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1 Introduction

In [9], Epstein and the author showed that a non-elementary word-hyperbolic

group has infinite dimensional second bounded cohomology group — see

Corollary 1.5 in this paper. For example, the fundamental group of a closed

negatively curved Riemannian manifold is a non-elementary word-hyperbolic

group. In this paper, we prove a more general result — see Theorem 1.1.
To define the bounded cohomology group of a discrete group G, let

CH(G;A) = {f : G¥ = A| f has bounded range},

where A = Z or R. The boundary é : C¥(G; A) — CF*(G; A) is given by

k
éf(g()a LI 1gk) = f(gl) e :gk) + Z(—l)tf(gm o3 Gi-1Gi5 - - - agk)
=1

k
+(=D)** f(go, .. -, gk-1)-
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The cohomology of the complex {C¥(G; A), 6} is the bounded cohomology
group of G, denoted by Hy(G; A). See [12], [14] as general references for the
theory of bounded cohomology. It is well known that H}(G; A) is trivial for
any group G, and that H(G;R) is trivial for all n > 1 if G is amenable.

In order to state our results, we recall that I* denotes the Banach space of
summable sequences of real numbers with the norm ||(z;)|| = X2, |z;i|. It is
well known that the R-vector space I! has dimension equal to the cardinal of
the continuum. We denote by e; the sequence which is zero except at the i-th
place where it is equal to one. Other definitions in the following statements
are given in the next section.

Theorem 1.1 Let G be a group and X a Gromov-hyperbolic space. Suppose
G acts on X by isometries. Assume the action is properly discontinuous and
the limit set of the action has at least three points. Then there is an injective
R-linear map w : I* — HZ(G;R) such that, for each i(1 < i < 00), w(e;) is
the image of a class in HZ(G;Z). In particular, the dimension of HZ(G;R)
as a vector space over R is the cardinal of the continuum.

Remark Suppose in the above theorem that X is locally compact. Then the
limit set is empty if and only if G is finite, and the limit set has two points
if and only if G is virtually infinite cyclic. In both cases G is amenable, thus
HP(G;R) is trivial for n > 1.

Theorem 1.1 has applications in Riemannian geometry.

Corollary 1.2 Let M be a complete Riemannian manifold such that the
sectional curvature K satisfies —a < K < —b < 0 for some a,b > 0. Suppose
G = m (M) is not almost nilpotent. Then there is an injective R-linear map
w : I = HZ(G;R) such that, for each i(1 < i < 00), w(e;) is the image of
a class in HZ(G;Z). In particular, the dimension of HZ(G;R) as a vector
space over R is the cardinal of the continuum.

Remark If 71 (M) is almost nilpotent, then it is amenable and H}*(m;(M); R)
is trivial for all n > 1.
The next result is a special case of Corollary 1.2.

Corollary 1.3 Let M be a complete Riemannian manifold such that —a <
K < —-b < 0 for some a,b > 0. Suppose the volume of M is finite. Let
G = m(M). Then there is an injective R-linear map w : I' — HE(G;R) such
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that, for each i(1 < i < 00), w(e;) is the image of a class in HX(G;Z). In
particular, the dimension of H(G;R) as a vector space over R is the cardinal
of the continuum.

Theorem 1.1 applies to word-hyperbolic groups. Note that if a group is
finite or a finite extension of a finitely generated abelian group, then the
group is called elementary. If a subgroup H of a word-hyperbolic group is
elementary, then H is either finite or a finite extension of Z.

Corollary 1.4 Let G be a word-hyperbolic group and H a subgroup. Suppose
H is non-elementary. Then there is an injective R-linear map w : I* —
HZ(H;R) such that, for each i(1 < i < 00), w(e;) is the image of a class in
HZ(H;Z). In particular, the dimension of HZ(H;R) as a vector space over
R is the cardinal of the continuum.

Remark (1) If H is elementary, then it is amenable and the bounded coho-
mology group is trivial.
(2) In the above corollary H is not word-hyperbolic in general. There exists
a word-hyperbolic group containing a finitely presented subgroup which is
not word-hyperbolic [5].

Corollary 1.4 obviously implies the following.

Corollary 1.5 ([9]) Let G be a non-elementary word-hyperbolic group. Then
there is an injective R-linear map w : I* — HZ(G;R) such that, for each
i(1 < i < 00), w(e;) is the image of a class in HZ(G;Z). In particular,
the dimension of HZ(G;R) as a vector space over R is the cardinal of the
continuum.

If G is a knot group of hyperbolic type, then, by Corollary 1.3, HZ(G; R) is
infinite dimensional. The following theorem shows that in fact the conclusion
holds for all non-trivial knot groups.

Theorem 1.6 Suppose G is a knot group such that G % Z. Then there is an
injective R-linear map w : I' — HZ(G;R) such that, for each i(1 < i < 00),
w(e;) is the image of a class in HZ(G;Z). In particular, the dimension of
HZ(G;R) as a vector space over R is the cardinal of the continuum.
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We briefly outline the proof of Theorem 1.1. The main idea of the proof is
originally due to Brooks, who showed that the second bounded cohomology
of free groups are non trivial, [6]. Later this result was generalized to all
non-elementary word-hyperbolic groups, [9], whose techniques are somehow
improved in this paper. To show our result, we construct infinitely many, lin-
early independent second bounded cohomology classes {[¢;]}: for G. We will
obtain second bounded cocycles ¢; as the coboundaries of some first cochains
h;. First cochains are nothing but maps from G to R. We choose cochains h;
so that their boundaries are bounded. Then, if A; is not bounded, its bound-
ary 6h; might give a non-trivial element as a second bounded cohomology
class. Therefore our strategy is to construct unbounded maps h; : G — R
whose coboundaries are bounded.

To obtain such h; we use the space X the group is acting on. For the case
of word-hyperbolic groups, we may take X to be the Cayley graph of G, which
is a geometric realization of the group (more precisely, X and G are quasi-
isometric to each other). The construction of h; are combinatorial, which is
done by some counting argument (see Figure 1). That h; are unbounded is
shown in Lemma 5.2 and Prop 5.8. We use the hyperbolicity of the space X to
conclude the boundaries éh; are bounded (Lemma 3.8). Since we assume the
limit set of the action of G on X has more than two points, there is abundant
choice for h;. We choose h; carefully so that the coboundary class of each h;
is non-trivial in HZ(G), and moreover, they are linearly independent. One
might say [0h;] € HZ(G) is non-trivial essentially because h; is unbonded,
but this requires an argument(see section 5).

One of the improvement made in this paper after [9] is that one does not
assume the action of G on X is cocompact (thus G and X are not quasi-
isometric in general). Therefore, we are able to conclude the second bounded
cohomology group of all hyperbolic manifold is non-trivial and in fact infinite
dimensional as long as its fundamental group is not almost nilpotent (Cor
1.2).

One nice corollary is that the second bounded cohomology of all non-
trivial knot groups are infinite dimensional, in particular non-trivial (Th 1.6).
In fact this is a part of the following result. If a three manifold M is geometric
in the sense of Thurston, then its second bounded cohomology group is either
trivial or infinite dimensional. Furthermore, one can determine when it is
trivial in terms of the geometry of M. The proof will be given in another
work later.
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2 Some basics of hyperbolic spaces and groups

In this section we collect some definitions and results on hyperbolic spaces
and groups acting on them. General reference are [4], [13], [17]. Let (X, d)
be a metric space. Suppose a group G acts on X by isometries sending x to
g-z. Note that (gh)-z = g-(h-z). Forz € X and r > 0, we set B,.(z) = {y €
Xld(z,y) < r}. If the subset of G defined by {g € G|B,(z) N g- B.(z) # 0}
is finite for any r > 0 and any z € X, then we say that the action is properly
discontinuous.

If any two points in X are joined by a geodesic, then we say X is geodesic.
For § > 0, if any side of a triangle is contained in the d-neighborhood of the
union of the other two sides, then the triangle is called §-thin. For § > 0,
if every geodesic triangle in X is é-thin, then we say that X is é-hyperbolic.
A Gromov-hyperbolic space is a space which is d-hyperbolic for some § > 0,
[13]. The following fact is standard — see for example [17].

Lemma 2.1 Let X be a d-hyperbolic space and A,B,C € X. Then there
exist A', B',C" on [B,C],[A,C|, A, B] respectively such that

d(A',B'), d(B',C"), d(C', A") < 4.

Definition Let o be a path in a geodesic space X. If we have for some K

and ¢
|t — s

e < d(a(t), a(s))

for all ¢ and s, then a is called (K, €)-quasi-geodesic.

Let S be a subset in X and L > 0. We denote the L-neighborhood of S
by N.(S). We recall one important result (see for example Proposition 4.9
of [4]).
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Lemma 2.2 Let X be a d-hyperbolic space. Given K > 1 and € > 0, there
exists L(K,€,68) > 0 with the following property. Let o and 3 be (K, €)-quasi-
geodesics. Suppose the starting points of o and 3 coincide and the finishing
points coincide. Then o C Np(B) and B C Np(a). The same applies if the
endpoints are at infinity.

Now we recall the definition of the boundary of a hyperbolic space. Let X
be a Gromov-hyperbolic space. Take a base point zo € X. Given z,y € X,
we define

(@ 9) = 5 (d(@y, ) + d(zo,9) ~ d(z, ).

A sequence (z;); of points in X is called convergent at infinity if

i,gi—rpoo(xi ' -l':j) = oo

”

We define a relation denoted by ” ~ ” on the set of sequences which are

convergent at infinity by
(@) ~ () & lim (z:-y;) = co.
This relation is an equivalence relation if X is Gromov-hyperbolic. The
boundary 8X (1.8 in [13]) is the set of the equivalence classes of sequences in
X which are convergent at infinity. If (z;); is in a class a € 80X, we write
lim; z; = a. Let o be a quasi-geodesic. Then the sequences (a(z)); and
(a(—1)); are convergent at infinity. We write
a(+o0) = il}rinoo a(i).

Suppose a group G acts on X. Then G acts on 8X by g-(z;) = (g ;).
The limit set L(G) C 8X of the action is defined by

L(G)={(xi)i€8X|wi=gi-m0, g;EG, 1§’L<OO}

It is well known that the number of the points in L(G) is 0, 1, 2, or co.
Definition Suppose G acts on X and 7o € X. Let g € G. If {¢* - zo}iez
is quasi-isometric to Z with its standard word metric, then g is called a
hyperbolic isometry(8.1 in [13]).
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Definition Suppose g € G is a hyperbolic isometry of a Gromov-hyperbolic
space X. Let o € X. We define g € 6X by

+o0 1 i
7= Jim g o
Note that the result does not depend on choice of z.
The following result is well known — see Lemma 8.1.A in [13].

Lemma 2.3 Let X be a Gromov-hyperbolic space. Suppose G acts on X. If
|L(G)| > 2, then G has a hyperbolic isometry.

Lemma 2.4 Let X be a Gromov-hyperbolic space. Suppose G acts on X. If
|L(G)| > 3, then there exist hyperbolic isometries g1, g2 € G such that

93> # gF*.

Proof. Take a hyperbolic isometry g; € G by Lemma 2.3. Let o be a quasi-
geodesic such that a(0) = zp and a(+oo) = gi*®. We first show that there
exists k € G such that

k- g7 # 95

To show this by contradiction, suppose k - g = gi*> for all k € G. Then
k -« joins g7 and g7 for all k € G. By Lemma 2.2, we find L > 0
such that k- a C Np(a) for all k¥ € G. This implies G - zo C Ni(a) and
hence L(G) = {g*°}. This is a contradiction. Therefore, there exists k €
G such that k - g # gf>™. Suppose k - g7 (or k - g7>°) # g&*>°. Set
g2 = kgik~(or kgi'k™!, respectively). Then g, is hyperbolic and g7 =
k- g7 (or k - g7, respectively), hence g3 # gF>.

The conclusion of the following lemma implies G contains a subgroup F
that is isomorphic to the rank-2 free group(Prop4.3).

Lemma 2.5 Let X be a Gromov-hyperbolic space. Suppose G acts on X
properly discontinuously. If |L(G)| > 3, then there exist hyperbolic isometries
91, 92 € G such that

93 # g™ and g; > # gi™.
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Proof. By Lemma 2.4, there exist hyperbolic isometries g;, g» € G such that
g3 # gi>®. We will show g;>° # g™ as well. First, to show g; > # g™
by contradiction, suppose g; *° = g; *°. Let «, § be infinite paths defined by

oo o
@ = U gl_n : [:1:07 gi—l : .’170], ﬂ = U gz—n : [m0’92_1 : '7"0]'
=0 n=0

Then o and B are quasi-geodesics from z to g5 = g; *°. By Lemma 2.2,
there exists L > 0 such that 8 C Np(a). Thus for each n > 0, there exists
m(n) > 0 such that

d(g™ - 0,95 ™™ - wo) < L +1,

where [ = |[zo, 95" - zo]|. We have d(zo, g7g; ™™ - ) < L + 1 for all n >
0. Since G acts on X properly discontinuously, there exist finitely many
elements k € G such that d(zg, k-zo) < L+I. Therefore there exist ny > n; >
0 such that gPtg; ™™ = gr2g-™")  We find gp2~™ = gir(2)=™™)  Thig
implies g5 = g™ or g; ™, which is a contradiction. We get g5 > # g;*°.
A similar argument shows g; > # g . We obtain the lemma.

We review the notion of local-quasi-geodesics and show that local-quasi-
geodesics are in fact quasi-geodesics. We first state an obvious lemma.

Lemma 2.6 Leta be a (K, £)-quasi-geodesic and <y a geodesic in a §-hyperbolic
space. For C > 0, there exists [;(K,e,C,8) > 0 with the following property.
Suppose o C Ng(7y). Let t; < ty < t3 such that to —ty > 1y, t3 — to > 1, and
d(a(t;),v(s;)) < C for 1 <i<3. Then we have either

81 < 89 < 83, OT 81 > 89 > S3.

To define local-quasi-geodesics in a hyperbolic space, we introduce several
constants. Note that those constants depends only on ¢,6 > 0 and K > 1.
Using the constant L(K,e,d) in Lemma 2.2, we first define
lo(K,e,0) =2K(100 + L(K,&,6) + 1) + ¢, and Ly(K,¢,d) = 1113 + 1006.
Let l,(K, €, L1,6) be the constant in Lemma 2.6. We put
I3(K,e,0) = 1(K,e,L1,6) + 2¢ + 4K Ly, and then ¢ = I, + 2.

Using this constant ¢ = ¢(4, K, £) we define local-quasi-geodesics.
Definition Let o be a path in a é-hyperbolic space X. If o) is a (K, €)-
quasi-geodesic for all ¢ < s with |t — s| < ¢, then « is called a local-(K,¢)
-quasi-geodesic.
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Lemma 2.2. says that (K, £)-quasi-geodesics with common ends stay close
to each other. An argument similar to the proof of this fact(see Prop 4.9 [3])
shows that the property holds for local-quasi-geodesics as follows.

Lemma 2.7 Let X be a §-hyperbolic space. Suppose K > 1 ande > 0. Leta
be a local-(K, €)-quasi-geodesic and v a geodesic. Assume the starting points
of o and v coincide and the finishing points coincide. Then a C Np, (7).

Using the previous lemma, it is easy to deduce the following significant
fact, [17].

Proposition 2.8 A local-(K, €)-quasi-geodesic is a (2K, €)-quasi-geodesic.

3 Counting copies of a path along paths

Let (X, d) be a geodesic metric space. Suppose a group G acts on X properly
discontinuously by isometries. In this section, we define a function on G asso-
ciated to the action, which was formerly defined in [9] for a word-hyperbolic
group and its natural action on the Cayley graph.

Let a be a finite path in X. We denote the length of a by |/, the starting
point by i(c), and the finishing point by ¢(a). We use the action of g € G
on X to define a path g - a starting at the point g - i() and finishing at the
point g - t(a). We say that g -« is a copy of a. Obviously |g- a| = |a.

Let w be a finite path. We define

|a|w = {the number of times you see copies of w in & without overlapping}.

Suppose A,B € X. We use [A, B] to denote some choice of a geodesic
from A to B. Let W be a number with 0 < W < |w|. We define

cow ([, B) = d(A, B) — inf(la] - Wlaly),

where o ranges over all the paths from A to B — see Figure 1. Obviously
cw,w([A, B]) does not depend on the choice of a geodesic [4, B]. Thus ¢, w
is in fact a (non-symmetric) function on X x X. The following result is clear.
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Figure 1: Definition of |a|,. We see |a|, = 2 in this case.

Lemma 3.1
C‘w,W([A’ BD = cw‘l,W([B’ A])

If o attains the infimum in the definition of ¢, w([A, B]), we say that «
realizes ¢, w at [A, B]. It is easy to see that since the action of G on X is
properly discontinuous, for all w, W, A, B, there is a path which realizes c,, w
at [A, BJ.

Lemma 3.2 If o is a geodesic, then

W
jlel = cuw(@) = Wial..

Proof. Let ¢/ be a path which realizes ¢, w at a. Then, since |o/| —W|d/|, <
|ee| — W|aly, we find

cww () = la| = (lo/| = W|d/|s) = Wlalw.
To show the other inequality, note that |&/|, < jl%ll This implies
o = W'l > Jo!] - Zly = (1 - K) o] > (1 - E) lal.
|wl |w] |w]|
Thus,
cuw(@) = la] — ('] - Wie/lu) < 12w,

|wl

10
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Lemma 3.3 Suppose (3 realizes c,, w at some geodesic. Then (3 is (E%W’ %)

quasi-geodesic.

Proof. Let t < s and set ' = f|,. Note that |3'| = |t — s|. Let v be a
geodesic from ((t) to (s). Then since 3 is a realizing path,

1B = W(B'lw+2) < 7] = W|Y]w-

The constant 2 arises from the fact that copies of w might overlap each of
the two ends of . Clearly |3, < |8'|/|w|. Therefore

d(B(),B(s)) = vl = Il =Whlw 2 18] - W|B'l, —2W

w w|-W
> 18-l 2w = = o

The proof is completed.
Lemma 3.4 Let A, B,C be three points in X. Then
|eww ([A, B]) — cow([4,C))| < 2d(B, C).

Proof. Let 0 = [C,B]. Let a and S be paths which realize ¢, w at [A, B]
and [A, C], respectively. Then

lo| = Wlalw < |Bo|—WI|Bolw < [8]+ o] = W(|Blw + |o]w)
< |8l = W|Blw +lo].

Therefore
|cw,w ([A; B]) — cww ([4, C])| < |d(A, B) — d(4, C)| +|o| < 2d(B, O).
The following result is an immediate consequence of Lemmas 2.2 and 3.3.

Lemma 3.5 Let X be a d-hyperbolic space. Suppose a is a geodesic. If B
realizes c, w at o, then 8 C Ni,(«), where

jw|  2W|u|
Ly =L ol.
° (|w|—W’ fw[ — W’

The next lemma is obvious.

11
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Lemma 3.6 Let a be a geodesic. Suppose there is no g € G such that
g-w C Np,(a). Then cyw(a) =0 and cy-1,w(c) = 0.

Lemma 3.7 Let X be a §-hyperbolic space. Let A,B,C be three points in
X with C € [A,B] and let o = [A,C), 8 =[C, Bl,y = [A, B]. Then

c'w,W(’Y) S cw,W(a) + cw,W(ﬁ) S cw,W(’Y) + 2LO + W

Proof. Let o/, ', be paths which realize c,,w at o, 8 and v, respectively.
Then

Y| =Wyl < |/ = W/ B'lw < || + 18| = W(|e | + 6]w)-

Therefore c,w(7) < cww(a) + cww(B). To prove the other inequality, note
that we can take C' € 4 such that d(C,C’") < Lo, since v C Np,(7y). Let
o = [C',C] and divide 4 into 7, and v, at C’. Then

|| = Wl |w < Im0] = Wimolw < Im| + Lo — Wil w,

since |o| = Lo and |[710]w > |71|w-
Also,
18'| = W|B'|lw < |72l + Lo — W 72|w-
Therefore c,w(a) + cow(8) < cow(Y) + 2Lo + W, since |[v'| = [y + |2]
and |7'|w < |M1)w + 72w + 1. We obtain the lemma.

Let o be a geodesic. We define
hww(@) = cyw(a) — cy-1,w().

Lemma 3.8 Suppose X is a §-hyperbolic space. Let w be a path and W a
number such that 0 < W < |w|. Suppose A, B,C' are three points in X. Then

|hw,w ([A, B]) + by w([B, C]) — huw([4,C])| < 12Lo + 6W + 486.

Proof. By Lemma 2.1, there exist A’, B’,C' on [B,C],[A,C] and [A, B],
respectively, such that d(A’, B'), d(B',C"), d(C', A") < 46. Let a = [B,C],
B = [A,C], v = [A4, B]. We divide o, 8,7 into two geodesics at A', B', (",
respectively, such that o = ayag, 8 = 162, ¥ = 712 By Lemma 3.7,

lewtr w(a) — cptrw (o) — currw(ae)| < 2Lo+ W,

lewtr w(B) — cotrw(Br) — cotrw(B2)] < 2Lo+ W,

lewtrw (7) — cwtrw(m) — cwtrw(v2)] < 2Lo+W.

12



KSTS/rr—97/011
September 25, 1997

By Lemma 3.4,

lewtr,w (B1) — cwrrw(m)| < 2d(C',B) < 86
lcwt1 w(15Y) — coriw(an)| < 2d(C', A') < 86
lewtsw(B5) — cutrw(os )| < 2d(4', B') < 88,

Collecting these inequalities together, by Lemma 3.1, we obtain the desired
inequality |hyw (@) + hww(8) — hww(7)] < 12Lg + 6W + 484.
Take zo € X as a base point. Let g € G. We define functions ¢, w and
hyw : G — R by
C'W,W(g) = Cw,W([ang : 1"0])’

o, (9) = o, ([Z0, g - o))

The following lemma is clear from Lemma 3.2.

Lemma 3.9 Forallg € G

w

|wl |[:c0,g : 270“ > CW,W(g) 2> W|[$Oig : -TOH-w-

Definition Let f : G — R be a function. If there exists D > 0 such
that |f(g9) + f(h) — f(gh)] < D for all g,h € G, then we say that f is a
quasi-homomorphism with defect D.

Proposition 3.10 Let X is a §-hyperbolic space. Suppose w is a path and W
a number with 0 < W < |w|. Then hyw : G — R is a quasi-homomorphism

with defect Q = 12Lg + 6W + 486, where Ly = L (W‘F—JW’ %/_'—’I‘,’VL,J) .

Proof. Let g1,90 € G. Apply Lemma 3.8 to A = zy, B = g; - 2y, and
C = 192 - To, then we obtain |hy w(g1) + hww(92) — Puw(9192)| < Q.

4 Quasi-geodesic rank-2 free subgroups

Suppose G acts on a hyperbolic space X with a base point x such that the
limit set of the action has more than two points. It is easy to show G contains
a subgroup F' isomorphic to the rank-2 free group. In this section we will
show that one may further assume that F' is quasi-convex and quasi-geodesic

13
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in G with respect to the word metric, the orbit F' - zy is embedded in X in
a quasi-convex and quasi-geodesic way, and F' and F' -z are quasi-isometric
to each other. One may think that F' -z, is a nice geometric realization of F'
in X.

We first state the following obvious lemma.

Lemma 4.1 Let @« = ajay be a path in a §-hyperbolic space with § > 0.
Suppose a1, oy are geodesics and there exists D > 1008 such that ||, |as| >
D and

d(a;'(D), az(D)) > 100.

Then a is a (1,10D)-quasi-geodesic.
The next lemma is useful.

Lemma 4.2 Let X be a §-hyperbolic space with § > 0. Let o = o1 --- o, be
a path such that o; is a geodesic for all i. Suppose there is D > 100§ such
that ;| > D for all i and

d(o; (D), @iy1(D)) > 106
foralll1<i<n-—1. Set Cy = L(2,10D, ). Let K > 1 be given and set

K
I(K,D,e) = {KC" -, 1(2,10D, 00,5),c(1,10D,6)}.

If o] > 1 for all i, then « is an (z 2o ,212000) -quasi-geodesic. In particular
a is a (K, 4Cy)-quasi-geodesic.

Proof. Note that I > ¢(1,10D,6). Since |a;| > 1 > ¢(1,10D,6) for all 4,
a is a local-(1, 10D)-quasi-geodesic by Lemma 4.1. By Proposition 2.8, «
is a (2,10D)-quasi-geodesic. We denote the finishing point of o; by P; for
1<i<n Letz=oat) and y = as), t < s. Suppose z € ar,y € ay for
I < J. Since |o;| > I, we have

—=J-I-1

Let ¥ be a geodesic from z to y. Since « is a (2, 10D)-quasi-geodesic, there
are points @7, @141, -+, &s—1 on 7 such that

d(P;,Q;) < Cy, forall I <i< J—1.
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Since 1,(2, 10D, Cy, 6) < I, by Lemma 2.6, the points Qy, - -+, Qs_1 appear
in this order when we travel along 7 from z to y. This is because « is a
(2,10D)-quasi-geodesic and v is a geodesic which are Cy-close to each other,
the points P; are separated from each other at least by I > l; on «, and
d(P;, Q;) < Cy for all i. Having this property we obtain

d(a(t),a(s)) = d(a(t>,Qz)+gd(@i,czm)+d@1_1,a<s>)

> d(a(t), PI) nd C() + Jz—:z(d(R, Pz‘+1) — 200) + d(PJ_]_, 01(5)) — CO

= Jt—s|—2(J = D)Cp > (1—2TC°) It — s — 2.

This shows that « is an (# 2—’Cﬂ—)-quasi—geodesic. Now, since [ > 2%X

1=2Cy° I—2C,
we have
l 21Cy

1 —2Cy s K, 1 —2C
Therefore it follows that « is a (K, 4Cy)-quasi-geodesic. This completes the
proof.
Suppose G acts on X. Let g,h € G and let oy, ap be paths from zy to
g+ o, h - zy respectively. Then g Ug-ap is a path from x4 to gh - zy through
g - Zo. We simply denote this path a,ay.

< 4C.

Qg0p = Qg U g - ay,.

Inductively we define ay forn > 1.
Let a,b € G and let F =< a,b > in G. We choose geodesics v,, v, from
To to a - Zo, b - zy, respectively. Let vy,-1, v,-1 be the geodesics from z, to

a~! - zo and b~ -z, respectively, defined by

Lo e = b7 gL

Yot = Q@
Let g € F and suppose
g= anlbml o an,-bm,'

is a reduced word in a and b, where a™ and b™ may be empty. We define a
path w, from z, to g - zy by
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— AN1.mM n; . m;
Wg=% Y% " "Ya Vo »

where if n; < 0, then 7} means .y, and if m; < 0, then " means v, 7.

Proposition 4.3 Let X be a Gromov-hyperbolic space and G a group acting
on X. Suppose g1,92 € G are hyperbolic isometries of X such that g5 > #
g and g; > # gt*°. Then there exists C > 0, which depends on g1, g, with
the following property, for K > 1 given, there exists an integer N > 1 such
that (1), (2), (3) and (4) are satisfied for alln,m > N.

(1) Set a = g and b = g5*. Then the subgroup F =< a,b > is free of rank 2.
(2) For all g € F, w, is a (K, C)-quasi-geodesic.

(3) For all1 # g € F, we have

d(zo, g - o) > 3C.
(4) For all cyclically reduced g € F and all 1 < n < oo, we have
d(Zo, 9" - 7o) > n(d(z0, 9 - T0) — C).

Proof. For g € G, let vy, be some choice of a geodesic from zy to g - zo.
Without loss of generality, we may assume
Y1 =91t

for all g € G. Since g7 # ¢gf> and g;® # g™, there exist D > 100§ and
N’ > 0 such that if n;,ny > N’, then

gzmal, [Ygzna| 2 D

and

d(’YgI—“nx (D);'Ygzinz(D)) > 104, d('Yg’l‘l(D),’)’gl—m(D)) > 104,
(Y52 (D), Vyzm (D)) 2 106.

For K > 1 and D > 1004, let I > 0 be the constant in Lemma 4.2. Set
C, = L(K, 400,5), Cy = L(2, 10D, (5), C=1+ max{201,400} >0,
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and I' = max{l,{;(K,4Cy, C1,6),3CK + 4Cy}.
Then there exists N > N’ such that if n > N, then

|'7g§‘|7 ")’gg‘l > 1.

Set
a=g,b=gj;.

Let
g= a™p™ ... ghip™i

+

1 4#1 are geodesics with |y, [y >

be a reduced word in a, b. Note that
I’ > 1. By Lemma 4.2,

_ n,.mi n; . m;
Wy = Ya M Y Ve

is a (K, 4C))-quasi-geodesic. Since C' > 4C), we obtain (2).
Suppose g is cyclically reduced, then g" is reduced and wy = wgn. Since
wy is a (K, 4C))-quasi-geodesic, we see that

w; C NCl(7§“))

for C; = L(K,4Cy,6). For each i,1 < i < n — 1, since g¢' - 7, is on wy, we
can find points P; on 74 such that

d(P,g" - zo) < C1.
Set Py = zg and P, = ¢g" - . We have
d(zo, 9 - To) — 2C1 = d(g" - T9, g+ - 7o) — 2C1 < (P, Pit1)

for all 0 < i < n—1. Since I' > l;(K,4Cy,C},4), the points Py, Pi,---, P,
appear on g in this order. To see this, note that w} is a (K, 4Cy)-quasi-
geodesic, d(g' - 2o, "™ - 2¢) > I' > I, and d(P;, ¢' - 7o) < C;. Having this
property on Py, Py, -, P,, we obtain

n—1 n—1
d(zo, g"x0) = Y_ d(P;, Pir1) > > (d(g*z0, g -20)—2C1) = n(d(z0, g-z0)—2C1).
1=0 =0

Since C > 2C}, we obtain (4).
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Note that I 4c
0 > 3cC.

If the reduced word g is not empty, then |w,| > I'. Since w, is a (K, 4C)y)-
quasi-geodesic,
I'—4C,

. >

> 3C.

We obtain (3).

The previous argument implies that any reduced non-empty word in a, b
is non-trivial as a group element in G. Therefore F =< a,b > is free of rank
2. This proves (1). We obtain the proposition.

5 Proof of Theorem 1.1

In this section, we assume that G acts on a Gromov-hyperbolic space X and
that there are two hyperbolic isometries kq, ks € G with k$e # ki~ and
k3% # k. Then Proposition 4.3 gives us a number C > 0 for &, ks.

We state a proposition which is essential for the proof of Theorem 1.1.
Note that v, denotes a geodesic from z, to g -z, for g € G.

Proposition 5.1 There ezist elements g; € G, 1 < i < oo such that |y,,| >
3C for all i > 1. It follows that Cyg;2c 18 well-defined as an element of
C'(G;R). Further, the elements g; satisfy the following properties.

(1) For all1 <n < oo and all 1 < i < 0o, we have

Crop20(g;) 2 nC.

(2) For all1 <n < oo and all 1 < i < 0o, we have
07;1,20(9?) =0.

(3) For all1 <n < oo and all 1 < i < j < 0o, we have
cﬁjl,zc(g? )=0.

(4) For all 1 < i < o0,
g € [G,G].

(5) lim; 00 74, | = 0.
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Let K > 1 be some constant. Then Proposition 4.3(1) gives us a,b € G.
Let F =< a,b >. From now we fix F' in G throughout this section. For all
1# g € F, we have |y,| > 3C by Proposition 4.3(3). It follows that c,_ ¢ is
well-defined. We will prove Proposition 5.1 later by choosing elements g; # 1
from F.

Lemma 5.2 For all cyclically reduced 1 # g € F and all n > 1, we have
Cy,,2¢c(9") = nC.
Proof. By Proposition 4.3(4), for all 1 < n < oo,
d(zo, g" - o) > n(d(zo, g - o) — C).
Note that v} is a path from x4 to g" - zo and |7} | = n|v,l, [v5ly, = n. Thus

d(zo, 9" - o) — (|71 — 2Clvgl4,)
n(|7g| — C) — (n|ve| — 2nC) = nC.

c’yg,ZC(gn) Z
>

Lemma 5.3 Let 1 # g € F and n > 1. Suppose o realizes c,,2c at
Ygn. Then o is a (3,12C)-quasi-geodesic and oo C Np, (v4n), where Ly =
L(3,12C,9).

Proof. Since « is a realizing path, by Lemma 3.3, o is a (ﬁf'z—c, ﬁﬁ%‘%)
-quasi-geodesic. Since |y,| > 3C by Proposition 4.3(3), a is a (3, 12C)-quasi-
geodesic. Therefore a C Ni,(,~) by Lemma 2.2. The proof is completed.
We denote the word length of g € F in a,b by ||g||. For n > 1, we define
¥(n) =t{g € Flllgll < n’k € G s.t. k-w, C Np(7°)}-
Lemma 5.4 There exist A, B > 0 such that
Y(n) < An+ B

foralll1 < n < oo.
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Proof. Set S = {g € G|d(z9,9-20) < L+ |v4|}. Then |S| < oo. Let
S = {s1,--,sr}. Suppose ||g|| < n and k- w, C NL(y) for some k €
G. Then we find my, my > 0 such that d(a™ - zo,k - 2y) < L + |v.] and
d(a™ - z9,kg- o) < L+ |va|. Thus

d(a™ - zg,a™? - zg) < |wy| + 2L + 2|7,/
Also, there exist s;, 82 € S such that
k~la™ = s, (kg)_la"‘2 = 8.

We have g = s;a™ ™2s5'. We now obtain an upper bound for |m; — ms| as
follows. Note that there exists @ > 0 such that ||g||/Q < |w,| < Q||g]] for
all g € G. Since y™~™2 is a (K, C')-quasi-geodesic by Proposition 4.3(2), we

have

my = mallval = Y™ < Kd(@™ - 20,a™ - 20) + C
< K(lwg| + 2L +2|vs|) + C < KQ||g]| + 2LK + 2K |vs| + C
< KQn+ (2LK + 2K|y,| + O).

Therefore

I2
Y(n) < I? sup{|my; — ma|} < m(KQn +2LK + 2K|v,| + C).

This is the desired inequality. We obtain the lemma.
Let
é(n) = #{g € F|||g]| = n, g starts and ends with b}.

The following lemma is clear.

Lemma 5.5 There exists E > 0 such that
¢(n) 22" - E

foralll < n < oo.

Lemma 5.6 Let L > 0 and ! > 0. There exists an element h € F =< a,b >
with the following properties.

(1) h starts and ends with the letter b.

(2) There is no g € G such that g - wp, C NL(7°).

(3) |wn| > 1.
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Proof. By Lemmas 5.4 and 5.5, we find ny such that Y(n) < ¢(n) for all
n 2 ng. Set n; = max{ng, QI}. Then since ¥(n1) < ¢(my), there exists an
element h € F' satisfying (1), (2) and ||h|| = n, hence I < n1/Q < |wy]. We
obtain the lemma.

Set

L1 = L(3, 12C + 3,(5), L2 = L(K, O, 6), L3 = L]_ + 2[/2

We choose a number I, > 0 as follows. Let [ »J > 1 be integers.
Let h € F be a reduced word which starts and ends with the letter b. We
define g; € F, 1 <i < oo by

i 27 3 ri —T7t, _ —J27i, _ 713 7i, _
gi:aIJhaIJhaIJhaIJhlaIJhlaIJhl. (1)
By definition,
IJ -1, —-I1%J¢  —1_—J37i

_ VEN 3Ji —1Jt -1
Wy, = Y, WhY, WhY, WhY, Wy Y, Wy Ve wy "

Since h starts and ends with b, g; is reduced and cyclically reduced for all
¢ > 1. Note that wy, is a (K, C)-quasi-geodesic by Proposition 4.3. Therefore
there exists Iy > 0 such that if |wp| > Iy, then

NL3 (’y‘{ﬂ)’ NLa (’Yiz'ﬁ)a Tty NLs (7;I3Ji)

are disjoint from each other for all ¢, I, J > 1.
Letting | = ly, L = L3 in Lemma 5.6, we obtain an element & € F. For
this h we obtain elements g; € F, 1 < i < co by (1).

Lemma 5.7 lim,_, |[zo, g; - Zo]| = oo.

Proof. First note that lim; [w,,| = co. Since wy, is a (K, C)-quasi-geodesic
from z4 to g; - o, we obtain lim; [0, gi - To]| = 0.

Proposition 5.8 There exists Iy such that if I > I, then foralll <i < oo,
alll<n< o and all J > 1, we have

67;,.1,20(9?) =0.
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Proof. We argue by contradiction. Suppose there exists arbitrary large I > 1
such that for some J > 1,¢ > 1 and n > 1, we have

c'y;il,2C(g?) > 0.

Note that by Lemma 5.3, there exists a (3, 12C)-quasi-geodesic « from g} - z¢
to zy such that
|leely,, > 0.

This means there is a g € G such that
9 Ve C & C N, (v7).

Since w,, is a (K, C)-quasi-geodesic by Proposition 4.3, we have

g-wg C NLz(g : 79;')’ Yor C NL2(w;i)'

This implies
g-wy, C NLs(w_:;,-)’

since Ll + 2L2 = L3.
We label g - w,, as

g wy = A1H1A2H2A3H3A4H4A5H5A6H6

in the obvious way such that A,,,1 < m < 6 are copies of powers of v! and
H,.,1 < m < 6 are copies of wil.

Let P be the finishing point of Ag, @ the starting point of A¢ and R the
finishing point of As. Let ny be an integer with 0 < ny < n — 1 such that

Pe NLs(g?o : wgi)'
We also label g; - wy, as
670 -y, = ALH Ay H) Ay Hy AL H) AY L AL H).
Set Ly = L3 + |wa|, Ls = K(2L3 + |wp|) + C + L3. We state two lemmas.

Lemma 5.9 P € N, (H],) for some1l <m <6.
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Proof. Suppose P ¢ Ni,(H,,) for all m. Then H¢ N Np,(H.,) = @ for all
m since |Hg| = |wp|. Thus H¢ C N, (U8 _,A!)). Since we chose h so that
Ni,(4;,),1 < m < 6 are disjoint from each other, we find Hg C Ny, (A! ) for
some m. This implies g - w, C N, (v2°) for some g € G, which contradicts
the choice of h. We obtain the lemma.

Lemma 5.10 There exists Iy such that if P € Np,(H},) for some 1 < m <
6, some ¢ and some J, then I < I,.

Proof. To argue by contradiction, suppose for some m,1 < m < 6, there
exists arbitrary large I such that P € Ny, (H],) for some ¢ and J. Note that
for all m,1 < m < 6, we have

A5, VAm] = 00

uniformly for ¢ and J. Also if A,,,1 < m < 6 are sufficiently long, then they
travel in the negative direction along wy, in the L3-neighborhood of wj, since
o is a quasi-geodesic from g} - 2y to zo. Therefore, in the following argument,
we may assume

(1) I is very big compared to K and C.

(2) Ay, -, Ag are very long compared to |wy|, Ly and Ls, for all i, J.

(3) A1, ---, Ag travel in the negative direction along w}, in Ni,(w},) for all
i, J. -

Suppose m = 1. Then since Ag and Aj are very long compared to |wy|
and Ly, the finishing point of Ag and the starting point of A} are very close
compared to the length of Ag and A}. Note that |4g] = I|A4}|, and both
paths are (K, C)-quasi-geodesics. Since I is very big compared to K, C, we
have Hy C Ni,(Ag) — see Figure 2. But Hj C Ni,(As) is impossible. Thus
m # 1.

Suppose m = 2. Since Ag is very long and travels in the negative direction
along wy,, we have

Q € Np,(AsH3AyHy - - -).

We divide A} into two at the middle point and write
Ay = Ay Al

We have five cases according to the position of @ as follows. Note that they
are not mutually exclusive.
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Figure 2: We see Hy C N, (As).

(i) Q € Nr,(43),
(ii) Q € NLs(H:;)a
(iii) Q € NLs (Afu),
(iV) Q € NLa(A:u)’
(v) Q € N, (HyA5--+).
Suppose (i) holds. Choose a point Q' € Aj such that d(Q,Q’) < Ls.
Since Hs ¢ Np,(Aj%), there exists a point S € Hy such that

Choose S' € w}, with d(S,S’) < Ls. Then since Ay and Ag are very long
compared to the distance between the finishing point of A} and the starting

point of Ag, we have
S'e AjH A H, - -.

But since S’ ¢ A}, otherwise we would have S € Np,(A}), we find
S' € HyA,Hy - --.

Also,
d(Q', ') < 2L3 +d(Q,S) < 2L3 + |wnl.

Note that Q' and S’ are on the path wj , which is a (K, C)-quasi-geodesic.

Let Q' = w}.(q), S' = wy (s). We have
lg—s| < Kd(Q',8") + C < K(2Ls + |wa|) + C.
Let 7" be the finishing point of A}. Then since S’ € HyA}H) - - -, we see
dT',Q) <lg—s|+d(Q, Q) < K(2L3 + [wa|) + C + Ls = Ls.
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Figure 4: We see H; C Ni,(4s).

Since A} and Aj are very long compared to Ls, the starting point of A and
the finishing point of As are very close compared to the lengths of A} and
As. Thus, since |As| = I|A}|, we have H; C Np,(As), which is impossible,
— see Figure 3.

A similar argument applies to the other cases. Suppose (ii) holds. Then
since I is very big, we have H; C Np,(As), but this is impossible — see
Figure 4.

Suppose (iii) holds. Then H; C Ni,(As), but this is impossible. Suppose
(iv) holds. Then Hj C Np,(As), but this is impossible. Suppose (v) holds.
Then Hy C Np,(Asg), but this is impossible.

Therefore, we find contradictions for all cases (i), ..., (v). Thus m # 2.

Suppose m = 3. First note that A, and Ag are very long compared to
H}. Since A} and A are (K, C)-quasi-geodesic, and |Ag| = I?|A}], it must
be that H; C Ni,(Ag) — see Figure 4. This is impossible. Thus m # 3.

Similarly, we can show m # 4,5,6 as well. We obtain m # 1,2, 3,4, 5,6,
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which is a contradiction. We showed Lemma 5.10.
We resume the proof of Proposition 5.8. If I > Ij, then Lemmas 5.9 and
5.10 contradict. Thus we conclude that if I > Iy, then

C-y;il,zc(g?) =0

for all ¢,n,J. We obtained Proposition 5.8.

Proposition 5.11 There exists Jy such that if J > Jy, then
Cygijl,zc(g? )=0,

forallI >1,all1<i<j<ooandalll<n<oo.

Proof. First, we will show ¢y, 2c (¢*) = 0. To argue by contradiction, suppose
there exists arbitrary large J > 1, such that for some I, some 1 < i < j and
some n, we have

c'ygj ,20(9?) > 0.

Then by Lemma 5.3 and |y,,| > 3C, there is a (3, 12C)-quasi-geodesic a from
Zo to gI' - o such that
|aly,, > 0.

Thus we find g € G such that

9 Ye; €@ C Np,(Ygr), Ygr C Ni, ().

We replace the subpath g-+,, of @ by g-w,; and get a new path 3. Clearly 8
is a (K', C")-quasi-geodesic where K',C’ are some constants depending only
on C, K, 6 since a is a (3,12C)-quasi-geodesic and g - wy, is a (K, C)-quasi-

geodesic.
Since
g we; C Nro(9-7g;)s 9 Ve; € Nio(g - wy,),
we have
@ C Ni,(B), B C Ni,(a).
Also,

Yop C Ni,(wg,), wy, C N, (vgp)-
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Therefore we have

g-wyg CBC NL3(w;_), wy, C N, (6).

Since
|w;| = 6lwa| + 2(I + I* + I*) J'|yal, (727’ = 1Vl
we get .
lim w = 00
J—roo |wyi| ’

uniformly for all 2 < j and I > 1. Therefore, since § is a (K',C')-quasi-

geodesic, there exists J; such that if J > J;, then the Ls-neighborhood of

each copy of v.” in g- wy; (in B) conatains a copy of wy, in w}, for all i < j.
This implies that there is ¢’ € G such that

g - we C Ny (7.7)
Since ¢’ - w,, contains a copy of wy, there is g” € G such that
9" wn C Ny (72)-

This contradicts the choice of h. Now if J > J;, then we have

C'ygj ,20(9'?) =0

forall1 <i< j<ooandalll <n < oo. Similarly, there exists J; such
that if J > J], then we have

67971,20(9?) =0
forall1<i< j<ooandalll<n< oo. Setting
Jo = max{Jy, J1},

we obtain Proposition 5.11.

Proof of Proposition 5.1. Let K > 1, then we have a subgroup F' by Propo-
sition 4.3. We get a constant [y and then h € F by Lemma 5.6 as in the
previous argument. Propositions 5.8 and 5.11 give us Iy and Jy, respectively.
Then we define elements g¢;,1 < i < oo for Iy and Jy. By Lemma 5.2, we have
(1). Proposition 5.8 implies (2). The property (3) follows from Proposition
5.11. We see g; € [G, G| for all 4, which is (4). Lemma 5.7 means (5).
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Proposition 5.12 There exist elements g; € G, 1 < i < oo such that |y, | >
3C for all i > 1, which implies that hy, ac is well-defined. Further, they
satisfy the following properties.

(1) Forall1<i<oo and1<n < oo,

hwg,-,ZC(g?) > nC.
(2) Forall1<i<j<ooandl <n< oo,
Py, 20(gi') = 0.
(3) For all1 <i<oo,1<n<oo and all homomorphisms ¢ : G — R,

¢(g7') = 0.

(4) lim, oo g = 00.
Proof. Proposition 5.1 gives us g; € F', 1 < i < oo which satisfies all the
properties in Proposition 5.12.

Proof of Theorem 1.1. By Lemma 2.5, we have two hyperbolic isometries
k; and ky such that k5™ # k> and k;® # k. Then Proposition 5.12
gives us elements g; € G for 1 < i < oo. First note that |y,| > 3C for all
i. Therefore h,, sc is well-defined in C*(G;R). Taking the integer part, we
define

h; = [h"Ygi,2C] € CI(G, Z)

For each g € G, there are only finitely many elements h; such that h;(g) # 0.
This follows from Lemma 3.9 and Proposition 5.12(4). Therefore, if (a;); € I},
then 332, a;h; is also well-defined as an element of C(G;R) since this is in
fact a finite sum for each g € G. Also, for the same reason, .72, a;d0h; is a
well-defined cocycle, and the following equality holds.

) (Z a,-hi) = Zaﬂ;hi.
=1 =1
By Proposition 3.10, for all 1 < i < 0o, we have

|0h;| < 12Ly + 12C + 486 + 3,
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where Ly = L(3,12C, §). Note that 3 occurs in the above inequality since we
took the integer part to define h;. It follows that if (a;) € I, then ¥; a;0h;
is also a well-defined bounded cocycle. We get a real linear map

w: ' - H(G;R),

which sends (a;) to the cohomology class of }°; a;0h;. In order to see that w
is injective, suppose w((a;)) = 0. Then

i=1
for some b € C}(G;R). This means
Z a,~h,~ —-b= ’(ﬁ
i=1

for some homomorphism % : G — R. Applying this to g7 € G, we find

arhi(g7) — b(g7) = ¥(g7') =0

for all » > 0. Since b is bounded and h;(g}') > nC — 1, we get a; = 0. By
induction on ¢, a similar argument shows a; = 0 for each i. We obtain the
proposition.

6 Proofs of the other results

Proposition 6.1 Let M be a complete Riemannian manifold. Suppose there
exist a > b > 0 such that —a < K < —b < 0, where K is the sectional
curvature. Let G = m(M). Then we have the following.

(1) If |L(G)| = 0, then G = {e}.

(2) If |L(G)| = 1, then there exists a nilpotent subgroup H of G with finite
index.

(8) If |L(G)| = 2, then G ~ Z.

Proof. (1) Note that since M is locally compact, |[L(G)| = 0 implies G is
finite. It is well known that 7y (M) is torsion free, [8]. Thus G = {e}.

(2) Since |L(G)| = 1, all elements are parabolic with a common fixed point.
Then it is known that G is an almost nilpotent group, [8].
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(3) Since |L(G)| = 2, all elements of G are hyperbolic. They have a common
axis. Since the action is properly discontinuous, we get G ~ Z.

Proof of Corollary 1.2. By Proposition 6.1, if |L(G)| < 2, then G is al-
most nilpotent. Thus if G is not almost nilpotent, then |L(G)| > 3. Apply
Theorem 1.1.

Proof of Corollary 1.3. By Proposition 6.1, it is easy to see that if |L(G)| < 2,
then the volume of M is infinite.

Proof of Corollary 1.4. Let I be a Cayley graph of G. Then G acts on I’
properly discontinuously by isometries, and hence so does H. Since G is
word-hyperbolic, I' is a locally compact, Gromov-hyperbolic space. It is well
known that there is no parabolic isometries in G, [13]. Thus |L(H)| = 0,2,
or co. It is easy to see |[L(H)| = 0 if and only if |[H| < oo and |L(H)| = 2
if and only if H contains Z with finite index. Therefore, |[L(H)| < 2 implies
that H is elementary.

We shall prove Theorem 1.6. Let K be a knot and G = m(S*\K).
Suppose G # Z, in other words, the knot is non-trivial. By the classification
of knots, there are two types of knots, namely, prime knots and non-prime
knots. The prime knots are of three types, which are called hyperbolic type,
torus type, and satellite type. Group theoretically, we have the following
classification. Note that these cases are not mutually exclusive.

Case 1(hyperbolic knot) G is the fundamental group of a hyperbolic manifold
M with one cusp. Note that M = S®\K and the volume of M is finite.
Case 2(torus knot) G has an epimorphism to Z,, * Z, such that m,n > 2
and (m,n) =1,

G —» Ly * L.

Case 3(satellite knot) G can be written as G = A #zxz B such that |B/(Z x
Z)| > 2 and A is either of Case 1 or 2.
Case 4(non-prime knot) G can be written as G = Az B such that |B/Z| > 2
and A is either of Case 1, 2, or 3. Note that there are epimorphisms from G
to each of A and B.

We need the following results.

Theorem 6.2 ([3]) Let ¢ : G; — G4 be a homomorphism and let
¢ : H2(G2;R) — HE(G1;R)
be the induced map. If ¢ is surjective, then ¢, is injective.
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It is known in the previous theorem that if the kernel of ¢ is amenable,
then ¢, is isomorphic — Section 3.1 in [12], [14].

Theorem 6.3 ([10]) Let G = A x¢ B. If |C\A/C| > 3 and |B/C| > 2,
then there is an injective R-linear map w : I* — HZ(G;R) such that, for
each i(1 < i < 00), w(e;) is the image of a class in HZ(G;Z). In particular,
the dimension of HZ(G;R) as a vector space over R is the cardinal of the
continuum.

Proposition 6.4 Let G be a non-elementary word-hyperbolic group and let
¢ :Z xZ — G be a homomorphism. Set H = ¢(Z x Z). Then

|H\G/H| = oo.

Proof. Let Z x Z = {a,b|ab = ba} and ¢(a) = hi, ¢(b) = hy. If both hy, he
are torsion, then |H| < oo, and clearly, |H\G/H| = oo. Suppose either h;
or hy is not torsion. Without loss of generality, we may assume h; is not
torsion. Then, h; acts on the Cayley graph of G as a hyperbolic isometry.
Set
z=h7>", y=h€oG.
Since h; and hy commute, hy - £ = z, and hence H - x = . Note that for all
p € OG, since only = and y can be the cluster points for the action of H on
0G, we get
H-pCcH-pUzUy.
To argue by contradiction, suppose |H\G/H| = n < co. Then there exist
g1, ,9n € G such that
. G= H H g,-H .
=1

Then for all i, since H -z = =z,

HgH -z =Hg;-z C(Hg;-z)UzUy.

Therefore,

G-m:HHgiH.x:EHgiH-xc (Zng”x)Uny.

i=1 =1 i=1

This shows G - x is a countable set. But, it is well-known that G- z is an
uncountable set for a non-elementary word-hyperbolic group G. We get a
contradiction. Therefore |H\G/H| = oo.
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Proposition 6.5 Let M be a three-dimensional, complete hyperbolic man-
ifold with finite volume. Suppose M has one cusp. Let G = m(M) and
H ~ 7 x Z be the cusp group. Then

|H\G/H| = .

Proof. Note that there exists £ € OH® such that H fixes z. To argue by
contradiction, suppose |H\G/H| < oco. Then there exist g1, - gn € G such
that

i=1

Note that Hg; -z = (Hg; - ) U z for all 7. Therefore,

Gz = HHgiH-x=ZHg,-H-x

=1 =1
= Y Hgi-z= (EHgi-m) Uz.
=1 i=1

This implies G - z is a countable set. But, since H?/G has finite volume,
G - = S?, which is an uncountable set. This is a contradiction. We get

|H\G/H| = co.
Proof of Theorem 1.6. For Case 1, the desired conclusion follows from Corol-
lary 1.3.

For Case 2, note that Z,, *x Z,, is non-elementary word-hyperbolic since
m,n > 2 and (m,n) = 1. Then the conclusion follows from Corollary 1.5
and Theorem 6.2. The same argument was given in section 5 of [11].

For Case 3, if A is of hyperbolic type, then by Proposition 6.5, we see

(Z x Z\A/(Z x Z)| = .

Since |B/(Z x Z)| > 2, by Theorem 6.3 we have the conclusion. If A is of
torus type, a similar argument using Proposition 6.4 gives the conclusion.

For Case 4, since there is an epimorphism from G = A %z B to A, by
Theorem 6.2, HZ(A; R) injects to HZ(G;R). We already know that the con-
clusion holds for HZ(A;R) since A is in one of the three previous cases. This
implies that the conclusion holds for HZ(G;R) as well. We finished the proof
of Theorem 1.6.
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