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FUZZY LOGIC IN MEASUREMENTS*

SHIRO ISHIKAWA**

ABSTRACT. Our main interest in this paper is to translate from “natural language” into
“system theoretical language”. This is of course important since a statement in system theory
can be analyzed mathematically or computationally. We assume that, in order to obtain a
good translation, “system theoretical language” should have great power of expression. Thus
we first propose a new frame of system theory, which includes the concepts of “measurement”
as well as “state equation”. And we show that a certain statement in usual conversation, i.e.,
fuzzy modus ponens with the word “very”, can be translated into a statement in the new
frame of system theory. Though our result is merely one example of the translation from
“natural language” into “system theoretical language”, we believe that our method is fairly
general.

key words: Possibility theory, Membership Functions, Fuzzy Numbers, Approximate Reason-
ing, Linguistic Modeling, Measurements.

1. INTRODUCTION AND SYSTEM THEORY

Our main interest in this paper is to translate from “natural language” into “system the-
oretical language”. This is, of course, important for some purpose since a statement in
system theory can be analyzed mathematically or computationally. We assume that, in
order to obtain a good translation, “system theoretical language” should have great power
of expression. Also we believe that only the introduction of a new concept essentially en-
riches “system theoretical language”. Recently, in [3] and [4] we proposed a foundation of
measurements, which was also called “fuzzy measurement theory”, or in short “measure-

ment theory”. This theory is a general measurement theory for both classical and quantum
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systems. That is, as a particular case, it includes Born’s quantum measurement theory.
Also, motivated by quantum mechanics, i.e., “quantum mechanics” = “Born’s measure-
ment axiom” + “Heisenberg’s keinetic equation”, in [4] we proposed the viewpoint of
“mechanics” such as “mechanics” = “measurement axiom” + “keinetic equation”. Thus

we now propose the following frame of system theory:
“( dynamical ) system theory” = “measurement axiom” + “state equation”,  (1.1)

which is modeled on mechanics. We believe that this proposal (1.1) is natural. In fact
the word “measurement” has been frequently used in system theory, but the theoretical
foundation has never been proposed. Therefore, we consider that the above proposal
(1.1) is merely the firm description of “usual system theory” and not a mathematical
generalization of “usual system theory”. Also, it should be noted that the above (1.1)

determines the meaning of “system theoretical language”.

The purpose of this paper is to show that the system theory (1.1) has great power of
expression. If the system theory (1.1) is linguistically rich, there is a good hope that we can
obtain a proper translation from “natural language” into “system theoretical language”.
This is precisely our motivation in this paper. Also note that the linguistic richness was
already suggested in [3], or particularly, in Remark 3.3 of [3]. As an example of statements

in a natural language, we consider the following “fuzzy modus ponens” :

If a tomato is red then the tomato is ripe.

This tomato is very red.

This tomato is very ripe. (1.2)

which often appears in our usual conversation. In this paper we try to translate this fuzzy
modus ponens (1.2) in our usual conversation into a statement in the system theory (1.1),
or particularly, in fuzzy measurement theory. Here note that we do not need the dynamical
part of (1.1) for the present purpose though we can easily expect that it is essential for

statements concerning time, for example, “fuzzy control”.
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In order to obtain a better translation, in Section 2 we prepare “fuzzy logic” in the
system theory (1.1). And, in Section 3 we study “operation for grade quantities”, which ap-
pears in a rough ( or, coarse ) measurement. Furthermore, we clarify the relation between
“probability” and “grade”. Note that these are consequences of “measurement axiom”.
Under these preparations, the translation of “fuzzy modus ponens (1.2)” is presented as
Statement III in Section 3. Here we must note that Statement III is a mathematical theo-
rem in the system theory (1.1). Thus, under the identification: (1.2) <»Statement III, for
the first time we can say that “fuzzy modus ponens (1.2)” is true. Though our result is
merely one example of the translation from “natural language” into “system theoretical

language”, we believe that our method is fairly general.

Zadeh’s excellent ideas, or similar ideas, will be found here and there in this paper.
Thus we consider that his and our proposals are closely connected, or they aim at the same
target. However in this paper we are not concerned with the relation between the two. If
the reader wants to compare them, we recommend him to try to represent “fuzzy modus
ponens (1.2)” as a statement in Zadeh’s theory. We expect that he uses some methods

such as we prepare in Sections 2 and 3.

Now let us review the elementary mathematical results of C*-algebras. Note that the
theory of operator algebras is a convenient mathematical tool to describe both classical and
quantum mechanics ( cf. [1] ). Thus our theory is described in terms of C'*-algebras as the
proposal (1.1) is modeled on mechanics. Since our concern in this paper is classical systems
and not quantum systems, it may suffice to consider only commutative C*-algebras (cf.
Remark 1.3 later ). However, as our proposal (1.1) is originally motivated by a hint of
quantum mechanics, we begin with general C*-algebras. Note that the purpose of this
section is to introduce “measurement axiom” in classical system theory, which is well

known for quantum systems.

Let A be a C*-algebra ( cf. [1], [3], [4], [6] ). For simplicity, in this paper we assume

that A has the identity I. An element T (€ A) is called positive ( and denoted by T' > 0
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) if there exists an element Ty (€ A) such that T = T3T, where Tj is the adjoint element
of Ty. Let A* be the dual Banach space of A. That is, A* = {p : p is a continuous
linear functional on A} with the norm || - || 4« ( = sup{|p(T)|: ||T]|a < 1} ). Define the
mized state class 8™ (A*) such that 6™(A*) = {p € A*: ||p|lar =1 and p(T*T) > 0 for
all T € A }. A mixed state p, i.e,, p € G™(A*), is called a pure state if it satisfies that
“p = Ap1 + (1 — X)pz for some p1,p2 € E™(A*) and 0 < A < 1 ” implies “p = p; = po”.

Define G7(A*) = {p? € 6™ (A*) : p? is a pure state }, which is called a state space.

As a natural generalization of Davies’ idea in quantum mechanics ( cf. [2]), a C*-
observable ( or in short, observable, fuzzy observable ) O = (X,F,F) in a C*-algebra A

is defined such that it satisfies that
(i) X is a set, and F is the subfield of the power set P(X) (= {=: = C X}),

(i1) for every = € F, F(Z) is a positive element in A such that F(0) =0 and F(X) =1

( where 0 is the 0-element in A ),

(iii) for any countable decomposition {Zy, Zs, ..., Ep, ...} of =, (£,Z2, € F), it holds that

p(F(E)) = limp e p(zif:l F(En)> (Vp € 6™(A*)).

Note that by Hopf extension theorem we can get the probability measure space (X , F,
p(F(-))) where F is the smallest o-field that contains F ( cf. [4] ).

With any system S, a C*-algebra A can be associated in which the fuzzy measurement
theory of that system can be formulated. A state of the system S is represented by a pure
state p? (€ GP(A*)), an observable is represented by a C*-observable O = (X, F, F) in
the C*-algebra A. Also, the measurement of the observable O for the system S with the

state pP is represented by MA(O, S[pp]) in the C*-algebra A.

The axiom presented below is analogous to ( or, a kind of generalizations of ) Born’s

probabilistic interpretation of quantum mechanics.

AXIOM 1. Consider a measurement M4(O = (X,F,F), Sj,») in a C*-algebra A.

Assume that z (€ X) is the measured value obtained by the measurement M 4 (O, S[pp]).

4
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Then, the probability that the x (€ X) belongs to a set Z (€ F) is given by p?(F(Z)).

For simplicity, in this paper we always assume that X is finite, and F = P(X), i.e.,

the powers set of X.

Remark 1.1. We believe that this axiom dominates all measurements, i.e., classical and
quantum measurements. In fact, as consequences of Axiom 1, in [3] and [4] we clarified
several fundamental facts, for example, the justification of “standard syllogism”, ergodic
problem ( i.e., the principle of equal weight in statistical mechanics ), the foundation of
Shannon’s entropy, the errors in Heisenberg’s uncertainty relation and so on. Also, the
relation between Kolmogorov’s probability theory and Axiom 1 was well discussed in [4].
In one word, the probability measure space (X F, pP(F ())), for the first time, acquires a

reality under Axiom 1.

Remark 1.2. A system .S always has its state p? (€ 67(A4*) ). However, in usual cases
we do not know the state pP of the system S. If we know it, we may not need to measure
it. Hence, when we want to emphasize that the state pP is unknown, we often denote

M4 (O, Sp,pr1) by M4(O, S[4). And furthermore, M 4(0, Si,)) is identified with O.

Remark 1.3. When A is a commutative C*-algebra, i.e., T1T> = ToTy (VT1,T> € A), by
Gelfand theorem ( cf. [6], [3] ) we can put A = C(£2), the algebra composed of all complex-
valued continuos functions on a compact space §2. Thus, we have the identification: 2 > w
+— &, € BP(C()*) where 4, is a point measure at w, i.e., §,(f) = flw) (Vw € Q,
Vf € C(9)). Under this identification, the Q is also called a state space. An observable
(X,P(X), F) in a commutative C*-algebra C() is usually denoted by (X,P(X), f(,)),
where fz = F(2) (V& € P(X)). Here, note that fz, = € P(X), is the membership
function on . Also, it clearly holds that fz(w) = > ez fia)(w) (Vw € Q) for all =
(€ P(X)). Note that a bi-continuous map ¢ : & — Q is equivalent to a C*-automorphism
d: C() — C(N) such that (Bf)(w) = f(éw)) (Vf € C(R2),Yw € Q). Thus any state

equation on the state space 2 can be represented in terms of C*-automorphisms as a C*-
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dynamical system. That is, our proposal (1.1) includes “usual dynamical system theory”,

if we put = R™ U {oo}, i.e., the one point compactification of R"

As mentioned in [3] and [4], we introduce the following classification in fuzzy mea-

surement theory:

classical measurement theory ( for classical systems )

fuzzy measurement theory

quantum measurement theory ( for quantum systems )
where a C*-algebra A is commutative or non-commutative. Note that quantum measure-
ment theory is well known as a principle of quantum mechanics. Our proposal (1.1) asserts
that Axiom 1 is most fundamental for classical systems as well as quantum systems. It
is surprising that measurement theory was first discovered in quantum mechanics. The
reason will be mentioned later. In this paper we focus on classical measurements. How-
ever, it should be noted that all arguments in this paper can be easily applied to quantum

systems. Cf. Remark 3.2 mentioned later.

Now we shall study a typical example of classical measurements, which will promote

an understanding of our arguments in the next sections.

Consider a classical system S formulated by a commutative C*-algebra C(Q). A
physical quantity ( or in short, quantity ) is represented by a real-valued ( or more generally,
R™-valued ) continuous function on the state space . Let T :  — R be a quantity on
Q. For example, assume that the value of the T'(w) represents the temperature of a room

S with the state &, (¢ w € @, cf. Remark 1.3 ).

First we consider a precise measurement for the quantity T'. Put Tyi, = mingeq T(w)
and Thax = maxuen IT'(w). Let N be a ( sufficiently large ) natural number. Define the set
Xn by {zn = Q—TEWI\\;A :n=0,1, ...,N}. Consider the fuzzy numbers observable

o, ( = (X5, P(Xy)s $y) ) in C([Twmins Tmax]) such that

((zn}(A) = max {0, min{LF(N),L; (\)}} (VA € [Tmin, Tmax)s n=0,1,...,N), (1.3)

6
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where
NM— (n — l)Tmax — (N —-n+ l)Tmin
L)) = ,
( ) Tmax - Tmin
_ —NA+(n+ 1D)Thnax + (N —n — D)Tmia
Lz(\) = o T(. M min.

Thus, for any set = € P(X, ), the membership function {z on the closed interval [Tin,
Tiax] is determined by >, = ((z,3(})-

Using the fuzzy numbers observable Oy, we define the observable O;I; in C(Q) such
that OL = (X, ,P(Xy), {() o T) where ((z 0 T)(w) = (=(T(w)) (V= € P(X),Vw € Q).
Let wg be any element in 2. Thus we have the measurement MC(Q)(OZ;, Sts.,)) in C(Q),
i.e., the measurement of the observable O;‘C for the room ( or system ) with the state
duy- According to Axiom 1, the probability that the measured value obtained by the
measurement MC(Q)(OZ;, S(s,,)) is equal to z,, is given by duo(C(z,} 0 T) = {{¢,}(T(wo)).
Here note, by (1.3), that {{,.1(T(wo)) = 0 if [£p — T(wo)| 2> (Tmax — Tmin)/N. Therefore,
if we get the measured value z,, (€ X, ) by the measurement MC(Q)(OJCZ\;, S{gwo]), then we

can almost surely expect that
]T((U()) - CEn| < (Tmax - Tmin)/N~

Thus, under the hypothesis that N is sufficiently large, that is, a precise measurement is
taken, we can consider the identification: T « 05. The hypothesis is usually assumed
in physics. Therefore, in most cases we do not need a fuzzy observable but a quantity in
physics. In other words, Axiom 1 may be not needed if we are concerned with a precise
measurement for 7. However, it may be worth while mentioning that this fact is due to
the peculiarity of classical measurements, that is, Axiom 1 is always needed for quantum
measurements. We assume that this is the reason that Axiom 1 was first discovered in

quantum mechanics.

On the other hand, a fuzzy observable is essential for a rough measurement of the

quantity T. As the particular case of the above Oy, i.e., N = 1, consider the fuzzy

7
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numbers observable Oy = ({w,c},P({w,c}), %)) in C([Tumin, Tmax]) such that

1

YN = 7——7—O=Tain) (YA € [Tnin, Tnax])

and ¥} (A) = 1 — 9wy (A). Here ‘w’ and ‘c’ may mean “warm” and “cool” respectively.
Thus, we have the ( rough ) measurement MC(Q)(O’;E, S(6,,1) in C(Q2) where Of = ({w,c},
P({w,c}), ¢y 0 T). By Axiom 1, the probability that we get the measured value z (€
{w,c}) by the measurement MC(Q)(O;E, Sis.,,]) is given by

(T(wo) - Tmin)/(Tmax - Tmin) fz=w

(Tmax — T'(wo0))/(Tmax — Tmin) ifz (14)

I
e

Sunliter o T) = b (Tl = {

Remark 1.4. Note that the above arguments are completely physical. Therefore, the
satement Sp,: “The probability that the measured value ‘w’ is obtained by the measurement
MC(Q)(OZJ, S(s.,]) 15 greater than 0.7.” is a physical one. Now consider the statement
Sn: “This room 1s warm.”, which is of course assumed to be a statement in our usual

conversation. Therefore, the statement S, is a “fuzzy” one. Here note the following fact.

($1) We can see whether the physical statement S, is true or not. On the other hand,
strictly speaking we can not say “yes” or “no” to the question “Is this room warm

or not ?”.

Thus there is an essential difference between “natural language” and “physical language”.
However we may think that these two S, and S, are not so different. If so, the corre-
spondence: S, — S, may be regarded as the translation from “natural language” into
“physical language”. Also, under the identification: S, < S,, we can ascertain whether
this room is warm or not. Though the translation: S, +— 5, may not be good and will be
improved in the following sections, it should be noted that even the translation: S, — S,
can not be presented in the conventional frame of physics, i.e., without Axiom 1. This
seems to show something of the great power of expression. However, we must add that our
original motivation of the proposal “fuzzy measurement theory” is not for a translation

but to derive fundamental scientific facts ( cf. Remark 1.1 ). Since system theory does

8
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not necessarily deal with only physical phenomena, the word “physical language” will be

called “system theoretical language” in the following sections. Cf. Remark 3.1 later.

2. FUZZY LOGIC IN MEASUREMENTS.

The idea mentioned in Remark 1.4 is essential throughout this paper. In this and the
next sections we shall try to formulate and develop the idea in the system theory (1.1),
which is modeled on mechanics. Consider the following measurement M formulated in a

commutative C*-algebra C(Q):

M := Mg (o = (X, P(X), f5): S ) (2.1)
Now consider the statement such as
(§2) the measured value obtained by the measurement M¢(q) (O,S[,;w]) belongs to =.
This (#2) is called a statement in M, and is denoted by Py (=, w).

The measurement M ( ~ O, cf. Remark 1.2 ) clearly determines the following
correspondence:

PX)>5=2 - fzeC(). (2.2)

Here note that f= is a membership function on Q. Thus, if we are allowed to use the term

“fuzzy set operation” in Zadeh’s theory, we can say that the formula (2.2) determines the

rule of “fuzzy set operation” ( cf. [4] ). For example, =1 NZ2 — fo,nz,, S21UZ2 = f=,0u=,,

X\Z = 1— fz and so on. ( In Section 3, we study “fuzzy set operation for grade

quantities”, which is induced by (2.2). )
Since the Py (Z;w) is the notation of the above statement (f), we see, by usual way,
that, for any Z, Z1, 2, € P(X) and any w € Q,
~Pyp(Z5w) = Py (X \ Z5w),
Py (Z1;w) A Pr(E2;w) = Pu(E1 NEg;w),
Pr(E1;0) V Py (Eg5w) = Pu(E1 U Es;w),
Pu(E1;w) = Pr(Sa5w) = Pm((X \ Z1) USg;w).

9
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That is, for any fixed w (€ §2), the operations { i.e., “=”, “A” and so on ) are closed in the

class {Pm(Z;w) : E € P(X)}.

Next define a “truth function” of a statement Pyv(Z;w) in M. There is a very
reason to consider that the “truth (= 1)” or “fault (= 0)” of the statement Pp(Z;w) is
determined by the measurement MC(Q)(O, S[Ju]). That is, when we get the measured
value z (€ X) by the measurement MC(Q)(O’S[JW]), LL[PM(E;w)], the ( real ) truth
function of Py (Z;w), is determined by
1 (r € B)

Though it is quite natural, in this paper we consider another “truth function”. That is,

L. [Pua(5)] = {

we are interested in the ( probabilistic ) truth function of the statement Py (Z;w) in M
such that

£ [Pa(Ei0)] = bulfe) (= F2(w)). (23)
This is, of course, due to Axiom 1. Hence the “truth function” is the same as “probability”.

We believe that this truth function (2.3) is just fit to Aristotle’s spirit. Cf. [5].

Remark 2.1. It should be noted that the statement “Pp(Z1;w1) A Pm(Z2;w2)”, w1 # wa,
cannot be regarded as a statement in M. In order to define the truth function of this kind
of statement, we must prepare the repeated measurement M¢(qz2) (O ® O, Ss,, ®5u2]). (
For the repeated measurement, see [4] or the formula (2.7) mentioned later. ) That is,

we must start from Mc(q2) (O ® 0, S[*@,*]) instead of M¢(q) (0, S[*]) in (2.1).

Now we shall prepare the following proposition, which is of course a statement in the

system theory (1.1).

Proposition 2.2. ( fuzzy modus ponens ). Let M¢(q)(O = (X,P(X), f()),S[4) be a
measurement in C(2). Let Z; and Z, be elements in P(X). Letwo € 2, 0< e <a' <1
and0<a<a' <1.
(i). Assume that

1—e<tf[Pm(E15w0) = Pum(Eq;wo)] (2.4)

10
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and
Then, it holds that
o —e < t.£.[Pm(E2;wo)]- (2.6)
(i1). Assume (2.5) and
1—e < tL[Pu(E1;w) = Pm(E2;w)) (2.4

for all w(€ Q) such that t.f.[Pm(Z1;w)] > . Then, (2.6) holds.

Proof. Since (ii) is the special case of (i), it suffices to show (i). We see that

$.£. [Pt (S5 w0)] = t£.[Pat(Z1 N Egsw0)] = t£.[Pr(E1 \ (B1 \ Z2);wo)]

= t.f.[PM(El;wO)] - (1 - t.f.[Pm(El;WQ) — PM(Ez;wO)])Z a' — €.
This completes the proof.

As a corollary of Proposition 2.2 (ii), we have the following statement in the system
theory (1.1), which may be regarded as the translation of the fuzzy modus ponens (1.2).

However, we do not consider that it is a good translation. Cf. Remark 2.3 later.

Statement I. Consider a finite set of tomatos. Let € be the state space with the discrete
topology, in which each tomato is represented. Thus we can identify the set of tomatos
with the state space 2. And consider a measurement Mcq) (0 = (X, P(X), f(y),S[) in
C(R). Put =, = ‘RD” and 23 = “‘RP” where “RD” and “RP” means ‘red” and ‘ripe”
respectively. For example, put € = 0.05, o = 0.7 and o/ = (a)/* = 0.914---. < The
reason that we put o' = (a)'/* will be mentioned in Statement II. However, this is not

essential. ) Assume that
0.95 (=1 —¢) < t.f.[Pm(RD;w) = Pm(RP;w)]
for all w(€ Q) such that t.£f.[Pm(RD;w)] > 0.7 (= a). And assume that, for some wo

(€ 92),
0.914--- (= ') < t.f.[Pm(RD;wp)].

11
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Then we see that

0.864- - (= a' —€) < t.£.[Pm(RP;wp)].

Remark 2.3. The fuzzy modus ponens (1.2) in Section 1 seems to be a statement
concerning “grade”. On the other hand, the above statement relates to “probability”
since “truth function” is essentially equal to “probability”. Therefore, we assume that
there is a gap between “fuzzy modus ponens (1.2)” and Statement I. In other words, the
translation : (1.2) — Statement I is not good. In the next section, we clarify the relation
between “probability” and “grade”. And the translation will be improved as Statement

III, which is essentially equivalent to Statement I.

Before we proceed to the next section, let us mention the system theoretical formu-
lation of the word “very” in the fuzzy modus ponens (1.2). Let M®" = M¢(qn) (O®” =
(X", P(X™), f(@)"), S[®n*]) be a repeated measurement of M¢(q)(O = (X, P(X), f()),
Spg). Here, the observable O®™ in C(Q7) (= @F_,C(R)) is defined by

fgnxgzx...xgn (w17w27 --wwn) = f51 (wl) : f52(w2) e JER (wn) (27)

for all =¥ € P(X) and wx € Q, k = 1,2,---n. Also, the ®"d,, ( = ®}F_,6u, ) in S[en ]
is the point measure at (wi,ws,...,ws) (€ Q7). For example put n = 4. And put “RD”
=E XX XxXxX,RP” =5, x X x X x X, “VRD” =Z; xE; x Z; X Z; and “VRP”
= E3 X Zp X Z2 X Z3. And furthermore, put w®* = (w,w,w,w) (€ N*). Here we see, by

(2.7), that

6.£.[ Pagos (VRD; w®)] = £4 (w,w,0,0) = (fz, ()"

Z1XE]XE;XE,

= (t.f.[PM(RD;w)])4 = (fg4xxxXXX(w,w,w,w))4 = (t.f.[PM®4(R_D;w®4)D4

( where t.f.[Pum(RD;w)] is defined in Statement I ), and similarly, t.f.[Ppjes(VRP; w®?)] =
(t_f,[PM®4(f—{—15;w®4)])4 = (t.f.[PM(RP;w)])4. Note that “taking a measurement Mg (q4)
(0%, Sig1s,])” is of course the same as “taking measurements Mc(q) (0O, Sis,)) four
times”. Therefore, there is a reason to consider that “VRD” and “VRP” respectively

implies “very red” and “very ripe”.

12
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Here, we have the following statement in the system theory (1.1), which is essentially

equal to Statement I.

Statement II. Assume the above notations. Let M®* = MC(Q4)(O®4,S[®4*]) be the
repeated measurememt of Mc(q) (O, S[y). For example, put € = 0.05, a = 0.7. Assume
that

0.95 (= 1 —€) < t.f.[Pyos(RD;w®) — Ppros(RP;w®?))

for all w®* (= (w,w,w,w) € Q*) such that t.f.[Pyes(RD;w®*)] > 0.7 (= a). And assume

that, for some w$* = (wo,wo,wo,wo) € N4,

0.7 ( =(0.914--- )4) < t.£.[Pyos (VRD; w?)).
Then we see that

0.559 - (= (0.864---)*) < t.f.[Pyres(VRP;wd*)].

3. GRADE AND PROBABILITY

As mentioned in Remark 2.3, in this section we shall clarify the relation between
“probability” and “grade”. This is essential for a better translation of the fuzzy modus

ponens (1.2).

A grade quantity ( or, normalized quantity ) G on a state space § is defined by
a quantity on € such that its range is included in the closed interval [0,1] ( or more
generally, [0,1]™ ). For example, define the 79 : Q@ — R such that 79 = ¢,y o T in
(1.4), ie., T9(w) = (T(w) — Tmin)/(Tmax — Tmin) (Vw € Q). Then the T9 : @ — R is
a grade quantity. We know, of course, of many grade quantities in physics, for example,

“coefficient of restitution”, “| relative humidity ]/100”, “[ refractive index ]”, etc.

In mathematics, we can define a lot of “operations for grade quantities”, for example,
1 — G(w), min{G;(w),G2(w)}, G1(w) - G2(w) and so on. However, it should be noted that

these are usually meaningless in physics. For example, min { T, [ relative humidity ]/100

13



KSTS/RR-97/009
September 24, 1997

} is clearly meaningless in itself. Nevertheless, we shall demonstrate that “operation for

grade quantities” is meaningful in certain measurements.

Let G (= (G1,G2)) : @ — [0,1]? be a grade quantity, i.e., a quantity on a state space
Q such that 0 < Gi(w) <1 (Vw € Q, k =1,2). For example, we may consider that G; =

T9 and G5 = [ relative humidity ]/100.

First we consider a precise measurement for the grade quantity G ( = (G1,Gs)).
Let N be a ( sufficiently large ) natural number. Define the set Xy by {wn =2.n=
0,1, N} Let O, (= (Xy,P(Xy), () ) be the fuzzy numbers observable in C([0, 1])
as defined by (1.3) for Tpin = 0 and Tmax = 1. And, for each k = 1,2, put 0% =
(Xp,P(Xy), ¢y © Gy), which is an observable in C(Q). And furthermore, define the
observable O x 0%+ (= 0F) in C(2) by (X2, P(X2), (¢) 0 G1) x ({0 Ga) ) where

(G2, 0 G1) X (G5 0 Ga)(w) = (2, (G1(w)) (2, (G2(w))  (VE1 x Bz € P(X]),Vw € Q).

By the same arguments in Section 1, we can consider the identification: OS < G ( =
(G1,G2) ) if N is sufficiently large. Thus, if we are concerned with the precise measurement
of G, we do not need Axiom 1. As mentioned in Section 1, this is the reason that Axiom

1 has been overlooked in the conventional description of classical mechanics.

Next we consider a rough measurement for the grade quantity G ( = (Gi, Gz)).
For example, consider a fuzzy numbers observable Oy ( = ({0,1}%,P({0,1}?), ¢(,y) ) in
C([0,1]?) such that

i1yx0,13 (A1, A2) = Ag, ®10,1)x{1}( A1, A2) = Ag,

(V(A1, A2) € [0,1]%). (3.1)

( In this paper, an observable in C(K) is called a fuzzy numbers observable where K is a
compact subset of R™ U {oo}. ) The existence is of course guaranteed, for example, we
can define the Oy such as ¢’ (13, 13(M, A2) = A - A2y #'(1yq0y(A1s A2) = A - (1= Ma),
¢ 0yx 13 (A15 A2) = (1=M1)- Az and ¢ o3 x (03 (A1, A2) = (1=A1)-(1—A2). Also, we can define
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the Od,” such as ¢H{1}X{1}(/\1,/\2) = mil'l{>\1, )\2}, ¢I,{1}X{O}(A1,A2) = /\1— min{/\l,/\z},
¢" (0yx{1}(A1;A2) = Az— min{Ay, Az} and 6" 5y, (03(A1, A2) = 1= max{A;, A2}, We may

call the Oy a Lukasiewicz fuzzy numbers observable ( cf. the formula (3.5) later ).

Using the above observable O4, we have the measurement MC(Q)(Og = ({0,132,
P({0,1}?), ¢() © G), Sj ) in C(R). Let O = (X,P(X), f(,) be as in (2.1). And put
o= Og. Hence, X = {0,1}?, fz(w) = ¢=(G1(w), G2(w)) (V= C {0,1}?, Vw € ). And
furthermore, put Z; = {1} x {0,1} and Z; = {0,1} x {1}. Thus, we see, by (2.3) and
(3.1), that

t£[Pm(Er;w)] = fz,(w) = d{13x{0,1}(G1(w), G2 (w)) = G1(w) = “grade” (3-2)

and similarly, t.f.[Pm(Z2;w)] = fe,(w) = Ga(w) = “grade”. Therefore, in this circum-

stance, we see that “probability ( = truth function )” = “grade”.

Also, recall (2.2). Then, we have the following correspondence:
PX)3E = fz(w)=¢z(Gi(w),G2(w)) € C(Q). (33)
For example, if ¢ = ¢ ( i.e., Lukasiewicz type ), we see that

21 NE; (= {1} x {1}) = min{G1(w), G2(w)}, (3.4)
X \El (E {0} X {0,1}) —1— Gl(w),

(X\Z)US, (= {0,112\ ({1} x {0})) = min{1,1 — Gy (w) + Ga(w)}  (3.5)

and so on. Note that these are operations for grade quantities G; and G5. Thus oper-
ations for grade quantities are meaningful in this circumstance. Using the word “fuzzy
set operation” in Zadeh’s theory, we may say that “fuzzy set operation” can be found in
(3.3) as well as (2.2). That is, grade quantities G; and G2 behave like “sets” in (3.3).
For example, putting Gy = T9, G2 = [ relative humidity ]/100 and ¢ = ¢, we see that
the ( system theoretical ) meaning of “warm and humid” is given by min{ 79, [ relative

humidity ]/100 } as in (3.4). However note that it is meaningless in itself, i.e., without
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the measurement M¢q) (Ochu, S[4 ) Therefore, we may say that “logic” is produced by

“measurement”.

As an immediate consequence of Satement I and (3.2), now we have the following
statement in the system theory (1.1), which is our recommendable translation of the fuzzy

modus ponens (1.2).

Statement III. Let €2 be a state space, in which states of tomatos are represented. Thus
we identify the set of tomatos with the state space Q. Let G (= (G;,Gs)) : @ — [0,1]?
be a grade quantity on §}. Here assume that the value of G;(w) [ resp. Cy(w) | represents
the grade of the “redness” [ resp. “ripeness” ] of a tomato w. Consider the fuzzy numbers
observable Oy = ({0,1}?,P({0,1}?), ¢(,) in C([0,1)?) that satisfies (3.1). And consider
a measurement MC(Q)(O = (X,?(X),f(‘)),s[*]) in C(§) such that O = Og, ie, X =
{0,1}?, f=(w) = ¢=(G1(w), G2(w)) (VE C {0,1}%, Vw € Q). And furthermore, put “RD”

=1 = {1} x {0,1} and “RP” = =, = {0,1} x {1}. Also, for example, put ¢ = 0.05,

a=0.7and o' =0.914--. Assume that
0.95 < t.£.[Pm(RD;w) = Pm(RP;w)]
for all w(€ Q) such that Gy(w)( = “the redness of a tomato w” ) > 0.7. And assume that
0.914- - < Gy(wo) ( = “the redness of a tomato wo”).

Then we see that

0.864 - < Ga(wo) ( = “the ripeness of the tomato wq ”).

Note that this statement, as well as the previous statements I and II, is system
theoretical. That is, the grade quantity G ( =“redness”, or =“ripeness” ) is assumed to
be well defined by a certain quantitative formula. Thus the above result is the translation

from “natural language” into “system theoretical language”, i.e.,

translation

“fuzzy modus ponens (1.2)” — “Statement II1”. (3.6)
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We believe that this translation is fairly good. Also, note that Statement III is a mathe-
matical theorem, or a corollary of Proposition 2.2, in the system theory (1.1). Thus, under

the translation (3.6), for the first time we can say that “fuzzy modus ponens (1.2)” is true.

Return to Remark 1.4. Again define the grade quantity 7' such that T9 = ¢,y 0T
in (1.4). And consider the statement S; : “T'Y(wg) > 0.7” in physics. It is clear that the
S, is equivalent to the statement S, in Remark 1.4. Thus we have the recommendable
translation : “This room is warm.” SI',. Also, under the translation, we can ascertain

whether this room is warm or not.

The reader may be of the opinion that the translation from “natural language” into
“system theoretical language” is somewhat unreasonable and subjective. We agree that
the opinion is completely proper. However, we consider that the “subjectivity” is one of
aspects of system theory. Though there may be other opinions for system theory, our

opinion is presented below.

Remark 3.1. ( Subjective aspect of system theory ). We consider that system theory
is a mathematical approach to an understanding of phenomena. Particularly, our pro-
posal (1.1) is modeled on mechanics. Here, the word “phenomena” means “non-physical
phenomena” as well as “physical phenomena”, for example, economical phenomena, bio-
logical phenomena, complex physical phenomena and so on. Since system theory is not
only physics, in general a system theoretical formulation of a phenomenon is not uniquely
determined. In this sense, we consider that system theory is more or less “subjective”.
The modeling problem, i.e., how to obtain a proper system theoretical formulation of a
phenomenon, is of course one of main fields of system theory. Note that Statement III can
be regarded as a system theoretical formulation of “fuzzy modus ponens (1.2)”. Thus we
consider that the translation from “natural language” into “system theoretical language”
is a kind of modeling problem in a broad sense. It is also obvious that the translation is
not unique in general. For example, the quantitative definition of “redness” in Statement

III is not unique, or some may propose another statement such as (1.2) in the system
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theory (1.1). However, this is not influential to our arguments. Again note that a system
theoretical model is not unique in general. Thus, if a formulation ( or, model ) is not useful
for one’s purpose, he does not need to use it. This is the usual way of system theory. Still,

system theory is a good approach to an understanding of phenomena.

Remark 3.2. ( Quantum system theory ). All arguments in this paper can be easily
applied to quantum systems. In order to see this, it suffices to start from M_A(O, S'[*])
instead of MC(Q)(O, .5'[*]) in (2.1). Here, the A is the non-commutative C*-algebra, in
which a quantum system S is described. Also, a quantum grade quantity G (= (G1, G2))
in A is defined by a pair of positive elements G; and G in A such that 0 < Gy,G2 < I and
G1G, = G2G4. Then, from the commutativity of G; and Gz, we can define the “operation
for quantum grade quantities” such as {0,1}2 D Z — ¢=(G1,G2) € A. Also, the value of
the quantum grade quantity Gy for a state p? is defined by p?(Gy), k = 1, 2. Therefore, by
a similar way, we can easily see that the fuzzy modus ponens (1.2) can be also translated
into a quantum system theoretical statement. This is not surprising since we sometimes

represent a quantum phenomenon by rough statement in a natural language.

4. CONCLUSIONS

Our main interest was to translate from “natural language” into “system theoretical
language”. We assume that the translation is a kind of modeling problem in a broad sense
( ¢f. Remark 3.1 ). In order to obtain a good translation, “system theoretical language”
must be rich. Thus we proposed the new frame (1.1) of system theory, which included the
concepts of “measurement” as well as “state equation”. We consider that the proposal
(1.1) is merely the firm description of “usual system theory” and not a different kind of
system theory. In other words, we believe that the system theory (1.1) is orthodox. And
we translated “fuzzy modus ponens (1.2)” into Statement III in the system theory (1.1).
The translation may be somewhat unreasonable. However, note that Statement III is a

mathematical theorem, or a corollary of Proposition 2.2, in the system theory (1.1). Thus,
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under the identification : (1.2) <»Statement III, for the first time we can say that “fuzzy
modus ponens (1.2)” is true. Though our result is merely one example of the translation
from “natural language” into “system theoretical language”, we believe that our method
is fairly general. Thus we can expect that the system theory (1.1) has great power of

expression.

Lastly again we must add that Axiom 1 was not introduced by a linguistic reason
but a purely scientific reason ( cf. Remark 1.1 ). We hope that the proposal (1.1) will be

developed and examined from various viewpoints.

I am grateful to the anonymous referees who read the first draft of this paper. It
is true that the words “objective” and “subjective” are rather misleading. Thus in this

revised paper I did not use these words without explanation.
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