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ABSTRACT. Let I’ denote a word-hyperbolic group, and let § = S~! denote a finite symmetric
set of generators. Let S, = {w : [w| = n} denote the sphere of radius n, where |-| denotes
the word length on I' induced by S. Define op, 2 ﬁ > wes, W and pn = n;-i—l > h—00k-
Let (X,B,m) be a probability space on which I' acts ergodically by measure preserving
transformations. We prove a strong maximal inequality in L2 for the maximal operator f; =
Sup,>o |#nf(z)|. The maximal inequality is applied to prove a pointwise ergodic theorem in
L2 for exponentially mixing actions of ', of the following form : pnf(z) — IX fdm almost
everywhere and in the L2-norm, for every f € L2(X). As a corollary, for a uniform lattice
I' C G, where G is a simple Lie group of real rank one, we obtain a pointwise ergodic theorem
for the action of I' on an arbitrary ergodic G-space. In particular, this result holds when
X = G/A is a compact homogeneous space, and yields an equidistribution result for sets of
lattice points of the form I'g, for almost every g € G.

§1 DEFINITIONS AND STATEMENTS OF RESULTS

1.1 Definition of ergodic sequences.

Let T' be a countable group, and let £X(T) = {u = 2 ver BV 2 2o er ()] < oo}
denote the group algebra. Given any unitary representation 7 of I' in a Hilbert space #,
extend m to the group algebra by: m(u) = 3°r u(v)7(7y). Denote by 1 the space of

vectors invariant under every w(v), v € I, and by E; the orthogonal projection on #; .

Definition 1.1. Given a unitary representation (m, %) of ', a sequence v, € £}(T) is a

mean ergodic sequence in H if ||w(vy)f — E1f|| —— 0 for all f € H.
n—oo
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Let (X,B,m) be a standard Lebesgue measure space, namely a measure space whose
o-algebra is countably generated and countably separated. Assume I" acts on X by mea-
surable automorphisms preserving the probability measure m. The action (y,z) — vz
induces a representation of I' by isometries on the LP(X) spaces 1 < p < oo, and this
representation can be extended to the group algebra by: (uf)(z) =3, ver BN f (v'z).

The set By = {A € Bl/m(yAAA) =0 Vv € T'} is a sub-o-algebra, and denote by E;
the conditional expectation operator on L'(X) which is associated with B;.

Definition 1.2. Given an action of I" on a standard Lebesgue space X which preserves a
probability measure, a sequence v, € £1(T') is called a pointwise ergodic sequence in LP(X)
if, for every f € L?(X), vnf(z) — E1f(z) for almost all z € X, and in the norm of LP(X).

Definition 1.3. The maximal operator associated with the sequence v, is given by :

f2(z) = sup,>¢ v f(2)], for f € LP(X).

It is natural to consider sequences in £!(I") which are given in explicit geometric form.
To that end, assume I' is finitely generated, and let S be a finite generating set which is
symmetric: S = S~ S induces a length function |y| = |y|g = min{n|y = s;---sn, s; €

S}, le] 2 0. Consider the following sequences, which we associate with the pair (T, S) :

Definition 1.4.
i) op = ﬁ > wes, W, where S, = {w : |w| = n} is the sphere of radius n, with

center e.

i) pn, = n+-1 ZZZO Ok, the average of the first n 4+ 1 normalized sphere averages,
Mo = Og = €.

i) B, = #—}13— > -wep, W, where B, = {w : [w| < n} denotes the ball of radius n with
center e.

If T is finite, then S, = 0 for n > |T|. Since the ergodic theory of finite groups is well
known, we will assume from now on that I is infinite, without mentioning this condition
explicitly. We can now state :

Theorem 1. Let (T',S) be a word-hyperbolic group. Then the sequence ., satisfies the
strong mazimal inequality in L?, i.e. “f;“2 < CM)||flly for every f € L*(X).

Let us note that the case where the group I' is an elementary hyperbolic group has
been of course well known for a long time. Indeed by definition, I' has then a finite
index subgroup isomorphic to Z (see §2). Furthermore, the averages u, defined above
coincide with the usual ergodic averages when I' = Z and S = {+1} is the set of standard
generators. It is easily seen that the maximal inequality for the averages y,, when T is an
elementary word-hyperbolic group can be proved using the argument of the Wiener- Hopf
maximal inequality for Z-actions.

It is therefore natural to regard the sequence u, associated with a general word-
hyperbolic group (T, S) as the analogue of the familiar ergodic averages on Z. This point of
view is bolstered by the fact that the proof we give for the maximal inequality of Theorem
1 applies equally well to elementary and non-elementary word-hyperbolic groups. Indeed,
the essential element in the proof of Theorem 1 will be the second of the two convolution
estimates given in :
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Theorem 2. Let (T',S) be a non-elementary word-hyperbolic group. Then there ezist
constants 1 < ¢ < 0o and 0 < C < oo, depending only on (T, S), such that the following
inequalities hold :

a) oy x0s < CZ?;O q_(’_%j)at_sﬂ- ift > s.
b) Hn ¥ i < C(NZn + /~‘2'm)'

For an elementary word-hyperbolic group, the subadditivity of u,, is easily verified, and
in fact, it has been pointed out long ago by E. M. Stein [S1, S2] that it can be used to
prove the L?-maximal inequality in the case I' = Z (see also the discussion in §1.2). The
first inequality in Theorem 2 also holds, with ¢ = 1.

To establish a pointwise ergodic theorem, we will use the maximal inequality, together
with some spectral information. Consider first the following :

Definition 1.5.

(1) A unitary representation (m,?) of a finitely-generated group (T',.S) will be called
exponentially mixing if there is a dense subspace #y C H, such that for every
f € Mo there are positive constants C and ¢ (depending on f) with : [{w(w)f, f)| <
Cexp(—c|w|) for every w € I".

(2) An action of (T',S) on a probability space (X, B, m) will be called exponentially
mixing if the unitary representation of (T', §) on L}(X) = {f € L*(X) | fy fdm =
0} is exponentially mixing.

Theorem 3. Let (T, S) be a word-hyperbolic group. IfT' acts on (X, B, m) preserving the
probability measure m, and the action is exponentially mizing, then the sequence p, is a
pointwise ergodic sequence in L%(X).

The foregoing result will be applied to obtain:

Theorem 4.

(1) Let G be a connected finite-center simple Lie group of real rank one, and I’ C G be
a uniform lattice subgroup. Let (X,B,m) be a G-space with an ergodic probability
measure m. Then, for any symmetric set of generators of I' the corresponding
sequence pn satisfies pnf(z) — [y fdm almost everywhere, for every f € L¥(X).

(2) The same conclusion holds for every uniform lattice of the group of automorphisms
Gnm = Aut(Ty,m) of the semi-homogeneous tree T, ,, and uniform lattices of
simple algebraic groups of split rank one over local fields.

To formulate the next result we first recall the following :

Definition 1.6. Let X be a compact metric space, and let v, and m be probability
measures on X. The sequence of measures v, is said to become equidistributed with
respect to m if [y f(z)dvn — [y f(z)dm for every continuous function f on X.

‘We can now state

Theorem 5. Let G be as in Theorem 4, andT' C G a uniform lattice subgroup. Let (X, m)
be compact metric space with a continuous G-action and an ergodic G-invariant measure
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m. Then
(1) The sequence of atomic measures v, = ;Jl_i S ho ﬁ%x. > jw|=k Swz becomes equidis-
tributed with respect to m, for almost all x € X.
(2) In particular, if A C G is another uniform lattice, and X = G/A, then the set
of points T'gA becomes equidistributed in G/A, when taken with the weights u,,
namely : pnf(gA) — fG,/A fdm, for all f € C(G/A), and almost every g € G.

1.2 Method of proof, remarks and relevant references.

To prove the maximal inequality of Theorem 1 for the sequence u,,, we will first prove
Theorem 2 and establish the subadditivity of ,,. We can then appeal to a general maximal
inequality that applies to any subadditive sequence of self-adjoint Markov operators in L?,
in the sense of the following definition :

Definition 1.7. A sequence T}, of operators on L?(X) will be called a subadditive sequence
of self adjoint Markov operators if it satisfies the following :

i) T, = T2, |Tull <1.

i) T,f>0if f>0,T,1=1.

iti) There exist a constant Cg > 0, a positive integer k, and a fixed non-negative bounded
operator B on L?(X) such that :

TnTmf(z) < Co(Tunf(z) + Tiem f(z)) + Bf ()

for all bounded and nomnegative f € L2(X).

We can now state the maximal inequality alluded to above, which was proved by J.
Barrionuevo [B] and independently in [N1] :

Theorem 1.8 : Subadditive maximal inequality [B, N1]|. Let T,, be a subadditive
sequence of self adjoint Markov operators. Define f*(x) = sup,>¢ |Tnf(z)|. Then || f*||, <
C|Ifll, for all f € L?(X). We can take C = 2C, + || B||.

We note that the method of using the subadditive maximal inequality in the group
algebra to prove a maximal ergodic theorem in L? was developed in [N1] and applied to
actions of the free group Fy, and certain other word-hyperbolic groups. This method and the
subadditive maximal inequality above generalize similar results due to E. M. Stein [S1, S2]
and B. Weiss [W]. In particular, it was applied by E. M. Stein [S1,52] to prove a pointwise
ergodic theorem for the even powers of positivity-preserving self-adjoint contractions on
L2. Also, it is noted in [S1, S2, W] that it implies the pointwise convergence of martingales
in L2, as well as Birkhoff’s pointwise ergodic theorem in L2. Other applications have been
considered in [B]. The origin of this maximal inequality is attributed in [S1,W] to A.
Kolmogoroff and G. Seliverstoff [K-S], and to R. E. A. C. Paley [P].

It is reasonable to expect that the subadditive maximal inequality for u,, holds for a class
of discrete groups much wider than the class of word-hyperbolic groups. The inequality
also makes sense for semi-simple Lie groups for example, and it does in fact hold for the
groups G = S0°%(n,1), n > 2.

The averages o, and (3, seem more directly connected to the word metric than the
averages L. The problem of establishing an ergodic theorem for them was introduced by
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V. I Arnold and A. L. Krylov already in [A-K]. In order to gain some perspective on the
possibility of proving maximal and ergodic theorems for o, and 3,, we recall some results
from [N1]. Consider the following non-elementary word-hyperbolic groups :

(1) F) = the free group on k generators, 1 < k < oo, with § = {z;,z;'}*_,, where

z1,...,Tk are free generators.
(2) T'(r,h) = G1 * G2+ x G,. = the free product of r finite groups each of order A,
where r > 2, h > 2, 7+ h > 4, with S = Ji_, G: \ {e}.

Define q(T'(r, h)) = (r — 1)(h — 1), and also q(F%) = 2k — 1, r(F%) = 2k, and h(F}) < 2.

As to the maximal inequality for ball averages, note the following formula for the size of
a sphere of radius n in the groups I" above : #S, = r(h — 1)¢" . Therefore o, < b(T)B,
for some constant b(I') depending only on I'. It follows that a maximal inequality for the
sequence [, implies one for the sequence o,,. The converse is also true, since (3, is a convex
combination of o, 0 < k < n, so the maximal inequalities for spheres and balls in I" are
equivalent. This property holds in fact in every non-elementary word-hyperbolic group,
as follows from Theorem 2.15 in §2. Note also that it is in marked contrast to the case
of lattices in Euclidean groups, where ball averages satisfy the maximal inequality, but
sphere averages do not (consider e.g. the spheres of radius n in Z™ w.r.t. the standard
generators).

As to the ergodic theorems for ball and sphere averages, we recall that it has been proved
by Y. Guivarc’h [G] that for I' = Fy, the sequence o}, = £(0n + 0n41) is a mean ergodic
sequence. This result was generalized in [N1], where the ergodic theorem that follows was
proved. First define E to be the orthogonal projection on the subspace of L?(X) consisting
of functions satisfying : w(o,,)f = (—1)"f. Let (X, m) be a I'-space where E # 0. Then :

Theorem 1.9 : Ergodic theorems for radial averages [N1|. For I’ and (X,m) as
above :

(1) o, and B, satisfy the mazimal inequality in L%(X), but are not mean (and hence
not pointwise) ergodic sequences in L2(X).
(2) The sequences 0!, and u, are pointwise ergodic sequences in L*(X).
(3) oan converges to Eq + c¢(I')E, which is a conditional expectation operator w.r.t. a
T-invariant sub-o-algebra iff I =T'(r,2) or T = Fj.
(4) Baon converges to Ey +C(F)%E, which is not a conditional expectation operator
on a I'-invariant sub-c-algebra.
The convergence is for each function f € L%(X), pointwise almost everywhere and in the
norm of L2(X).

Note that the behaviour of ball averages described in part (1) of Theorem 1.9 is again in
marked contrast to the case of lattices in Euclidean groups, where ball averages are mean
and pointwise ergodic sequences. Here the subsequence (,,, does have a limit in norm and
pointwise, in contrast with (3, , but the limit is not a projection. As to o, in the Euclidean
case sphere averages are not even mean ergodic (again, consider the spheres of radius n in
Z™ w.r.t. the standard generators). Here although o, is not a pointwise (or even mean)
ergodic sequence, o/, has both these properties. o2, also has a limit in norm and pointwise,
which is usually not a conditional expectation.
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In particular, since the sequences o, and 3, are not, in general, ergodic sequences, they
do not provide a suitable generalization of the ergodic averages on Z. The analysis of the
possible limits of their subsequences in a general non-elementary word hyperbolic group
seem at this point out of reach.

Finally, we make the following remarks on some closely related problems :

(1) It is natural to consider the behaviour of the radial averages in LP for p # 2. We
note that in [N-S1] it is shown that the sequence p,, € £(F}), satisfies a weak type
(1,1) maximal inequality in every measure-preserving action of Fy. In particular,
L is a pointwise ergodic sequence in LP, for 1 < p < oo.

(2) Spectral methods are applied in [N1, N2, N-S2] to prove pointwise ergodic theorems
for ball and sphere averages on simple Lie groups of real rank one. For some ergodic
theorems for discrete subgroups of semi-simple groups see [N4].

Acknowledgements. The authors would like to thank Zlil Sela for many interesting con-
versations, and to Marc Bourdon for bringing M. Coornaert’s paper [Co] to their attention.

§2 CONVOLUTION ESTIMATES FOR WORD-HYPERBOLIC GROUPS

2.1 Preliminaries about word-hyperbolic groups.

The theory of hyperbolic groups was developed by M. Gromov in [Gr], and we review
briefly some definitions and results relevant to our purposes without proofs. General
reference for the theory are, for example, [Gr], [Sh], [Bo] and [Gh-Ha].

Let X be a complete metric space. Suppose X is geodesic, i.e. the distance between
any two points is realized by a geodesic. Denote by Ns(A) the d-neighbourhood of a set
A C X. Recall the following basic definitions.

Definition 2.1(é-thin triangle). Let 7 be a triangle in X with geodesic sides «, 3,7,
and let § > 0. If
acC Ns(ﬁU’)’)a :8 C NJ(’YU a), 7y C Ng(aUﬁ),

then the triangle is called § -thin.

Definition 2.2(d-hyperbolic space). If there exists § > 0 such that all geodesic triangles
in X are é-thin, then X is called a &-hyperbolic space.

Definition 2.3(Gromov-hyperbolic space). If X is §-hyperbolic for some § > 0, we
say X is a Gromov-hyperbolic space.

Ezxamples of Gromov-hyperbolic spaces.

(1) A tree, i.e., a simply connected, one dimensional simplicial complex, is Gromov-
hyperbolic for § = 0.

(2) Let M be a complete, simply connected Riemannian manifold. If there exists ¢ < 0
such that K < ¢ < 0, where K is the sectional curvature, then M is Gromov-
hyperbolic.

(3) In particular, the symmetric spaces of simple Lie groups of real rank one, RH",
CH", HH"™ and Q2 are Gromov-hyperbolic.

(4) Euclidean space R™ is Gromov-hyperbolic iff n = 1.

The following facts are straightforward consequences of the definitions above :
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Lemma 2.4. Let X be a §-hyperbolic space. If o, B are geodesics with a common starting
point and a common end point, then

acC N5(ﬁ)v ﬂ C N‘;(C{).

Lemma 2.5. Let X be a §-hyperbolic space. Suppose geodesics o, 3, form a triangle.
Then there exist points A, B,C on «, 3,7, respectively, such that

d(A, B), d(B,C), d(C, A) < 46.

To obtain some further examples for Gromov-hyperbolic spaces, first define :

Definition 2.7(quasi-isometry). Let (X,d) and (X’,d') be geodesic spaces. If there
exists map ¢ : X — X' satisfying, for some € > 0 N(¢(X)) = X’, and

2 (d(z,9) ~ 9 < d(9(2), 8)) < Kd(z,9) +<,

for all z,y € X, then ¢ is called (K, €)-quasi-isometry. If there exists a (K, €)-quasi-
isometry from X to X’ for some K and ¢, we say X and X' are quasi-isometric.

The following facts are immediate consequences of the definitions :

Lemma 2.8. Let X be a Gromov-hyperbolic space. If a complete geodesic space Y is
quasi-isometric to X, then'Y is Gromov-hyperbolic as well.

Corollary 2.9.

LetT be a countable group of isometries of a Gromov-hyperbolic space X, acting properly
discontinuously, freely and with a compact fundamental domain. Then, for any given
z € X, the orbit T' -z C X (with the induced metric) is quasi-isometric to X, and hence it
is a Gromov-hyperbolic space.

{From Corollary 2.9 we obtain
Further examples of Gromov-hyperbolic spaces :

(1) IfT is a uniform lattice contained in the group of isometries SO°(n, 1) of hyperbolic
space RH", then the orbit I' - o C RH" is a Gromov-hyperbolic space with respect
to the Riemannian metric. The same applies to uniform lattices of any simple Lie
group of real rank one.

(2) Let T),.,m denote the semi-homogeneous tree, and let G, . = Aut(T,..,,) denote its
group of automorphisms. Let I' C G, be a uniform lattice. ThenT'-0 C T}, 1, is
a Gromov-hyperbolic space w.r.t. the induced tree metric.

We have defined in §1 the word metric on I'. This distance is associated with the
following geometric object :

Definition 2.10(Cayley graph). Let I be a finitely generated group and let S be a
finite generating set which is symmetric. Consider the geodesic space called the Cayley
graph G(T', S) of T with respect to S. This graph has a vertex for each element of I', and
an edge connecting g to gs for each g € I" and each s € S. Since S generates I', G is
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connected. I' acts on G by multiplication on the left: g € I" sends a vertex z € T" to a
vertex gz € I'. Assigning unit length to each edge, we make G a geodesic space. The path
metric d(-, ) is called word metric w.r.t. S, and for g € T, |g| = d(1,g). The left-action of
T on G is by isometries.

Ezamples of Cayley graphs.
(1) The Cayley graph of a free group w.r.t. a free basis is a regular tree.
(2) The Cayley graph of Z? w.r.t. the standard generators z*1,y*! is the square grid
of horizontal and vertical lines in the plane.

Definition 2.11(word-hyperbolic group). Let (T, S) be a finitely generated group and
a generating set. If the Cayley graph G(T';S) is §-hyperbolic for some § > 0, then we say
T is a &-hyperbolic group. If T is §-hyperbolic for some §, then T' is called word-hyperbolic.

The following Lemma follows easily from the definitions, and shows that any choice of
a generating set will do.

Lemma 2.12. Suppose I' is §-hyperbolic w.r.t. some generating set S. Let S' be another
generating set. Then (T',S) and (I',S’) are quasi-isometric and there exists §' > 0 such
that T is §'-hyperbolic w.r.t. S'.

Before giving some examples, let us note that finite groups and Z are word-hyperbolic
groups, and introduce the following :

Definition 2.13(elementary hyperbolic group). Let T’ be a word-hyperbolic group.
If T is either a finite group or contains Z as a finite index subgroup, then I' is called

elementary.

Ezamples of word-hyperbolic groups.

(1) Z is word-hyperbolic, but Z™ are not, if n > 1. Indeed, taking the standard
generators, it is clear there is no § for which all triangles are §-thin, if n > 1.
Moreover, any group that contains Z2? as a subgroup is not word-hyperbolic.

(2) If a countable group I' acts isometrically, properly discontinuously, freely and with
compact fundamental domain on a Gromov-hyperbolic space (X, d), then the orbit
(T - z,d) is quasi-isometric to (I',S) (for any finite symmetric S and z € X). By
Lemma 2.8, any uniform lattice of the group G, m, or a simple Lie group of real
rank one is word-hyperbolic.

(3) Let M be a closed, negatively curved Riemannian manifold. Then 7 (M) is word-
hyperbolic, by Corollary 2.9.

Another family of examples is given by :

Lemma 2.14. Let I'1, T’y be word-hyperbolic groups and let T's be a common subgroup. If
T'3 is finite, then 'y %, 'y is Gromov-hyperbolic.

In particular, let A, B be finite groups and C a common subgroup. Then Ax¢ B is word-
hyperbolic. If A # C,B # C, then this group is non-elementary except for Zs % Zy. For
example, SLs(Z) = Z4 *z, Zg and PSLy(Z) = Zg x Z3 are non-elementary word-hyperbolic
groups (except for n = 2, A; = Ay = Zy). Also, if A;, 1 < 1 < n are non-trivial finite
groups, then A; * A * --- x A, is a non-elementary word-hyperbolic group.



KSTS/R-97/010
September 25, 1997

MAXIMAL AND POINTWISE ERGODIC THEOREMS 9

Let (T, S) be a finitely generated group, and let s, = #S,, where as usual S, is the
sphere of radius n w.r.t. the word metric determined by S. For (T, S) word-hyperbolic,
the sequence §S,, has exponential growth, a fact which is obvious in all the examples listed
above : §S, > CD", where D > 1.

For the convolution estimates we intend to prove the following sharper estimate is
needed.

Theorem 2.15 : The rate of growth of spheres[Co|. Suppose (T',S) is a non-
elementary word-hyperbolic group. Then there exist positive constants C1,Ca and C3 > 1
depending only on (T',S), such that for alln >0

C1-C} <45, < Cp-CP.

This fact was proven by D. Sullivan [Su] for convex co-compact Kleinian groups, which
are word-hyperbolic, in a slightly different form. The above theorem asserts the conclusion
holds for all word-hyperbolic groups. For a proof we refer to [Co].

2.2 The convolution estimates : Proof of Theorem 2.

Let T be a Gromov-hyperbolic group. Let S be a generating set and and let § be a
hyperbolic constant of I" w.r.t. S. Suppose I' is non-elementary.

Let ¢, s, j be integers satisfying 0 < s < ¢,0 < j < 25,0 < t— s+ 7, fixed throughout the
following discussion. Suppose a word w € I is given such that jw| =t — s + j. We count
the number of times we can write w as w = uv with |u| = ¢ and |v| = s. In the following
argument w is fixed while u, v are variable. (Actually, v and v determine each other, since
w = uv).

Suppose then that w = uv with |u| =¢ and |v] = s. By Lemma 2.5 we can write

U = U1U2,V = V1V2, W = Wi1W2,
such that
lul = [ua] + |uzl, [v] = [vi] + |val, [w] = Jwi| + |wel,

and also (see Figure 1) :
[uy 'wyl, |ugvy ], 2wy | < 46.

The following lemma is our basic tool :
Lemma 2.16. The following expressions :

J
2

b

i (-4 2)],
-

Proof. Consider the case of v, and note that going over the sides of the triangle in Figure
1, the definition of u;,v; and w; gives us the estimates that follow. First, |wa| — 46 <

oal = 2. wal -

ol = (e-5+2)).

are all less than or equal to 64.

’
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|ve| < |wa| + 44. Since |w1| + |wa| = t — s + j, we can conclude that t — s + j — 46 <
|ve| + Jwi| < ¢ — s+ 5+ 4. But |u1]| — 46 < |wi| < |ug| + 46, and also |u1| = t — |us|.
Hence, substituting these estimates, we have t —s+j — 88 < |vg| +t — Juz| < t—s+j+86.
Finally, |v1]| — 40 < |ug| < |v1]| + 49, and hence —s + j — 128 < |vg| — |v1| < =5+ + 126.
Together with the equation |vi| + |vs| = s, we get j — 12§ < 2|vs| < j + 126, and hence
llva| — %] < 66.
All the other inequalities are proved similarly.
O

Lemma 2.17. There exists Cy which depends only on (T, S) such that
#{ choices for w1} < Cy,

#{ choices for w2} < Cy,
#{ choices for u1} < Cy,
#{ choices for vo} < Cy.

Proof. Take a geodesic o from 1 to w in G. Let A € T be the point on a such that
d(1,A) =t —s+L(or t —s+ZE1) if j is even(or odd, resp.). Since |w| = |wi|+ |wa], there
exists a geodesic v from 1 to w such that w; € 4. By Lemma 2.4, there exists a point
B € v such that d(4, B) < §. This implies

. i1
t—s+%—6§d(1,B) St—s+%+5.
By Lemma 2.16, . 4
t—s+%—66§d(1,w1) 5t—s+%+65.
Since B and w; are on the same geodesic vy, we find
d(wy,B) <76+ 1.

This shows
d(wy, A) < 85 +1, d(uy, A) < 125 + 1.

Since d(uy,uvy) < 46 and uv; = wvz"l,
d(wvyt, A) < 168 + 1.

Therefore, we obtain wy, u1, wvy ! from A € I’ by multiplying elements of T' whose length
are less than 164 + 1. Clearly, wy is uniquely determined by w; (and w, which is fixed
in this discussion). By Theorem 2.15, the number of elements whose length are less than
164 + 1 is bounded by C> E:ﬁgH] CE. Letting Cy = Cy ZEE‘;H] Ck, we get the desired
inequalities. O
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Lemma 2.18. There ezists Cs which depends only on (T, S) such that

_i
S—3

t#{choices for us} < Cs-C3 2,

#{ choices for v1} < Cjs - C;_%.

Proof. By Theorem 2.15 and Lemma 2.16. O
Proof of Theorem 2 (a).
By Lemmas 2.17 and 2.18 :

#{choices for u} < #{choices for u;} - {{choices for us} < C4-Cs - C;_%.

Since w is fixed and w = uv, clearly u uniquely determines v. Consequently, the number of

ways we can write w = uv with |u| = ¢, [v| = s, |lw| =t — s+, is bounded by C4-Cs 'C’;_%.
Using the estimates for #5,, given by Theorem 2.15, we obtain :

fi{choices for u} - #Ss—s4; < CyC4Cs )

~(s-)
cy 8.
#S: - 85, - ¢ 3

(2.2.0)

This inequality holds for all w satisfying |w| =t—s+j. Put C¢ = 254% >0, C3 =¢ > 1,
1
and for each word w of length ¢ — s + 7, consider nst+w € ¢Y(T). By the foregoing, the

47 ]

weight attached to ﬁw in the product oy * o, is bounded by Csg~(*~%), for each
ot

w € Si_s4j. Summing over all words w € S;_,4;, and all possible values of j, namely

0 < j < 2s, the desired inequality follows :
2s
1.
oy x 0, < Cg Z qA(s‘EJ)Ut—s+j
=0

This concludes the proof of Theorem 2(a). O
Proof of Theorem 2(b).
To prove inequality (b), let n > m, and write

(2.21) (nil zak) (m%l ;a) _

k=0
Ok Zak +2 Z 01 % 05
(n+1)(m+1) (k=m+1 ) (k:o ) 0<s<t<m

(1) Consider the first summand in the r.h.s of (2.2.1). Fix [ with 0 <! < m and consider
the expressions:
Om+1*01, Omy2 %0, ,0n X 0]
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For each ¢ with 1 < i < n — m, the set of lengths defined by
{M | some word of length M has a non zero coefficient in oy, 4; * 07}

is a subset of the interval [m+i—1,m+i+1]. Fix alength L,m—1 < L < n+1. Suppose L
appears in the subset for some ¢, in other words, some word w of length L has a non-zero
coefficient in 0,,4; * 0;. Then the weight of the word w can be estimated according to
the position of L in the interval [m + ¢ — {,m + i + [], as follows. The inequality of part
(a) shows that if the distance between the point L and the starting point of the interval
m+1i—1is j, then the weight of ﬂs%w in G4 * 07 is bounded by C’Gq‘(l‘%j). When we
vary i from 1 to n —m, 7 moves from 0 to 2[, and each j occurs at most once. To see this,
note that j uniquely determines ¢ since m,! and L are fixed. Thus the weight of ust in

S O * 0 is bounded by Cs Z g (-39 < Cq Yoo q"f —;T Now we vary

l from 0 to m, and find that for any given L and a word w of length L, the coefficient of
B—w in (3 g ok)(Creo ox) is bounded by Mﬁ Therefore, summing over all words

w of a given length L, and all possible lengths 0 < L < 2n, we conclude :

n m 2n
(> o o < SED S,
k=m k=0 1-¢72 =%

(ii) Consider the second summand in the r.h.s. of (2.2.1). Fix a length L,0 < L < 2m.
Then a word w of length L has a non-zero coefficient in 0; * 05 only if t — s + j = L for
some j with 0 < j < 2s. Fixing j, which is the position of L in the intex.'val [t—s,t+ 3],
we consider the pairs ¢ > s such that ¢ — s+ j = L. Such a pair satisfies Z < s and s < m.
As s ranges on this interval the sum of the weights of ﬂ; w in Zo<s<t<m t—stj=L Ot * Os

is bounded by Cg ov ;4 —(s=34) < —51— according to the inequality of part (a).

get the total weight we have to sum on all the possibilities for j but since 0 < j < 2m the
weight of S w in ZO<s<t<m ot * 05 is bounded by C‘l‘(—21m+1—) This bound holds for all

possible lengths L. Putting (i) and (ii) together, we see that (2.2.1) can be estimated by

C 1 1 2m n 8C
6 6

2(2m +1 E ort+(m+1 E o Lon + tom)-
1—gin+1lm+1 ( )kok ( )kok %(2 2m)

Defining C = %qu_— we obtain inequality (b), and this completes the proof of Theorem
_q 2
2. O

§3 MAXIMAL INEQUALITIES AND POINTWISE CONVERGENCE

3.1 Exponentially mixing actions : Proof of Theorem 3.
Let T, be any sequence of operators on L2(X). Define f*(z) = SUp,>o [Tnf(z)|. The
following lemma is of course standard (e.g. [P, N1]) :
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Lemma 3.1. Let V be a closed subspace of L*(X), and suppose that for a dense set of
functions f € V, Tof(x) converges a.e., and that for all f € V, ||f*|l; < Bl||fll,- Then
T,.f(z) converges a.e. for all f € V.

Since Theorem 1 establishes the maximal inequality for all f € L?(X), to complete the
proof of Theorem 3, we need only show that in an exponentially mixing action there exists
a dense set of functions in V = L3(X) for which m(u,)f(z) converges almost everywhere.
This fact is an immediate consequence of the following

Lemma 3.2. If f € L3(X) satisfies (for some Cs,c > 0) |[(m(w)f, f)| < Cyexp(—clw|)
for every w € T, then

(1) There exist Bs,b > 0 satisfying ||m(0s)f|| < By exp(—bn), for alln € N.
(2) w(on)f(z) = 0 for almost all x € X.
(3) 7(un)f(z) — 0 for almost all z € X.

Proof. Given any function U(u) on T, by definition of convolution in the group :
on*x0n(U) = L‘LS (TR l; lzl_:n U(uv) .
By Theorem 2 (a), we have, for a non-negative function U :
2n L.
Tn %0 (U) <CY g~ "~ 30;(U).
J=0
Now take U(u) = Cy exp(—c|u|), and compute, using oy, = o, :

lonflly = (m(on * on) f, ) < (ﬁs g 2 2 @), f)l

|ul=n |v]=n

—<3Cr Z Z exp(—cluv|) = o, * 0, (V)

|ul=n |v|]=n

_(ﬁS)

2n 2n
<C z g~ " 3)g;(U) = CC; Z g~ =29 exp(—cj)

=0 =0

2n lqu
=CCpq™" Z exp(——
Jj=0

—¢)j < By exp(—bn)

Therefore, Y oo o [lon f||2 < 00, and consequently > o o |onf [? is in L1(X). It follows that
onf(z) = 0 for almost all z € X, and the same holds of course also for u,f(z). O

Combining Lemma 3.1, Theorem 1 and Lemma 3.2 completes the proof of Theorem
3. O
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3.3 Uniform lattices : Proofs of Theorems 4 and 5. The proof of Theorem 4(1) will
be complete once we prove the following :

Lemma 3.3. In any ergodic action of a connected finite-center simple Lie group of real
rank one, the action of a uniform lattice is exponentially mizing. More generally, the
restriction of any unitary representation of G that does not contain G-invariant vectors to
a uniform lattice is exponentially mizing.

We first recall the exponential decay estimates for the matrix coefficients of C*°-vectors
in irreducible unitary representations of connected finite-center simple non-compact Lie
groups. The estimates are based on results of M. Cowling [C] and R. Howe [H], and have
been recently reformulated in a convenient form by A. Katok and R. Spatzier [Ka-Sp], and
D. Kleinbock and G. A. Margulis [K-M]. We formulate here a special case of Corollary
2.4.4 in [K-M] which will suffice for our purposes. First recall the following

Definition 3.4. A unitary representation (m,#.) of a locally compact second countable
group G is said to contain the trivial representation weakly, if there exists a sequence of
unit vectors f; € Hx, such that the matrix coefficients ¢;(g) = (n(g)v;,v;) converge to
the constant function ¢(g) = 1, uniformly on compact sets in G.

Now for G as above, fix a left G-invariant Riemannian metric d on G, which is also right
K-invariant, where K is a maximal compact subgroup.

Theorem 3.5 : Exponential decay of matrix coefficients [K-M, Cor. 2.4.4]. Let G
be a connected finite center simple non compact Lie group, and let p be a unitary repre-
sentation of G, which does not contain the trivial representation weakly. Then there exist
a positive constant oy, satisfying :

[(m(9)f, h)| < C(f, k) exp(—a,d(g, €))

for any two C*-vectors f,h € H,, and any g € G.

Proof of Lemma 3.3. Given an arbitrary unitary representation n of G that does not
contain the trivial representation, it is possible to find an increasing sequence of closed
G-invariant subspaces H,, C H, with the following properties :

(1) The closure of (J,,5q Hn equals .
(2) The representation p,, of G in H,, does not contain the trivial representation weakly.

To construct H,,, decompose 7 to a direct integral of irreducible representations. To
each neighbourhood U of the trivial representation (in the Fell topology on the unitary dual
of G) there corresponds a self adjoint projection £y acting on H,, and commuting with the
operators w(g), g € G. Define ,, as the kernel of the projection £y corresponding to a set
U,., where the sequence U, constitutes a neighbourhood basis of the trivial representation.
The intersection of the decreasing sequence U, contains only the trivial representation,
and hence property (1) of #,, is evident. Property (2) of H, holds by definition of the
Fell topology. Since H,, does not contain the trivial representation weakly, the restriction
my, of ™ to H, satisfies the conclusion of Theorem 3.5, with exponential decay rate oy,
depending on n, in general.
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Now note that in any unitary representation of G, C*°-vectors are dense, since for every
vector v € M, the vector [, f(g)n(g)vdg is a C*®-vector if f € C°(G). Hence each
H,, and therefore H, admits a dense set of vectors with exponentially decaying matrix
coefficients.

Consequently, it suffices to show that the restriction of a unitary representation p that
does not contain the trivial representation weakly to a uniform lattice is exponentially
mixing. Recall that for a uniform lattice, the distance on I inherited from the Riemannian
distance on G and the word length metric on I' are quasi-isometric, as noted in example
(2) following Def. 2.13. Indeed this fact follows since I' acts on G by left translations,
isometrically with respect to the Riemannian distance, and with a compact fundamental
domain. We therefore have the estimate A~!|w| < d(w,e) < Alw|, where |w| is the word
length of w € I with respect to a given symmetric set of generators S, and d(w,e) is the
distance introduced above on G. Hence, for a unitary representation p of G that does not
contain the trivial representation weakly :

[(m(7)f, h)| < C(f, h) exp(—a, A7 |7])

and the proof of Lemma 3.3 and Theorem 4(1) is complete. O

Theorem 4(2) is proved similarly, using similar decay estimates for the analog of C*°-
vectors in irreducible unitary representations of the group G, ., [OL,F-N], and simple al-
gebraic groups of split rank one over local fields.

Proof of Theorem 5.

Let fi,¢ € N be a sequence of continuous functions dense in C(X) in the uniform norm.
Then there exists a set Y C X of measure one, such that for every y € Y and every f;,
pnfi(y) = [x fdm, as n — oco. For an arbitrary f € C(X), and every y € Y, we have :

unfi(y)—/xfidm’—i—‘/X f,-dm—/dem‘.

For a given € > 0 we choose f; satisfying ||f — f;|| < 5, and then N s.t. for any n > N,
lunfi(y) — [x fidm| < §, and the result follows. [
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