by |p| > E(2)°

in the statement of Proposition 3.1, with €, x and ¢;¢ depending only on 4, n,
ay and a,. The proof is exactly the same, except that we replace the exponent
1/8in (3.3) by  — d and the exponent 3/4 in (3.4) by 26 (see [HT]).

We also note that, if we could replace the non-degenerate condition

Il > E(2)57° by |p| > E(2)3%
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for some positive & > 0, then we would be able to obtain a Holder continuous
estimate of Vu at degenerate points as well. At present, we do not see how to
prove that such estimates exist. O

By using Proposition 3.1 and by iteration argument, we show

Theorem 3.1. Let u : © x [0,00) = R be the weak solution of the
problem (1.1) and suppose Py.(zq,ty) CC 2 x (0,00). For any M > 0, there
exist g > 0, 1 > o > 0 and ¢y depending only on M, n, a; and a,, with the
following property: Whenever

1

—_ Vu — p|dzdt < ¢
|P2rl Par(o,to) | p| 0

holds for some p € R™ with |p| > M~ we have

sup  |Vu(z,t) —p| < (2M)™!
(I,t)EP.-(:L‘o,to)

'QIVu(T,, t) — Vu(y, s)| <

iq/z = G0,

sup ki -
(@) (v9)€P (worto) 1T —Y|* |t — s

o fulz, s) —ulxz, t)]

[s — t|a+o)/2

sup
(z,s),(z,t)EPr(z0.t0)

= Cao-

Proof. It is enough to prove the case r = | and (2, %) = (0,0), since all
the relevant quantities are invariant under the scaling fu(rz + o, 7%t + lo).
Let

éo = (2n+2)—1 min{e,(\/§ — l / 2\/_M('19) }

where ¢ and cj9 are the constants in Proposition 3.1 corresponding to 2M
(instcad of M). Now, assume that

E(2) = | / |Vu — plidzdt < e

1P
with |p| > M~!. Since Py(x,t) C P, for any point (z,t) € Py,

1

3.22 E(l,(z,t),p) = —
( ) ( ( )p) |[)1l Pl(l't)

|Vu — pl*dedt

2n+2
N |P2[

By Proposition 3.1, we may conclude that

/ |Vu — plidedt < 2" %5 < ¢

E(fi/2,($,t) (\—“)5/2 att)) < 2£/ (l t) })

16
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with the inequality
[(V)aja ey — Pl < c1oE(1, (2,1),p)'* < (2M)7

Here, we denote

1
V) /oo, z——/ Vu dadt.
( ) /2,(x,t) IPn/Zl P a(at)
The last inequality is by (3.22) and the choice of &;5. Hence,

(V) sjz@ny| > [Pl = (VU)as2on) — PI = (2M) 71

Therefore, we can apply Proposition 3.1 again with P, replaced by P,/(x,t)
and p replaced by (V). /2 (s, (and with an appropriate scaling). Inductively,
assume, for 1 = 2,---,{, that we have

E(6 /2, 2,0), (Vo) < (5) B (200
and
(V)i s ay = (V) wiotjaay| < o B8 /2, (2,1), (Vi) wimi 2 (o) /.
To proceed with the induction, we only need to prove that
(V) sz enl = (2M)71

We may compute

!
i(v’u)nl/z,(z,t)l >pl—lp— (Vu)ﬁ/z,(m)l - Z I(Vu)m/z,(r,z) - (Vu)m-l/z,(x,t)!

j=2

!
Z Al_l — C19 (E(17 (I7t)7 p)l/Q + Z E(fij—l/?v (l?,t), (vu)ﬁj_l/zv(fvt))l/z)
=2
L1\ U1/
i M- CIQE(la(l.vt)?p)l/zz (E)
Jj=1

(by the inductive assumptions)

17
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by the choice of £5. Hence, we may indefinitely continue the iterations. This
also shows that

lim (V) /a0 — (V) j20en] < enE(+ (2, (Tvt)v(V'L‘)nﬂ/z(r,t))lﬂ

11— 00

for all integers j > 1 for some constant c;;. By the Lebesgue differentiation
Theorem applied with parabolic cylinders and a simple interpolation argument,
this leads to the estimate

|Vu(z, t) — (vu)s,(r,t)| < eg28”

for (z,t) € P, L"*" a.e. forall 0 < s < 1/2. Here, ¢y, and o may be computed
explicitly from ¢;; and . The theorem follows from a simple modifications of
the argument in [EG 6.6.2], for example. O

4. Covering argument

In this section, we show

Theorem 4.1. There exist an open set O C Q x (0,00) and a closed set
W C Q2 x (0,00) N {u = 0} such that
(1) 2 x (0,00) =0 UWand ONW =10,
(2) on O, Vu = (a%u{v‘ e %‘;) is locally Holder continuous in the space and
time variables, and |Vu| # 0 on O N {u = 0},
(3) W = Wl U W2 with 'Pn(Wl) =0 and

1
lim ~——/ |Vul|*dadt = 0
P (z,t)

r—0 r"'+2
for all points (x,t) € Ws.
Proof. We use Theorem 3.1 and the Vitali covering lemma with parabolic
cylinders. Let
1

T.n

NE{@QGQXWJ)

/P( (Jwel® + |Viul*)dzdt - 0 as r — 0}
r{(,t)

N{u = 0}.

The estimates (2.2), (2.3) and the standard Vitali covering lemma (see [EG],
for example) shows that

P % (0,7) N { =0} \ N) =0,

We set this measure 0 set to be W,. We show that every point in N is
a Lebesgue point for Vu with respect to the shrinking parabolic cylinders.

18
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Let (z,t) be a point in N, and assume that r is small enough so that P. =
P.(z,t) CC Q% (0,T). Choose 7 € [r,2r] so that

(4.1) lu,|2dS, dt < 2/ s 2 dzdt.
r JP;y

~/63;(1') X [t—(2r)2,t+(2r)?]

Fori=1, --,nand { — (2r)® < s; < 5o <t + (2r)?%

/ Ug, dx — / U, dz
JBi(z)x{s1} Bi(z)x{s2}

/ ur;dS, — / ur;dS,
9B (z)x{s1} 9B;5(z)x{s2}

1/2
< / lue|dSpdt < e (rm )12 ( / ]ut|2d5xdt)
- 38,:(1:))([51,32] OB;(

z)X[s1,52]

1/2
< 2 (rm)V? ( / [utizdasdt)
Py

by (4.1). This shows

L [ Gy dedt — — Vudz| < <1 o 2d dt)w
1Pef Jp 1Bil Jorayetsy ~ | T P\ /Pzr el et
for almost all ¢t — (2r)? < s < t 4 (2r)? in L' measure. Using this, we may
estimate
1 5 2 2
I—P_I/P- [V~ (V)i Pdads < 5 /P IV — (Vs [2dds
1 s\
+C24 (—/ Iutl dldb) s
rm Jp,,
where |
Vu)s, = — / Vu dr
(Vo) 1B Josnsy -
and |
(VU); = WL; Vu dzdt.

The first term can be bounded by the Poincaré inequality applied to each time
slice, so that

1
| P7|

f |Vu—(vu.);|‘2dwdtgc—if-/ (ue? + |V2u)?)dadt.
P; T Poy

19
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Since (z,t) € N, the right-hand side goes to 0 as » — 0. Thus, unless
|(Vu);] — 0 as 7 — 0, Theorem 3.1 shows that Vu is Holder continuous
in some neighborhood of (z,t) and [Vu| # 0. If {(Vu);| — 0, then one may
verify that ﬁ Jp, [Vul*dzdt — 0 as r — 0. This completes the proof. O

5. Derivation of equation (1.2)

Even though it is elementary to derive equation (1.2}, we give the detail
for the reader’s convenience. Let (o, 30) € @ % (0,T') be an arbitrary point in
OnN{u =0} (as in Theorem 4.1). Suppose P,(zq,s9) CC O, so that u has the
regularity stated in Theorem 3.1 on P, (&, o). Define

1
ut(z,t) = —u(sz + zo, 8% + sp)
s

for 0 < s < r. Then, u® satisfies the equation o'(v®)(v’); = Au® on P, =
P1(0,0), and by the estimates in Theorem 3.1, we have

sup |u®(z,t) — (Vu)(zo. s0) - 2} < 265
(z.)EP:

and
sup IVus(x,t) - v“(l’mso)! < 5™
(z,t)EP)

for some 0 < a < 1 and ¢4. Next, choose a coordinate system on R™ so that
Vu(zg,s0) = Vu(0,0) = (0,---,0,|Vu’(0,0)])

after a suitable rotation and reflection in R"™. Since Vu*(0,0) = Vu(zo, so)
is a non-zero vector, we may choose a small s so that u® has an everywhere
non-zero space gradient on P,. Consider a map & : (zy,---,2,,t) € P, —
(21, Tn_1,Y,t) € R"*! defined by

CI)(llv' T 71‘71,” - (-7"17"' axn—lvus(;rla"' 7~Tnvt)7t)'

For all sufficiently small s, ® is an injective map on P;. Fix such an s. Choose
a small p > 0 so that

(5.1) P,(0,0)

n—1
= {(;v1,~-~,xn_1,y7t) ER"xR| D (z:)+y* < po 1t < pz} cC d(P),

i=1
and define a function v : P,(0,0) — R so that

(5.2) U (g, T, (T, T, Y E) E) = Y

20



KSTS/RR-97/012
December 1, 1997

is satisfied for all (24, -+, 2,-1,y,t) € P,(0,0). Intuitively, this v corresponds
to a function which is obtained by viewing the graph of u from the “vertical
direction”. Again, by a suitable scaling, we may assume that p = 1. We also
write Py for P;(0,0) in (5.1) with p = 1.

In the following, we derive an equation which v satisfies on P;. Since v is a
smooth function on {y > 0} N P, and {y < 0} N Py, the following computations
are all valid away from {y = 0}. Differentiate (5.2) with respect to y, z;,
t=1,---,n—1 and ¢. Denoting u* by u for simplicity, we have

1 = ug,vy, 0=uy, + Uy, vy, t1=1,---n—-1

and 0 = u; + ug,ve.

By differentiating the first two identities with respect to the space variables,

we obtain
0= uxnrnvz + Uy, Vyy,
0 = Uy, 2, Vg, Vy + Ugpz,Vy + Up, Vysry s
0 = iz + Qg 2 Vr, + Uppz, V3, + U, Uy,
for e = 1,---,n — 1. We can solve these equations for w;, u,, and g,

1 =1,---,n, to obtain
. -1 ~1 -1
(5.3) Up, =0, , Ug, = —V, Vg, up = —v, T,

_ _..-3 y -2 2 -3 -1
Uppz, = ~Uy Uyy, Ugiz, = 205, 0yg, Uy " — VyyUz V)" = Vg3, Uy,

for i =4,---,n—1. On & '({y > 0}) (= {u > 0}), ayus = Au is satisfied,
thus, we have

) ‘ 2V,v -V,
(5.4) av, = Agv + t—%‘g(‘vxvv +1)— v Valy
V2 vy
on P, N {y > 0}. Here,V,v = (%, e g ) € R* ! and A,v = %;’ 4
n- 1
8—?7;%. We also have the similar equation for v on P, N {y < 0}. Let
515 iflgi,]gn—l,
by = bji = ——Z—’L ifl<:<n-1andj=n,

Yy
)2 ep - .
Jv—’”:lil ifi=7=n.
Y
. a . F (’:) . =
With §; = 5,1 =1,---,n—1and 9, = 3y We may write (5.4) as

(5.5) A= Y byddw

1<5,j<n
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on PiN{y # 0}. A straightforward computation shows that there exist strictly
positive constants ¢y7 and cog such that

(5.6) el <0 by&is < easl€l’

1<i,j<n

for all £ = (&,--+,€,) € R". The constant ¢y is determined in terms of the
sup bounds on |Vv|. The constant ¢;7 may be computed explicitly as

. ) V,vl? 1+ |Veu)?
Co7 = MmN {rr;}n (1 — __|__rv‘_ 7) ,min _+~|—_in — 7"1)} >0,

| 1+ |V,v|? Py v2
. , .
where v > 1 is a fixed constant chosen so that v - maxp, % < 1.

In our analysis, it is useful to note that the last two terms in (5.4) may be

expressed as
9 (14 |V,0?
dy vy ’

hence, we may write (5.4) as

; ' _ d (1+|Vev]?
(5.7) a(y)ve = Ayv — 9y ( o

~J

Ut

on P N{y #0}.

Lastly, it is immediate that Vv is Holder continuous on P;. Using the
change of variables formula for integration, it is not hard to show that v €
H'(P,) and V?v € L*(P,). To show the last statement, we also use the fact
that v is smooth away from {y = 0} and that Vv is continuous on P;. Using
the continuity of Vv, we also see that v satisfies

' , 1+ |Vvl?
(53) f, s == [ (v v L)

vy
for all test functions ¢ € C(P).
6. Analysis of equation (5.7)

In this section, we prove

Theorem 6.1. Suppose that a function v defined on P, satisfies (5.8) with

1ol ey + IVolleamy + [1V70ll2(p) < e
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for some constants ¢y and 0 < o < 1. Then, there exist constants c3y and
0 < 8 < 1 which depend only on n, oy, ay, @ and cyg, such that

(6.1) lodllosp, )+ 2 Va2, |losp, ) < cao,
1<ij<n—1

n—1

(6.2) Z Hvx,yHcﬁ(Pl,,n{yw}) + H?/’yyHC“ﬁ(Pl/zﬂ{wO}) < e
=1

and
n—1

(6'3) Z l|vriy‘|Cﬁ(P,/gn{y<0]) + Hvyy“Oﬂ(Pl/zn{y<0}) < cao.
=1

The theorem shows that v; and vy, 1 < 2,5 < n—1, are Holder continuous
across the hyper-plane {y = 0}, while v,, and v,,, are Holder continuous up to
the boundary {y = 0} on each side. Thus, we may define lim,_o; v, (7, y,1)
and limy_,g_ vy, (z,y,1) for each @ € By3(0) € R*" and |t| < 1/4, even though
the resulting v,, may be discontinuous across {y = 0}.

We first note the following simple lemma which is used in the proof of
Theorem 6.1:

Lemma 6.1. Suppose that v € H'(P,) satisfies
(6.4) [ awps=- ¥ [ ava00-3 [ foe
B 1<ij<n VB =17

for all test functions ¢ € C°(P;). Here, 0; = 5%- fore=1,---,n—1 and
On = 5‘% Also assume that there exist positive constants ¢ > n > 2, X and g,
such that the measurable functions {a;;, f*} satisfy

(6.5) MEP < 32 ay&€y < A7MEP

1<4,5<n
for all 5 = (613' T 7571) € R™ and

o0 (L) e (S 0)

=1

Then, for each r < 1, there exist constants ¢3; and 0 < 3 < 1 which depend
only on 7, n, A, ¢, p, a; and «z, such that

HUHCﬁ(Pr) < csy-
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Proof. Define
f)(mh ey Tae1 Yo t) = v(T, 7$n—lvaﬁ1(y)v t),
where a™! is the inverse function of a. With this change of variable, © satisfies
n ~
/ Bp=— Y / 0;0 4;;0;0 "Z/. Foe
i 1<i,5<n 7 i=17F
for all test functions ¢ € C°(Py), where
]31 - {(:L'lv"' 7In—lva(y)?t) | (‘T17' "7xn—17yvt) € Pl}v
a;;fd(y)y H1<di,j=1<n-1,

Gi; =4 Qn=20n; if1 <1<n—1andj=n,
ann@'(y) if1=7j=mn,

fod L) fori=1,n—1,
1/, for 7 = n.

Note that the cllipticity condition (6.5) and the norm bound (6.6) on P, hold
for {a;, f’} with different constants depending only on A, u, oy and ay. Thus,
the parabolic Holder estimates (see [LSU]) give the interior Holder continuity
estimate for ¥ in terms of the listed constants, and hence for v as well. O

Proof of Theorem 6.1.
(1) Estimate of [|v]]cs
First, we define difference quotients with respect to the time variable ¢ and
the space variables z;, 1 <¢ <n — 1. For a function f defined on P, let

1
.fh’t("rlvl '.7xﬂ—17y7t) = “’;{f(wla o 7$n~173/-,t+ h) - f("'vla' o 7xn—1>y7t)}
and
1
fh"r’($1,"',1'n—lay>t) — E{f(.'.“ri_*—h?“.) —_ f("‘?*’tis'.')}

for (x1,--+,2,_1,y,t) € Prjs and h € R with |h| < 1/8. Using ¢~ as a test
function in (5.8), where we assume ¢ € C®(P;/s), we have

l vl. 2 hit
[ it he =~ [ Vot e [ (REEE) T
P, &1 Py Uy
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The last difference quotient may be expressed as

(M)” _ V) (ot )+ (Vew) (o, 1)) Vet
vy(-+ -, t+ h) ?

Uy

L LHIVaPCet)

v (-, t+ R, (- t) Y

With the notation

& if1<ij<n—1,
Vg, (ot g, (o . . )
bijh = __i_z'{ff()—;# ifl<i<n-—1andj=n,
V() £r o i
'L’y("'wt+h)uy(~~~,t) nmr=j3=n,
Mt satisfies
(67) al(y)(vh’f)t = Z (‘)i(bi]',hajvh’t)

1<i,j<n

in the weak sense on Pr/g. Since b;jo = b;; in Section 5, the coefficients {bijn}
are uniformly elliptic for all sufficiently small h. Also, by Fubini’s Theoren,

(6.8) /pm(”h“)? -/

1 2
(/ vt(---,t+h3)ds) dzy - dr,_ dydt
Prjs \JO

1
< / ds / o (- -t + hs)|Pdzy - - dz,,_ dydt < / o, > < 2.
0 JPr g S Py

Hence, (6.7) and (6.8) with Lemma 6.1 show that there exist constants c¢;; and
0 < fy <1 with
[lo™*[lga, (Prya) S €32

for all sufficiently small k. Since ¢3; and 3; do not depend on h, we conclude
that

(6.9) [[ve]loe (Pays) < e

(2) Estimates of |[vge,|lcs, 1 <2,7 <n—1

First note that the estimate (6.9), the equation (5.5) and the standard L?
estimate for the elliptic PDE applied to each time slice Bs/q x {t} show that,
for each p < o0,

(6.10) HU('J)HWZP(BS/g) < ¢33



KSTS/RR-97/012
December 1, 1997

for a.e. ¢ with |t| < (3/4)?. Here, c33 depends on p < 0o, ay, g, €29 and ca,
but not on t.

Multiply the equation (6.7) by v™{¢?, where ¢ is a non-negative function
with ¢ =1 on Psy4 and ¢ € C°(Prjs), and integrate over P;. By integration
by parts, we have

——/Pa( (W g == 3 [ oot + ot badi 2.

1<i,9<n

By Cauchy’s inequality and the inequality 2cd < ¢?/2 + 2d?,

Z / 8 v ” ha Uh t¢2 / I( )(‘U}L71)2|¢t|¢

1<4,7<n
1
—{—3 Z (91' tb”hd Uhf§D2+2 Z / a¢)szha]¢( ht)
2 1<ij<n Vb 1<i,5<n

By the uniform ellipticity of {b;;,} and (6.8), we have
n—1
[ S Ib 4 b < can

3/41 1

Since ¢34 does not depend on A, we conclude that the weak derivatives v,; and
Vgt, L <2< n— 1 exist and

n—1

(6.11) / Y vwtl® + Jvye* < esa
Paya =1
To derive the estimate of Uiy 75 lgs, fix indices 1 < 4p,50 < n — 1. Using
qb;‘}.f’x“’ with ¢ € C®(Py/4) in (5.8), integration by parts and by (6.11), we
have
[dweiro == 5 [ 00k0,0,6 + don, b0 0,6.
Py ° 1<, 9<n

. hyx o ; h,x .
. . 7 - n » Jo .
Letting w = Uz, and f7 =310, Vg, bij , we may write the above as

/A dwp=— /dwb”(?]¢) Z/ F0;4.

1<4,7<n
To apply Lemma 6.1, we need a uniform L? norm estimate of f* for some ¢ > n
on each time slice. But (6.10) provides such estimate: for any p < oo,

/ b0 (- )P dady < c%/ IV20(-, )Pdady < cas,
By 16

5/8
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where ¢35 does not depend on h or {. Hence, for a fixed ¢ > n (say, ¢ = n+1),
[ 1P dady < e
Bg16

for some constant c37. This combined with Lemma 6.1 shows that there exist
csg and 0 < (3, < 1 such that

h,x
|z, ||C/’2(P1/2) < cas.
Since cog and B3 are independent of h, we have
H’Umzor,o HC"2(P,/2) < cas-

(8) Conclusion

By (1) and (2), we conclude that v restricted to {y = 0} is C*** in the
space variables and C'# in the time variable. Since v satisfies

QU = Z b,-jaz-c’)jv

1<4,5<n

on PiN{y > 0}, where {b;;} are uniformly elliptic and Holder continuous, the
standard linear parabolic theory (see [F]) shows that v,, and v,,,,1 <1 < n—1,
are Holder continuous up to the boundary {y = 0}. This shows (6.2), and
similarly (6.3). O

7. Consequences of Theorem 6.1

In this section, we translate the results for v back to those for u. First of
all, note that the restriction of v to {y = 0} is the function representing the
graph of the interface {u = 0} over P, N {y = 0}. Hence, we may conclude
that the hyper-surface {u = 0} in O has the desired local regularity stated in
Theorem 1.1. Since ® in Section 5 is a Holder continuous map, the regularities
of vy and 0;0;v are all carried over to those of u; and 9;0;u as well, via formula
(5.3).

Note also that the value of v; at the origin represents the speed of motion
of the interface {u = 0} in the normal direction, since |V v| = 0 at the origin.
By approaching from two opposite directions, y — 0+ and y — 0—, and using
(5.4) and the continuity of v, and A v, we note that

ot o

v, v
vy = Ao+ 2 and vy = Agv + =2

Yy Yy

o
-1
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hold at the origin. Here,

’U;y = y1-1->%1+ 'Uyy((), T 701 Y, O) and Uy_y = y]_i}f(l)l_ vyy(ow T 70a Y, 0)

In particular, we obtain

— L;y — Uyy
U;(()l - a2)

at the origin. The right-hand side is the expression in Theorem 1.2, when
expressed in terms of u via (5.3).

What is interesting is that a simple-minded bootstrap argument does not
seem to work for higher order regularity of v. We cannot show, for example,
a Holder continuity of vy or vez,0,, 1 < 1,7,k < — 1. Tt is not at all clear
whether v is more regular than shown in this paper.
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