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Substitution in two symbols and transcendence

Kumiko NISHIOKA, Taka-aki TANAKA, and Zhi-Ying WEN

1 Introduction

Let A = {a1, . . . , an} be a finite nonempty set of symbols and let A∗ and Aω de-

note the sets of all finite words over A and all sequences x0x1 · · ·xk · · · (xk ∈ A),

respectively. Let λ be the empty word. A substitution (over A) is a map

σ : A → A∗ \ {λ}, which has a natural extension to Ω = A∗ ∪ Aω by concate-

nation: σ(x0x1 · · ·) = σ(x0)σ(x1) · · ·. If ai is a prefix of σ(ai) and the length of σ(ai)

is greater than 1, then there is a unique w ∈ Ω having a prefix ai and being a fixed

point of σ, which means that σ(w) = w. Any real algebraic irrational θ can be

uniquely expressed as

θ =
∞∑

k=−m

εk2
−k, (1)

where m is a nonnegative integer depending on θ and εk = 0 or 1. The problem we

are interested in is whether the sequence ε0ε1 · · · ∈ {0, 1}ω is a fixed point of any

substitution over {0, 1} or not.

Generally, for a fixed point w = x0x1 · · · of the given substitution σ, we define

the generating function of w for ai by

fi(z) =
∞∑

k=0

χk(w; ai)z
k, (2)

where χk(w; ai) = 1 if xk = ai, and otherwise χk(w; ai) = 0, so that

n∑

i=1

fi(z) =
∞∑

k=0

zk =
1

1− z
.

It is known that fi(z) (1 ≤ i ≤ n) satisfy a Mahler type functional equa-

tion if σ is of constant length, which means that each σ(ai) (1 ≤ i ≤ n) has

the same length ≥ 2, and it is also known that if σ is of nonconstant length,

i.e., the lengths of σ(ai) (1 ≤ i ≤ n) are not equal, then we can construct
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g1(z), . . . , gn(z) ∈ Q[[z1, . . . , zn]] satisfying a Mahler type functional equation and

gi(z, . . . , z) = fi(z) (1 ≤ i ≤ n). We shall give here a detailed explanation of these

facts, following Loxton [3].

First we consider the case where the substitution σ is of constant length. Suppose

that each σ(ai) (1 ≤ i ≤ n) has the same length d ≥ 2. Since σ(w) = w, we observe

that for any k, the string xdkxdk+1 · · ·xdk+d−1 coincides with σ(aj) if xk = aj. If we

set

ψijl =
{

1 if ai is the (l + 1)-st symbol of σ(aj)
0 otherwise,

we have

χdk+l(w; ai) =
n∑

j=1

ψijlχk(w; aj).

We can now obtain a system of functional equations for the functions fi(z) (1 ≤ i ≤
n), since

∞∑

h=0

χh(w; ai)z
h =

∞∑

k=0

d−1∑

l=0

χdk+l(w; ai)z
dk+l =

n∑

j=1

(
d−1∑

l=0

ψijlz
l

) ( ∞∑

k=0

χk(w; aj)z
dk

)
,

that is

fi(z) =
n∑

j=1

pij(z)fj(z
d) (1 ≤ i ≤ n), (3)

where pij(z) =
∑d−1

l=0 ψijlz
l are polynomials.

Next we consider the case where the substitution σ is not necessarily of constant

length. We adopt the usual vector notations: if µ = (µ1, . . . , µn) ∈ N0
n with N0

the set of nonnegative integers, we write zµ = zµ1
1 · · · zµn

n and |µ| = µ1 + · · · + µn.

Define the functions g1(z), . . . , gn(z) ∈ Q[[z1, . . . , zn]] by

gi(z) =
∑
µ

φiµz
µ (1 ≤ i ≤ n),

where the sum is taken over all n-tuples µ = (µ1, . . . , µn) ∈ N0
n, φiµ = 1 when-

ever x|µ| = ai and for each k there are exactly µk occurrences of ak in the string

x0x1 · · ·x|µ|−1, and φiµ = 0 otherwise. Then gi(z, . . . , z) = fi(z) (1 ≤ i ≤ n).

In what follows, |u|ai
denotes the number of occurrences of the symbol ai in the

word u ∈ A∗. Suppose that the term zµ occurs in the series gj(z). Imagine the fixed

point w = x0x1 · · · being constructed by applying the substitution σ successively

to x0, x1, . . . . When we reach x|µ|, we must have examined the symbol ai exactly

µi times and so we must have written out the word σ(ai) exactly µi times. Let
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tik = |σ(ai)|ak
. Then the part of the sequence constructed by the time the substi-

tution σ reaches x|µ| contains the symbol ak exactly
∑n

i=1 µitik times and altogether
∑n

i=1

∑n
k=1 µitik symbols have been written down. The next symbol to be written

will be the first symbol, say al, of σ(aj), so that gl(z) must contain the term zν with

νk =
∑n

i=1 µitik. If am, say, is the second symbol of σ(aj), then gm(z) contains the

term zλ with λk = νk (k 6= l), λl = νl +1, and so on. We introduce the n×n matrix

T = (tik). If z = (z1, . . . , zn) is a point of Cn with C the set of complex numbers,

we define a transformation T : Cn → Cn by

Tz =

(
n∏

k=1

zk
t1k , . . . ,

n∏

k=1

zk
tnk

)
. (4)

Noting that

(Tz)µ = zµT ,

where the exponent µT on the right-hand side is the usual product of the row vector

µ and the matrix T , and so zν = (Tz)µ, we can expect that each gi(z) will be

expressible by means of gj(Tz) (1 ≤ j ≤ n). This works as in the preceding case.

Set ψijκ = 1 if ai is the (|κ| + 1)-st symbol of σ(aj) and is preceded by exactly κk

occurrences of the symbol ak for each k, and set ψijκ = 0 otherwise. Let the length

of each σ(aj) (1 ≤ j ≤ n) be not greater than s. Then

∑
ν

φiνz
ν =

∑
µ

n∑

j=1

∑

|κ|<s

ψijκφjµz
µT+κ

=
n∑

j=1

∑
µ

(
∑

|κ|<s

ψijκz
κ)φjµz

µT

=
n∑

j=1

(
∑

|κ|<s

ψijκz
κ)(

∑
µ

φjµz
µT ),

that is

gi(z) =
n∑

j=1

pij(z)gj(Tz) (1 ≤ i ≤ n), (5)

where pij(z) are certain polynomials whose coefficients are 0 and 1. The functional

equations such as (3) and (5) are called Mahler type functional equations.

In this paper we study substitutions in two symbols in connection with the

dyadic expansion of real algebraic irrationals. Hence, in what follows, we consider

the case of n = 2 and write a1 = a and a2 = b for abbreviation, so that in this

case A = {a, b}. The generating functions defined by (2) are denoted by f1(z) =
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fa(z), f2(z) = fb(z). Similarly we denote g1(z) = ga(z), g2(z) = gb(z), which

satisfy ga(z, z) = fa(z), gb(z, z) = fb(z), and
(
ga(z)
gb(z)

)
= M(z)

(
ga(Tz)
gb(Tz)

)
,

where

M(z) =
(
p(z) q(z)
r(z) s(z)

)
, p(z), q(z), r(z), s(z) ∈ Z[z1, z2].

Further

T =
(
taa tab

tba tbb

)
, (6)

where tαβ = |σ(α)|β (α, β ∈ A), and the characteristic polynomial of the matrix T

is defined by

Φ(X) = X2 − (taa + tbb)X + (taatbb − tabtba).

If we proved that the value fa(2
−1) or fb(2

−1) of the generating function of a

nonperiodic fixed point w of a substitution σ in two symbols is transcendental, we

could conclude that the sequence ε0ε1 · · · appearing in the dyadic expansion (1) of

any real algebraic irrational is not a fixed point of any substitution over {0, 1}. This

has not been proved so far. In the present paper, we prove it in the case of constant

length (see Theorem 2 and Corollary below) and also in the case of nonconstant

length, however, with some exceptional cases.

Theorem 1. Let w be any fixed point of a substitution σ in two symbols and

let fa(z) and fb(z) be the generating functions of w for a and for b, respectively. If

tabtbaΦ(1)Φ(0)Φ(−1) 6= 0, then the numbers fa(l
−1) and fb(l

−1) are transcendental

for any integer l ≥ 2.

Example (cf. Wen and Wen [8]). We consider the substitution (σ(a), σ(b)) =

(ab, a), which is called Fibonacci substitution and has a fixed point

w = abaababaabaababaababa · · · .
Let fa(z) and fb(z) be the generating functions of w for a and for b, respectively.

Then the numbers fa(l
−1) and fb(l

−1) are transcendental for any integer l ≥ 2.

Theorem 2. Let w be any nonperiodic fixed point of a substitution σ in two

symbols which is of constant length and let fa(z) and fb(z) be the generating func-

tions of w for a and for b, respectively. Then the numbers fa(l
−1) and fb(l

−1) are

transcendental for any integer l ≥ 2.
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Corollary. The dyadic expansion of any real algebraic irrational is not a fixed

point of any substitution over {0, 1} which is of constant length.

Therefore the problem which remains unsolved is to remove the condition

tabtbaΦ(1)Φ(0)Φ(−1) 6= 0 in Theorem 1, in the case of substitutions in two sym-

bols of nonconstant length.

This paper was written during the third author’s stay at Keio University. He is

grateful to Professor Yuji Ito for his hospitality.

2 Lemmas

Let T = (tij) be an n× n matrix with nonnegative integer entries. Then the maxi-

mum ρ of the absolute values of the eigenvalues of T is itself an eigenvalue (cf. Gant-

macher [2]). We suppose that the matrix T and an algebraic point α = (α1, . . . , αn),

where αi are nonzero algebraic numbers, have the following four properties:

(I) T is non-singular and none of its eigenvalues is a root of unity, so that in

particular ρ > 1.

(II) Every entry of the matrix T k is O(ρk) as k tends to infinity.

(III) If we put T kα = (α
(k)
1 , . . . , α(k)

n ), then

log |α(k)
i | ≤ −cρk (1 ≤ i ≤ n)

for all sufficiently large k, where c is a positive constant.

(IV) For any nonzero power series f(z) in n variables with complex coefficients

which converges in some neighborhood of the origin, there are infinitely many

positive integers k such that f(T kα) 6= 0.

Let K be an algebraic number field and IK the integer ring of K. We denote by

K[[z1, . . . , zn]] the ring of formal power series in variables z1, . . . , zn with coefficients

in K. Suppose that f(z) ∈ K[[z1, . . . , zn]] converges in an n-polydisc U around the

origin and satisfies the functional equation

f(Tz) =

m∑

i=0

ai(z)f(z)i

m∑

i=0

bi(z)f(z)i

, (7)
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where 1 ≤ m < ρ and ai(z), bi(z) are polynomials in z1, . . . , zn with coefficients in

IK . We denote by ∆(z) the resultant of polynomials
∑m

i=0 ai(z)ui and
∑m

i=0 bi(z)ui

in u. If one of them is a constant c(z) in u, we set ∆(z) = c(z). Then Mahler

proved the following:

Lemma 1 (Mahler [4], cf. Nishioka [6]). Assume that T and α have the properties

(I)–(IV) and f(z) is transcendental over the rational function field K(z1, . . . , zn). If

T kα ∈ U and ∆(T kα) 6= 0 for any k ≥ 0, then f(α) is transcendental.

The following lemma can be applied to the proof of Lemma 3 below.

Lemma 2 (Masser [5]). Let T be an n×n matrix with nonnegative integer entries

for which the property (I) holds. Let α be an n-dimensional vector whose components

α1, . . . , αn are nonzero algebraic numbers such that T kα → (0, . . . , 0) as k tends

to infinity. Then the negation of the property (IV) is equivalent to the following:

There exist integers i1, . . . , in, not all zero, and positive integers a, b such that

(α
(k)
1 )i1 · · · (α(k)

n )in = 1

for all k = a+ lb (l = 0, 1, 2, . . .).

In what follows, let 1 = (1, 1) and x1 = (x, x).

Lemma 3. Suppose that taa + tbb > 0, tabtbaΦ(1)Φ(0)Φ(−1) 6= 0, and taa + tab 6=
tba + tbb. Then the matrix T defined by (6) and l−11, where l is an integer greater

than 1, have the properties (I)–(IV).

Remark. If a substitution σ in two symbols has a fixed point, then taa+tbb > 0.

Proof of Lemma 3. We denote

T =
(
taa tab

tba tbb

)
=:

(
p q
r s

)

for abbreviation. The eigenvalues of T are

Λ = (p+ s+
√
D)/2, λ = (p+ s−

√
D)/2,

where D = (p−s)2+4qr > 0. Hence the property (II) is satisfied, since p+s > 0 and

so Λ > |λ|, and the property (I) is also satisfied, since the characteristic polynomial

of the matrix T is Φ(X) and so Λ, λ 6= 0,±1.
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Letting

T k
(

1
1

)
=

(
xk

yk

)
(k ≥ 0), (8)

we see that

T kl−11 = (l−xk , l−yk)

by (4) and that xk, yk > 0 for any k ≥ 0. We can write

xk = ξ1Λ
k + ξ2λ

k, yk = η1Λ
k + η2λ

k, (9)

where ξ1, ξ2, η1, η2 ∈ Q(
√
D), and ξ1, η1 ≥ 0 since Λ > |λ|. We assert that ξ1, η1 > 0,

which implies that the property (III) is satisfied. Since

(
xk+1

yk+1

)
= T

(
xk

yk

)
=

(
pxk + qyk

rxk + syk

)

with (9), we have

ξ1ΛΛk + ξ2λλ
k = (pξ1 + qη1)Λ

k + (pξ2 + qη2)λ
k,

η1ΛΛk + η2λλ
k = (rξ1 + sη1)Λ

k + (rξ2 + sη2)λ
k

for any k ≥ 0. Hence, by the assumption that q, r > 0, we see that ξ1 = (pξ1 +

qη1)/Λ > 0 if η1 > 0, and that η1 = (rξ1 + sη1)/Λ > 0 if ξ1 > 0. Therefore, noting

that ξ1 and η1 are not both zero, we can conclude that ξ1, η1 > 0.

Finally, using Lemma 2, we prove that the property (IV) is satisfied. Assume

that there exist integers t, u, not both zero, and positive integers m,n such that

(l−xk)t(l−yk)u = l−(txk+uyk) = 1

for all k ∈ A := { m + ln | l ∈ N0 }. Then wk := txk + uyk = 0 (k ∈ A). Since we

can write wk = ζ1Λ
k + ζ2λ

k, where ζ1, ζ2 ∈ Q(
√
D),

ζ1 = −ζ2(λ/Λ)k (k ∈ A).

Then the right-hand side converges to 0 as k ∈ A tends to infinity, but the left-hand

side is a constant. Therefore ζ1 = 0 and so ζ2 = 0. Hence wk = 0 for all k ≥ 0. By

the equations w0 = t+u = 0 and w1 = t(p+q)+u(r+s) = 0, we have p+q = r+s,

which contradicts the assumption in the lemma. Therefore the property (IV) is

satisfied, and the proof of the lemma is completed.
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Lemma 4. Let w be any fixed point of a substitution σ in two symbols. If

tabtbaΦ(1)Φ(0)Φ(−1) 6= 0, then w is nonperiodic.

Proof. We may assume that a is a prefix of w without loss of generality. Suppose

that w is periodic. Let Λ, λ (|Λ| ≥ |λ|) be the eigenvalues of T . By the same reason as

in the proof of Lemma 3, we see that Λ > |λ|. Define the frequency of α ∈ A = {a, b}
occurring in w = x0x1 · · ·xn · · · by

dα = lim
n→∞(|x0x1 · · ·xn|α/n),

so that da + db = 1. Then

(da, db)T = Λ(da, db), (10)

since tabtba 6= 0 and Λ > |λ| (cf. Queffélec [7]). By (10) and taa + tbb = Λ + λ, we

have

T
(
db

−da

)
= λ

(
db

−da

)
. (11)

We can verify by induction that

T n =
( |σn(a)|a |σn(a)|b
|σn(b)|a |σn(b)|b

)
(n ≥ 0), (12)

where σn(α) (α ∈ A) denotes the n-fold iteration of σ. Then by (11) and (12),

λn
(
db

−da

)
= T n

(
db

−da

)
=

( |σn(a)|a |σn(a)|b
|σn(b)|a |σn(b)|b

) (
db

−da

)

and so

λndb = |σn(a)|adb − |σn(a)|bda (n ≥ 0), (13)

where db 6= 0 by (10) and tab 6= 0. Since w is periodic, we can write w = luu · · · with

l, u ∈ A∗; thereby

|u|adb − |u|bda = 0. (14)

Noting that σn(a) is a prefix of w for any n ≥ 0, we can write

σn(a) = l u · · ·u︸ ︷︷ ︸
k(n)

rn (n ≥ 0),

where k(n) is an integer depending on n and rn is a word over A whose length is

less than that of u. Therefore

|σn(a)|α = |l|α + k(n)|u|α + |rn|α (n ≥ 0) (15)

8
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for α ∈ A. By (13), (14), and (15), we have

λndb = (|l|a + |rn|a)db − (|l|b + |rn|b)da (n ≥ 0),

where the right-hand side is bounded since the length of rn is less than that of u.

Hence |λ| ≤ 1. By (11) and (14), λ is a rational number. Since λ is an algebraic

integer, it is a rational integer. Hence λ is 1, 0, or −1, and the proof of the lemma

is completed.

3 Proof of Theorems

Proof of Theorem 1. First we consider the case where the substitution σ is of

nonconstant length, i.e., taa + tab 6= tba + tbb. As mentioned in Section 1, we can

construct ga(z), gb(z) ∈ Q[[z]] = Q[[z1, z2]] satisfying ga(z, z) = fa(z), gb(z, z) =

fb(z), and (
ga(z)
gb(z)

)
= M(z)

(
ga(Tz)
gb(Tz)

)
, (16)

where

M(z) =
(
p(z) q(z)
r(z) s(z)

)
, p(z), q(z), r(z), s(z) ∈ Z[z1, z2].

Letting h(z) = ga(z)/gb(z), we get

h(z) =
p(z)h(Tz) + q(z)

r(z)h(Tz) + s(z)

by (16), so that

h(Tz) =
−s(z)h(z) + q(z)

r(z)h(z)− p(z)
,

which is a functional equation of the form (7).

We shall apply Lemma 1. The properties (I)–(IV) are satisfied by Lemma 3.

We have to check the remaining conditions in Lemma 1. We firstly verify that

the function h(z) is transcendental over the field C(z1, z2). For this, we show that

gb(z, z) = fb(z) is transcendental over the field C(z). Noting that the coefficients

of the power series fb(z) are 0 and 1, we see by the theorem of Carlson [1] that

if fb(z) is algebraic over C(z), then fb(z) ∈ C(z); thereby the sequence of its

coefficients is a linear recurrence, so that it is periodic, which contradicts Lemma 4.

Therefore gb(z, z) is transcendental over C(z). Since ga(z, z) + gb(z, z) = 1/(1 −
z) and so h(z, z) + 1 = 1/((1 − z)gb(z, z)), h(z, z) is transcendental over C(z).
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Hence h(z) is transcendental over C(z1, z2). Secondly we verify that h(z) converges

at all the T kl−11 (k ≥ 0). We have T kl−11 = (l−xk , l−yk), where xk and yk are

defined by (8). Since xk, yk > 0, ga(z) and gb(z) converge at T kl−11 for any k ≥ 0.

Hence h(z) converges at all the T kl−11 (k ≥ 0), since gb(T
kl−11) > 0. Finally we

assert that the resultant ∆(z) of polynomials −s(z)u + q(z) and r(z)u − p(z) in

u satisfies ∆(T kl−11) 6= 0 for any k ≥ 0. Noting that ∆(z) divides detM(z) =

p(z)s(z)− q(z)r(z) and letting M (n)(z) = M(z)M(Tz) · · ·M(T n−1z), we see that

if
∏n−1

k=0 ∆(T kl−11) = 0, then detM (n)(l−11) =
∏n−1

k=0 detM(T kl−11) = 0. Hence it

suffices to prove that detM (n)(l−11) 6= 0 for any n ≥ 1. To the contrary we assume

that detM (n)(l−11) = 0 for some n. Since the entries of M (n)(z) are elements of

Z[z1, z2], those of M (n)(l−11) are rational numbers. Hence there exist integers t and

u, not both zero, such that (t, u)M (n)(l−11) = (0, 0). Noting that

(
ga(z)
gb(z)

)
= M (n)(z)

(
ga(T

nz)
gb(T

nz)

)
,

we have tga(l
−11) + ugb(l

−11) = 0, so that t h(l−11) + u = 0. Hence t 6= 0 and

so h(l−11) = −u/t. Since h(z, z) + 1 = 1/((1 − z)gb(z, z)), gb(l
−11) is a rational

number. Therefore the l-adic decimal expansion of gb(l
−11), which is given by

gb(l
−11) = fb(l

−1) =
∑

k≥0

χk(w; b)l−k,

is periodic, which contradicts Lemma 4, and the assertion is proved. Therefore it

follows from Lemma 1 that h(l−11) is transcendental. Hence fb(l
−1) = gb(l

−11) =

l/((l − 1)(h(l−11) + 1)) and fa(l
−1) = l/(l − 1)− fb(l

−1) are transcendental.

Next we consider the case where the substitution σ is of constant length, i.e.,

taa + tab = tba + tbb = d ≥ 2. As mentioned in Section 1, fa(z), fb(z) satisfy

(
fa(z)
fb(z)

)
= M(z)

(
fa(z

d)
fb(z

d)

)
,

where

M(z) =
(
p(z) q(z)
r(z) s(z)

)
, p(z), q(z), r(z), s(z) ∈ Z[z].

In this case, a matrix T = (d) and a point l−1 obviously have the properties (I)–(IV)

and the rest of the proof is similar to that of the preceding case.

We omit the proof of Theorem 2, since it is the same as the latter case in the

proof of Theorem 1.
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Remark. The referee kindly informed us that S. Ferenczi and Ch. Mauduit

(Transcendence of numbers with a low complexity expansion, to appear in J. Number

Theory) and J.-P. Allouche and L. Q. Zamboni (Algebraic irrational binary numbers

cannot be fixed points of non-trivial constant length or primitive substitutions, to

appear) proved our Theorem 1 and 2 by a completely different method.
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