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linear recurrences

Taka-aki Tanaka

1 Introduction and results.

One of the techniques used to prove the algebraic independence of numbers is

Mahler’s method, which deals with the values of so-called Mahler functions sat-

isfying a certain type of functional equation. In order to apply the method, one

must confirm the algebraic independence of the Mahler functions themselves. This

can be reduced, in many cases, to their linear independence modulo the rational

function field, that is, the problem of determining whether a nonzero linear com-

bination of them is a rational function or not. In the case of one variable, this

can be treated by arguments involving poles of rational functions. However, in the

case of several variables, this method is not available. In this paper we shall over-

come this difficulty by considering a generic point of an irreducible algebraic variety.

Theorems 1 and 2 in this paper assert that certain types of functional equations in

several variables have no nontrivial rational function solutions. As applications, we

shall prove the algebraic independence of various kinds of reciprocal sums of linear

recurrences in Theorems 3 and 4, and that of the values at algebraic numbers of

power series, Lambert series, and infinite products generated by linear recurrences

in Theorem 5.

Let Ω = (ωij) be an n × n matrix with nonnegative integer entries. If

z = (z1, . . . , zn) is a point of Cn with C the set of complex numbers, we define

a transformation Ω : Cn → Cn by

Ωz = (
n∏

j=1

zj
ω1j , . . . ,

n∏

j=1

zj
ωnj). (1)

Let {ak}k≥0 be a linear recurrence of nonnegative integers satisfying

ak+n = c1ak+n−1 + · · ·+ cnak (k = 0, 1, 2, . . .), (2)
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where a0, . . . , an−1 are not all zero and c1, . . . , cn are nonnegative integers with cn 6=
0. We define a polynomial associated with (2) by

Φ(X) = Xn − c1X
n−1 − · · · − cn. (3)

In this paper, we always assume that Φ(±1) 6= 0 and the ratio of any pair of distinct

roots of Φ(X) is not a root of unity and that {ak}k≥0 is not a geometric progression

unless otherwise mentioned. We define a monomial

P (z) = z1
an−1 · · · zn

a0 , (4)

which is denoted similarly to (1) by

P (z) = (an−1, . . . , a0)z. (5)

Let

Ω =




c1 1 0 . . . 0

c2 0 1
. . .

...
...

...
. . . . . . 0

...
...

. . . 1

cn 0 . . . . . . 0




. (6)

It follows from (1), (2), and (5) that

P (Ωkz) = z1
ak+n−1 · · · zn

ak (k ≥ 0).

In what follows, C and C denote a field of characteristic 0 and its algebraic closure,

respectively. Let F (z1, . . . , zn) and F [[z1, . . . , zn]] denote the field of rational func-

tions and the ring of formal power series in variables z1, . . . , zn with coefficients in

a field F , respectively, and F× the multiplicative group of nonzero elements of F .

The following are the main theorems of the present paper.

Theorem 1. Suppose that G(z) ∈ C[[z1, . . . , zn]] satisfies the functional equation

of the form

G(z) = αG(Ωpz) +
p+q−1∑

k=q

Qk(P (Ωkz)), (7)

where α 6= 0 is an element of C, Ω is defined by (6), p > 0, q ≥ 0 are integers, and

Qk(X) ∈ C(X) (q ≤ k ≤ p + q − 1) are defined at X = 0. If G(z) ∈ C(z1, . . . , zn),

then G(z) ∈ C and Qk(X) ∈ C (q ≤ k ≤ p + q − 1).
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Theorem 2. Suppose that G(z) is an element of the quotient field of

C[[z1, . . . , zn]] satisfying the functional equation of the form

G(z) =




p+q−1∏

k=q

Qk(P (Ωkz))


 G(Ωpz), (8)

where Ω, p, q, and Qk(X) are as in Theorem 1. Assume that Qk(0) 6= 0. If

G(z) ∈ C(z1, . . . , zn), then G(z) ∈ C and Qk(X) ∈ C
×

(q ≤ k ≤ p + q − 1).

First we shall state our results on algebraic independence of reciprocal sums of

linear recurrences, Theorems 3 and 4, obtained as applications of Theorem 1. We

prepare some notations.

Let {Rk}k≥0 be a linear recurrence expressed as

Rk = b1ρ
k
1 + · · ·+ brρ

k
r (k ≥ 0), (9)

where b1, . . . , br are nonzero algebraic numbers and ρ1, . . . , ρr are nonzero distinct

algebraic numbers satisfying

|ρ1| > max{1, |ρ2|, . . . , |ρr|}. (10)

Typical examples of such {Rk}k≥0 are the Fibonacci numbers {Fk}k≥0 defined by

F0 = 0, F1 = 1, Fk+2 = Fk+1 + Fk (k ≥ 0)

and the Lucas numbers {Lk}k≥0 defined by

L0 = 2, L1 = 1, Lk+2 = Lk+1 + Lk (k ≥ 0),

since

Fk =
1√
5




(
1 +

√
5

2

)k

−
(

1−√5

2

)k

 (k ≥ 0)

and

Lk =

(
1 +

√
5

2

)k

+

(
1−√5

2

)k

(k ≥ 0).

We shall prove the algebraic independence of reciprocal sums of linear recurrences

such as ∑

k≥0

′ bk

(Rak+h)m
, (11)
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where {bk}k≥0 is a linear recurrence of algebraic numbers not identically zero,

{ak}k≥0 is as above, and m ≥ 1, h are integers. Here and in what follows, the

sum
∑′

k≥0 is taken over those k which satisfy ak + h ≥ 0 and Rak+h 6= 0. For

example, the algebraic independence of the numbers

∑

k≥0

′ 1

(FFk+h)m
(h ∈ Z, m ∈ N )

can be deduced from Theorem 4 below. Here Z and N denote the sets of rational

and positive integers, respectively.

It is interesting to compare our results to those obtained by various authors in

the case where {ak}k≥0 is a geometric progression. Lucas [7] showed that

∑

k≥0

1

F2k

=
7−√5

2
.

Let {pk}k≥0 be a periodic sequence of algebraic numbers not identically zero. Bund-

schuh and Pethö [1] proved by Mahler’s method that

∑

k≥0

pk

F2k

is transcendental if {pk}k≥0 is not a constant sequence and that

∑

k≥0

pk

L2k

is transcendental for any {pk}k≥0. Let a ≥ 1 and d be integers. Recently, Nishioka,

Tanaka, and Toshimitsu [12] proved that if {pk}k≥0 is not a constant sequence, the

numbers ∑

k≥0

′ pk

(Fadk+h)m
(d ≥ 2, h ∈ Z, m ∈ N ) (12)

are algebraically independent, and if {pk}k≥0 is a constant sequence, the numbers

(12) excepting the algebraic number
∑′

k≥0 pk/Fa2k are algebraically independent;

and also the numbers

∑

k≥0

′ pk

(Ladk+h)m
(d ≥ 2, h ∈ Z, m ∈ N )

are algebraically independent for any {pk}k≥0. These results depend on the fact that

the recurrences {Fk}k≥0 and {Lk}k≥0 are binary, namely these can be expressed as
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(9) with r = 2. In the case of m = 1, the transcendence of each of these numbers

has already been proved by Becker and Töpfer [1]. For a general {Rk}k≥0 not

necessarily binary, only the transcendency result has been obtained also by Becker

and Töpfer [1]: If ρ1, . . . , ρr are multiplicatively independent, then the number

∑

k≥0

′ pk

Radk

is transcendental (cf. Remark 2 below).

Our results are concerned with the algebraic independence of the numbers (11)

with {ak}k≥0 not a geometric progression. It is not necessary in our results to assume

that ρ1, . . . , ρr are multiplicatively independent. In what follows, N0 denotes the

set of nonnegative integers and Q the field of algebraic numbers.

Theorem 3. Let {Rk}k≥0 be a linear recurrence, represented as (9) with (10).

Then the numbers

∑

k≥0

′ klαk

(Rak
)m

(α ∈ Q
×
, l ∈ N0, m ∈ N ) (13)

are algebraically independent.

Theorem 3 implies the algebraic independence of the numbers

∑

k≥0

′ bk

(Rak
)m

(m ∈ N ),

since a linear recurrence {bk}k≥0 of algebraic numbers not identically zero can be

expressed as the linear combination of the sequences {klαk}k≥0 (α ∈ Q
×
, l ∈ N0)

with algebraic coefficients.

Remark 1. It is proved in Tanaka [13, Remark 4] that

ak = cγk + o(γk),

where γ > 1 and c > 0, so that by (10) each sum in (13) converges.

Remark 2. It still remains unsolved to prove the algebraic independence of

the numbers (13) with {ak}k≥0 a geometric progression and without the assumption

that ρ1, . . . , ρr are multiplicatively independent.
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Corollary 1. In addition to the assumptions on Φ(X), suppose that Φ(X) has

only simple roots. Then the numbers

∑

k≥0

′ klαk

(aak
)m

(α ∈ Q
×
, l ∈ N0, m ∈ N )

are algebraically independent.

Proof. Since Φ(X) has only simple roots, ak in place of Rk can be expressed as

(9) with distinct roots ρ1, . . . , ρr of Φ(X). And (10) is also satisfied by the condition

on Φ(X) (see Nishioka [10, Theorem 2.8.1]). Thus we can take ak as Rk.

Example. Let {Tk}k≥0 be so-called “Tribonacci” numbers defined by

Tk+3 = Tk+2 + Tk+1 + Tk (k = 0, 1, 2, . . .)

with the initial values T0 = 0, T1 = 1, and T2 = 2 and let {bk}k≥0 be a linear

recurrence of algebraic numbers not identically zero. Then the numbers

∑

k≥1

bk

(TTk
)m

(m ∈ N )

are algebraically independent. We remark that Tk can be expressed as (9) with

r = 3 and ρ1, ρ2, ρ3 satisfying ρ1ρ2ρ3 = 1, so that ρ1, ρ2, and ρ3 are multiplicatively

dependent.

If {Rk}k≥0 is binary, we can deduce from Theorem 1 the algebraic independence

of the numbers (11) for various h, as in the case where {ak}k≥0 is a geometric

progression stated above.

Theorem 4. Let {Rk}k≥0 be a binary recurrence represented as

Rk = b1ρ
k
1 + b2ρ

k
2 (k ≥ 0),

where b1, b2, ρ1, and ρ2 are nonzero algebraic numbers satisfying |ρ1| > max{1, |ρ2|}.
Then the numbers

∑

k≥0

′ klαk

(Rak+h)m
(α ∈ Q

×
, l ∈ N0, m ∈ N , h ∈ Z) (14)

are algebraically independent.
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Corollary 2. Let {Rk}k≥0 be a binary recurrence defined by

Rk+2 = A1Rk+1 + A2Rk (k ≥ 0),

where A1 and A2 are real algebraic numbers satisfying A1 6= 0, |A2| ≥ 1, and ∆ =

A2
1 + 4A2 > 0. Suppose that {Rk}k≥0 is not a geometric progression. Then the

numbers (14) are algebraically independent.

Example. Let {Fk}k≥0 be the Fibonacci numbers and let {bk}k≥0 be a linear

recurrence of algebraic numbers not identically zero. Then the numbers

∑

k≥0

′ bk

(FFk+h)m
(h ∈ Z, m ∈ N )

are algebraically independent.

Remark 3. In the case where {ak}k≥0 is a geometric progression, a similar result

to Corollary 2 is obtained by Nishioka [11] under the assumption that R0, R1, A1,

and A2 are rational integers and m = 1.

Next we state an application of Theorem 1 as well as Theorem 2. For the

sequence {ak}k≥0, the author obtained the necessary and sufficient condition for the

numbers
∑

k≥0 αak
1 , . . . ,

∑
k≥0 αak

r to be algebraically dependent, where α1, · · · , αr are

algebraic numbers with 0 < |αi| < 1 (1 ≤ i ≤ r). From Theorems 1 and 2 with

Lemmas 1, 3, and 5, we can prove the following:

Theorem 5. Suppose that the initial values a0, . . . , an−1 of {ak}k≥0 are positive.

Let α1, · · · , αr be algebraic numbers with 0 < |αi| < 1 (1 ≤ i ≤ r) such that none of

αi/αj (1 ≤ i < j ≤ r) is a root of unity. Then

∑

k≥0

αak
i ,

∑

k≥0

αak
i

1− αak
i

,
∏

k≥0

(1− αak
i ) (1 ≤ i ≤ r)

are algebraically independent.

Remark 4. The assumption that none of αi/αj (1 ≤ i < j ≤ r) is a root of

unity cannot be removed even in the case where a0, . . . , an−1 have no common factor

as the following example shows: Let {ak}k≥0 be a linear recurrence defined by

a0 = 2, a1 = 3, ak+2 = 6ak+1 + ak (k = 0, 1, 2, . . .).
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We put

f(z) =
∑

k≥0

zak , g(z) =
∑

k≥0

zak

1− zak
, h(z) =

∏

k≥0

(1− zak).

Let α be an algebraic number with 0 < |α| < 1 and ζ = eπ
√−1/3 = (1 +

√−3)/2.

Then

2f(α) + f(ζα)− f(ζ2α)− 2f(ζ3α)− f(ζ4α) + f(ζ5α) = 0,

2g(α) + g(ζα)− g(ζ2α)− 2g(ζ3α)− g(ζ4α) + g(ζ5α) = 0,

and

h(α)2h(ζα)h(ζ2α)−1h(ζ3α)−2h(ζ4α)−1h(ζ5α) = 1,

since a2k ≡ 2 (mod 6) and a2k+1 ≡ 3 (mod 6) for any k ≥ 0.

Remark 5. If {ak}k≥0 is a geometric progression, namely ak = adk (k ≥ 0) for

some integers a ≥ 1 and d ≥ 2, each of the numbers in Theorem 5 is transcendental

by the theorem of Mahler [8] ; however Theorem 5 is not valid in this case, since

there exist the following relations over Q: Let

f(z) =
∑

k≥0

zadk

, g(z) =
∑

k≥0

zadk

1− zadk , h(z) =
∏

k≥0

(1− zadk

),

and let α be an algebraic number with 0 < |α| < 1. Then

f(α)− f(αd) = αa, g(α)− g(αd) =
αa

1− αa
,

h(α)

h(αd)
= 1− αa,

where α/αd is not a root of unity.

Remark 6. The power series expansions of some of infinite products in Theo-

rem 5 have interesting property. Beresin, Levine, and Lubell [2] proved that if

∏

k≥0

(1− zFk+2) =
∑

k≥0

ε(k)zk,

where {Fk}k≥0 is the Fibonacci numbers, then ε(k) = 0 or ±1 for any k ≥ 0.

2 Proofs of Theorems 3–5.

In this section we derive Theorems 3, 4, and 5 from Theorems 1 and 2 by using

Lemmas 1–5 below. Let Ω = (ωij) be an n × n matrix with nonnegative integer

8
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entries. Then the maximum ρ of the absolute values of the eigenvalues of Ω is itself

an eigenvalue (cf. Gantmacher [4, p. 66, Theorem 3]). We suppose that Ω and a

point α = (α1, . . . , αn), where αi are nonzero algebraic numbers, have the following

four properties:

(I) Ω is non-singular and none of its eigenvalues is a root of unity, so that in

particular ρ > 1.

(II) Every entry of the matrix Ωk is O(ρk) as k tends to infinity.

(III) If we put Ωkα = (α
(k)
1 , . . . , α(k)

n ), then

log |α(k)
i | ≤ −cρk (1 ≤ i ≤ n)

for all sufficiently large k, where c is a positive constant.

(IV) For any nonzero power series f(z) in n variables with complex coefficients

which converges in some neighborhood of the origin, there are infinitely many

positive integers k such that f(Ωkα) 6= 0.

We note that the property (II) is satisfied if every eigenvalue of Ω of absolute

value ρ is a simple root of the minimal polynomial of Ω.

Lemma 1 (Tanaka [13, Lemma 4, Proof of Theorem 2]). Suppose that Φ(±1) 6= 0

and the ratio of any pair of distinct roots of Φ(X) is not a root of unity, where Φ(X)

is the polynomial defined by (3). Let Ω be the matrix defined by (6) and β1, . . . , βs

multiplicatively independent algebraic numbers with 0 < |βj| < 1 (1 ≤ j ≤ s). Let p

be a positive integer and put

Ω′ = diag(Ωp, . . . , Ωp

︸ ︷︷ ︸
s

).

Then the matrix Ω′ and the point

β = (1, . . . , 1︸ ︷︷ ︸
n−1

, β1, . . . . . . , 1, . . . , 1︸ ︷︷ ︸
n−1

, βs)

have the properties (I)−(IV).

Lemma 2 (Nishioka [9]). Let K be an algebraic number field. Suppose that

f1(z), . . . , fm(z) ∈ K[[z1, . . . , zn]] converge in an n-polydisc U around the origin

9
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and satisfy the functional equation of the form



f1(z)
...

fm(z)


 = A




f1(Ωz)
...

fm(Ωz)


 +




b1(z)
...

bm(z)


 , (15)

where A is an m×m matrix with entries in K and bi(z) ∈ K(z1, . . . , zn). Assume

that the n×n matrix Ω and a point α ∈ U whose components are nonzero algebraic

numbers have the properties (I)−(IV). If f1(z), . . . , fm(z) are algebraically indepen-

dent over K(z1, . . . , zn), then f1(α), . . . , fm(α) are algebraically independent.

Lemma 3 (Kubota [5], see also Nishioka [10]). Let K be an algebraic number

field. Suppose that f1(z), . . . , fm(z) ∈ K[[z1, . . . , zn]] converge in an n-polydisc U

around the origin and satisfy the functional equations

fi(Ωz) = ai(z)fi(z) + bi(z) (1 ≤ i ≤ m),

where ai(z), bi(z) ∈ K(z1, . . . , zn) with ai(0) 6= 0. Assume that the n × n ma-

trix Ω and a point α ∈ U whose components are nonzero algebraic numbers have

the properties (I)−(IV) and that ai(z) are defined and nonzero at Ωkα for all

k ≥ 0. If f1(z), . . . , fm(z) are algebraically independent over K(z1, . . . , zn), then

f1(α), . . . , fm(α) are algebraically independent.

Lemma 3 is essentially due to Kubota [5] and improved by Nishioka [10].

Let L = C(z1, . . . , zn) and let M be the quotient field of C[[z1, . . . , zn]]. Let Ω be

an n×n matrix with nonnegative integer entries having the property (I). We define

an endomorphism τ : M → M by

f τ (z) = f(Ωz) (f(z) ∈ M) (16)

and a subgroup H of L× by

H = { gτg−1 | g ∈ L× }.

Lemma 4 (Nishioka [9]). Suppose that fij ∈ M (i = 1, . . . , k, j = 1, . . . , n(i))

satisfy the functional equation of the form



fi 1
...
...

fi n(i)




=




ai 0 . . . 0

a
(i)
2 1 ai

. . .
...

...
. . . . . . 0

a
(i)
n(i) 1 . . . a

(i)
n(i) n(i)−1 ai







f τ
i 1
...
...

f τ
i n(i)




+




bi 1
...
...

bi n(i)




,

10
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where ai, a
(i)
st ∈ C, ai 6= 0, a

(i)
s s−1 6= 0, and bij ∈ L. If fij (i = 1, . . . , k, j =

1, . . . , n(i)) are algebraically dependent over L, then there exist a non-empty subset

{i1, . . . , ir} of {1, . . . , k} and nonzero elements c1, . . . , cr of C such that

ai1 = · · · = air , c1fi1 1 + · · ·+ crfir 1 ∈ L.

Lemma 5 (Kubota [5], see also Nishioka [10]). Let fi ∈ M (i = 1, . . . , h) satisfy

f τ
i = afi + bi,

where a ∈ L× and bi ∈ L (1 ≤ i ≤ h), and let fi ∈ M× (i = h + 1, . . . , m) satisfy

f τ
i = aifi,

where ai ∈ L× (h + 1 ≤ i ≤ m). Suppose that a, ai, and bi have the following

properties:

(i) If ci ∈ C (1 ≤ i ≤ h) are not all zero, there is no element g of L such that

ag − gτ =
h∑

i=1

cibi.

(ii) ah+1, . . . , am are multiplicatively independent modulo H.

Then the functions fi (1 ≤ i ≤ m) are algebraically independent over L.

Proof of Theorem 3. Let ρ1, . . . , ρr be the algebraic numbers in (9). There exist

multiplicatively independent algebraic numbers β1, . . . , βs with 0 < |βj| < 1 (1 ≤
j ≤ s) such that

ρ−1
1 = ζ1

s∏

j=1

βj
e1j , ρ−1

1 ρi = ζi

s∏

j=1

βj
eij (2 ≤ i ≤ r), (17)

where ζ1, . . . , ζr are roots of unity and eij (1 ≤ i ≤ r, 1 ≤ j ≤ s) are nonnegative

integers (cf. Loxton and van der Poorten [6], Nishioka [10]). Take a positive integer

N such that ζi
N = 1 for any i (1 ≤ i ≤ r). We can choose a positive integer p

and a nonnegative integer k0 such that ak+p ≡ ak (mod N) for any k ≥ k0. By

Remark 1, there exists a nonnegative integer k1 such that ak+1 > ak for all k ≥ k1.

Therefore by (9) and (10), there exists a nonnegative integer q ≥ max{k0, k1} such

11
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that Rak
6= 0 for all k ≥ q. Let yjλ (1 ≤ j ≤ s, 1 ≤ λ ≤ n) be variables and let

yj = (yj1, . . . , yjn) (1 ≤ j ≤ s), y = (y1, . . . , ys). Define

fm(x, y) =
∑

k≥q

xk


ζak

1

s∏

j=1

P (Ωkyj)
e1j/(b1 +

r∑

i=2

biζ
ak
i

s∏

j=1

P (Ωkyj)
eij)




m

(m ≥ 1),

where P (z), z = (z1, . . . , zn), is the monomial given by (4) and Ω is the matrix

given by (6). Letting

D = x
∂

∂x
, α ∈ Q

×
, and β = (1, . . . , 1︸ ︷︷ ︸

n−1

, β1, . . . . . . , 1, . . . , 1︸ ︷︷ ︸
n−1

, βs),

we see that

Dlfm(α, β) =
∑

k≥q

klαk

(
ρ−ak

1 /(b1 +
r∑

i=2

bi(ρ
−1
1 ρi)

ak)

)m

=
∑

k≥q

klαk

(Rak
)m

.

Hence
∑

k≥0

′ klαk

(Rak
)m
−Dlfm(α, β) ∈ Q (α ∈ Q

×
, l ∈ N0, m ∈ N ),

and so it suffices to prove the algebraic independence of the values

Dlfm(α, β) (α ∈ Q
×
, l ∈ N0, m ∈ N ).

Let

Ω′ = diag(Ωp, . . . , Ωp

︸ ︷︷ ︸
s

).

Then fm(x, y) satisfies the functional equation

fm(x, y)

= xpfm(x, Ω′y)

+
p+q−1∑

k=q

xk


ζak

1

s∏

j=1

P (Ωkyj)
e1j/(b1 +

r∑

i=2

biζ
ak
i

s∏

j=1

P (Ωkyj)
eij)




m

, (18)

where Ω′y = (Ωpy1, . . . , Ω
pys), and so Dlfm(x, y) (l ≥ 1) satisfy

Dlfm(x, y)

=
l∑

µ=0

(
l

µ

)
pl−µxpDµfm(x, Ω′y)

+
p+q−1∑

k=q

klxk


ζak

1

s∏

j=1

P (Ωkyj)
e1j/(b1 +

r∑

i=2

biζ
ak
i

s∏

j=1

P (Ωkyj)
eij)




m

. (19)
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We assume that the values Dlfm(ασ, β) (0 ≤ l ≤ L, 1 ≤ m ≤ M, 1 ≤ σ ≤ t) are

algebraically dependent, where α1, . . . , αt are nonzero distinct algebraic numbers. It

follows from (18) and (19) that Dlfm(ασ, y) (0 ≤ l ≤ L, 1 ≤ m ≤ M, 1 ≤ σ ≤
t) satisfy the functional equation of the form (15), so that they are algebraically

dependent over Q(y) by Lemmas 1 and 2. Hence we see by Lemma 4 that

αp
1 = · · · = αp

ν (20)

and fm(ασ, y) (1 ≤ m ≤ M, 1 ≤ σ ≤ ν) are linearly dependent over Q modulo

Q(y), changing the indices σ (1 ≤ σ ≤ t) if necessary. Thus there are algebraic

numbers cmσ (1 ≤ m ≤ M, 1 ≤ σ ≤ ν), not all zero, such that

F (y) :=
M∑

m=1

ν∑

σ=1

cmσfm(ασ, y) ∈ Q(y).

Since F (y) ∈ Q[[y]] ∩Q(y), there are A(y), B(y) ∈ Q[y] such that

F (y) = A(y)/B(y), B(0) 6= 0

(see Nishioka [9, Lemma 4]). Letting y1 = · · · = ys = z = (z1, . . . , zn), we have

G(z) = F (z, . . . , z︸ ︷︷ ︸
s

)

=
∑

k≥q

M∑

m=1

(
ν∑

σ=1

cmσα
k
σ

) (
ζak
1 P (Ωkz)E1/(b1 +

r∑

i=2

biζ
ak
i P (Ωkz)Ei)

)m

∈ Q(z1, . . . , zn),

where Ei =
∑s

j=1 eij ∈ N (1 ≤ i ≤ r), since ei1, . . . , eis are not all zero for each i.

Letting
∑ν

σ=1 cmσα
k
σ = dm(k)αk

1 (1 ≤ m ≤ M), we find

dm(k + p) = dm(k) (k ≥ 0)

by (20). Then G(z) satisfies the functional equation

G(z) = αp
1G(Ωpz) +

p+q−1∑

k=q

M∑

m=1

dm(k)αk
1

(
ζak
1 P (Ωkz)E1/(b1 +

r∑

i=2

biζ
ak
i P (Ωkz)Ei)

)m

,

so that by Theorem 1,

Qk(X) =
M∑

m=1

dm(k)αk
1

(
ζak
1 XE1/(b1 +

r∑

i=2

biζ
ak
i XEi)

)m

∈ Q (q ≤ k ≤ p + q − 1).
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Hence

dm(k) = 0 (1 ≤ m ≤ M, q ≤ k ≤ p + q − 1),

since ordX=0

(
ζak
1 XE1/(b1 +

∑r
i=2 biζ

ak
i XEi)

)m
= mE1 (1 ≤ m ≤ M). Letting ησ =

ασ/α1 (1 ≤ σ ≤ ν), we see that η1, · · · , ην are distinct p-th roots of unity by (20)

and that dm(k) =
∑ν

σ=1 cmση
k
σ = 0 (q ≤ k ≤ p + q − 1), which holds only if

cm1 = · · · = cmν = 0. This is a contradiction, since cmσ (1 ≤ m ≤ M, 1 ≤ σ ≤ ν)

are not all zero, and the proof of the theorem is completed.

Proof of Theorem 4. We assume that

∑

k≥0

′ klαk
σ

(Rak+h)m
(1 ≤ σ ≤ t, 0 ≤ l ≤ L, −H ≤ h ≤ H, 1 ≤ m ≤ M)

are algebraically dependent, where α1, . . . , αt are nonzero distinct algebraic numbers.

Since |ρ1| > max{1, |ρ2|}, there exists a nonnegative integer q ≥ max{k0, k1} such

that Rak+h 6= 0 for any h (−H ≤ h ≤ H) and for all k ≥ q. Define

fh,m(x, y) =
∑

k≥q

xk


ζak

1

s∏

j=1

P (Ωkyj)
e1j/(1 + b−1

1 b2(ρ
−1
1 ρ2)

hζak
2

s∏

j=1

P (Ωkyj)
e2j)




m

(−H ≤ h ≤ H, 1 ≤ m ≤ M),

where P (z), Ω are given by (4), (6), respectively, and the roots of unity ζ1, ζ2 and

the nonnegative integers eij (i = 1, 2, 1 ≤ j ≤ s) are determined by (17). Letting

D and β be as in the proof of Theorem 3, we see that

(b−1
1 ρ−h

1 )mDlfh,m(ασ, β) =
∑

k≥q

klαk
σ

(
b−1
1 ρ−h

1 ρ−ak
1 /(1 + b−1

1 b2(ρ
−1
1 ρ2)

h(ρ−1
1 ρ2)

ak)
)m

=
∑

k≥q

klαk
σ

(Rak+h)m
.

Hence

∑

k≥0

′ klαk
σ

(Rak+h)m
− (b−1

1 ρ−h
1 )mDlfh,m(ασ, β) ∈ Q

(0 ≤ l ≤ L, −H ≤ h ≤ H, 1 ≤ m ≤ M, 1 ≤ σ ≤ t),

and so Dlfh,m(ασ, β) (0 ≤ l ≤ L, −H ≤ h ≤ H, 1 ≤ m ≤ M, 1 ≤ σ ≤ t) are

algebraically dependent. By the same way as in the proof of Theorem 3, we see that

αp
1 = · · · = αp

ν (21)
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and fh,m(ασ, y) (−H ≤ h ≤ H, 1 ≤ m ≤ M, 1 ≤ σ ≤ ν) are linearly dependent

over Q modulo Q(y), changing the indices σ (1 ≤ σ ≤ t) if necessary. Thus there

are algebraic numbers chmσ (−H ≤ h ≤ H, 1 ≤ m ≤ M, 1 ≤ σ ≤ ν), not all zero,

such that

F (y) :=
H∑

h=−H

M∑

m=1

ν∑

σ=1

chmσfh,m(ασ, y) ∈ Q(y).

Letting y1 = · · · = ys = z = (z1, . . . , zn), we have

G(z)

= F (z, . . . , z︸ ︷︷ ︸
s

)

=
∑

k≥q

H∑

h=−H

M∑

m=1

(
ν∑

σ=1

chmσα
k
σ

) (
ζak
1 P (Ωkz)E1/(1 + b−1

1 b2(ρ
−1
1 ρ2)

hζak
2 P (Ωkz)E2)

)m

∈ Q(z1, . . . , zn),

where Ei =
∑s

j=1 eij ∈ N (i = 1, 2), since ei1, . . . , eis are not all zero for each i.

Letting
∑ν

σ=1 chmσα
k
σ = dhm(k)αk

1 (−H ≤ h ≤ H, 1 ≤ m ≤ M), we find

dhm(k + p) = dhm(k) (k ≥ 0)

by (21). Then G(z) satisfies the functional equation

G(z)

= αp
1G(Ωpz)

+
p+q−1∑

k=q

H∑

h=−H

M∑

m=1

dhm(k)αk
1

(
ζak
1 P (Ωkz)E1/(1 + b−1

1 b2(ρ
−1
1 ρ2)

hζak
2 P (Ωkz)E2)

)m
,

so that by Theorem 1,

Qk(X) =
H∑

h=−H

M∑

m=1

dhm(k)αk
1

(
ζak
1 XE1/(1 + b−1

1 b2(ρ
−1
1 ρ2)

hζak
2 XE2)

)m

∈ Q (q ≤ k ≤ p + q − 1).

Hence

dhm(k) = 0 (−H ≤ h ≤ H, 1 ≤ m ≤ M, q ≤ k ≤ p + q − 1),

since Qk(X) has some poles if dhm(k) (−H ≤ h ≤ H, 1 ≤ m ≤ M) are not all zero.

The rest of the proof is similar to that of the proof of Theorem 3.
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Proof of Theorem 5. There exist multiplicatively independent algebraic numbers

β1, . . . , βs with 0 < |βj| < 1 (1 ≤ j ≤ s) such that

αi = ζi

s∏

j=1

βj
eij (1 ≤ i ≤ r), (22)

where ζ1, . . . , ζr are roots of unity and eij (1 ≤ i ≤ r, 1 ≤ j ≤ s) are nonnegative

integers. Take a positive integer N such that ζi
N = 1 for any i (1 ≤ i ≤ r). We

can choose a positive integer p and a nonnegative integer q such that ak+p ≡ ak

(mod N) for any k ≥ q. Let yjλ (1 ≤ j ≤ s, 1 ≤ λ ≤ n) be variables and let

yj = (yj1, . . . , yjn) (1 ≤ j ≤ s), y = (y1, . . . , ys). Define

fi(y) =
∑

k≥q

ζak
i

s∏

j=1

P (Ωkyj)
eij ,

gi(y) =
∑

k≥q

ζak
i

∏s
j=1 P (Ωkyj)

eij

1− ζak
i

∏s
j=1 P (Ωkyj)

eij
,

and

hi(y) =
∏

k≥q

(
1− ζak

i

s∏

j=1

P (Ωkyj)
eij

)
(1 ≤ i ≤ r),

where P (z) and Ω are defined by (4) and (6), respectively. Letting

β = (1, . . . , 1︸ ︷︷ ︸
n−1

, β1, . . . . . . , 1, . . . , 1︸ ︷︷ ︸
n−1

, βs),

we see that

fi(β) =
∑

k≥q

αak
i , gi(β) =

∑

k≥q

αak
i

1− αak
i

, hi(β) =
∏

k≥q

(1− αak
i ),

and so it suffices to prove the algebraic independence of the values

fi(β), gi(β), hi(β) (1 ≤ i ≤ r). Let

Ω′ = diag(Ωp, . . . , Ωp

︸ ︷︷ ︸
s

).

Then fi(y), gi(y), hi(y) (1 ≤ i ≤ r) satisfy the functional equations

fi(y) = fi(Ω
′y) +

p+q−1∑

k=q

ζak
i

s∏

j=1

P (Ωkyj)
eij ,

gi(y) = gi(Ω
′y) +

p+q−1∑

k=q

ζak
i

∏s
j=1 P (Ωkyj)

eij

1− ζak
i

∏s
j=1 P (Ωkyj)

eij
,
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and

hi(y) =




p+q−1∏

k=q

(
1− ζak

i

s∏

j=1

P (Ωkyj)
eij

)
 hi(Ω

′y),

where Ω′y = (Ωpy1, . . . , Ω
pys). We assume that the values fi(β), gi(β), hi(β) (1 ≤

i ≤ r) are algebraically dependent. Then the functions fi(y), gi(y), hi(y) (1 ≤ i ≤
r) are algebraically dependent over Q(y) by Lemmas 1 and 3. Hence by Lemma 5

at least one of the following two cases arises:

(i) There are algebraic numbers bi, ci (1 ≤ i ≤ r), not all zero, and F (y) ∈ Q(y)

such that

F (y) = F (Ω′y) +
p+q−1∑

k=q

r∑

i=1


biζ

ak
i

s∏

j=1

P (Ωkyj)
eij +

ciζ
ak
i

∏s
j=1 P (Ωkyj)

eij

1− ζak
i

∏s
j=1 P (Ωkyj)

eij


 .

(23)

(ii) There are rational integers di (1 ≤ i ≤ r), not all zero, and G(y) ∈ Q(y) \ {0}
such that

G(y) =




p+q−1∏

k=q

r∏

i=1

(
1− ζak

i

s∏

j=1

P (Ωkyj)
eij

)di


 G(Ω′y). (24)

Let M be a positive integer and let

yj = (yj1, . . . , yjn) = (zMj

1 , . . . , zMj

n ) (1 ≤ j ≤ s),

where M is so large that the following two properties are both satisfied:

(I) If (ei1, . . . , eis) 6= (ei′1, . . . , ei′s), then
∑s

j=1 eijM
j 6= ∑s

j=1 ei′jM
j.

(II) F ∗(z) = F (zM
1 , . . . , zM

n , . . . , zMs

1 , . . . , zMs

n ) ∈ Q(z1, . . . , zn),

G∗(z) = G(zM
1 , . . . , zM

n , . . . , zMs

1 , . . . , zMs

n ) ∈ Q(z1, . . . , zn) \ {0}.

Then by (23) and (24), at least one of the following two functional equations holds:

(i) F ∗(z) = F ∗(Ωpz) +
p+q−1∑

k=q

r∑

i=1

(
biζ

ak
i P (Ωkz)Ei +

ciζ
ak
i P (Ωkz)Ei

1− ζak
i P (Ωkz)Ei

)
.

(ii) G∗(z) =




p+q−1∏

k=q

r∏

i=1

(
1− ζak

i P (Ωkz)Ei

)di


 G(Ωpz).
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Here Ei =
∑s

j=1 eijM
j (1 ≤ i ≤ r) are distinct positive integers by the property (I),

since none of αi/αj (1 ≤ i < j ≤ r) is a root of unity. By Theorems 1, 2, and the

property (II), at least one of the following two properties are satisfied:

(i) For any k (q ≤ k ≤ p + q − 1),

r∑

i=1

(
biζ

ak
i XEi +

ciζ
ak
i XEi

1− ζak
i XEi

)
=

r∑

i=1

(
biζ

ak
i XEi + ci

∞∑

l=1

(ζak
i XEi)l

)
∈ Q. (25)

(ii) For any k (q ≤ k ≤ p + q − 1),

r∏

i=1

(1− ζak
i XEi)di = γk ∈ Q

×
. (26)

Suppose first that (i) is satisfied. Then we show that ci = 0 (1 ≤ i ≤ r). Assume

contrary that c1, . . . , cr are not all zero. Let S = { i ∈ {1, . . . , r} | ci 6= 0 } and let

i′ ∈ S be the index such that Ei′ < Ei for any i ∈ S \ {i′}. Since (E1 · · ·Er + 1)Ei′

is not divided by any Ei with i ∈ S \ {i′}, the term ci′(ζ
ak
i′ XEi′ )E1···Er+1 does not

cancel in (25), which is a contradiction. Hence ci = 0 (1 ≤ i ≤ r) and so b1, . . . , br

are not all zero, which is also a contradiction, since E1, . . . , Er are distinct. Next

suppose that (ii) is satisfied. Taking the logarithmic derivative of (26), we get

r∑

i=1

−diEiζ
ak
i XEi−1

1− ζak
i XEi

= 0 (q ≤ k ≤ p + q − 1).

This is a contradiction, since ordX=0Eiζ
ak
i XEi−1/(1− ζak

i XEi) = Ei− 1 (1 ≤ i ≤ r),

and the proof of the theorem is completed.

3 Proofs of Theorems 1 and 2.

We need several lemmas to prove Theorems 1 and 2. Use the same notations as in the

preceding section, define an endomorphism τ : M → M by (16), and adopt the usual

vector notation, that is, if I = (i1, . . . , in) ∈ Zn, we write zI = zi1
1 · · · zin

n . We denote

by C[z1, . . . , zn] the ring of polynomials in variables z1, . . . , zn with coefficients in C.

Lemma 6 (Nishioka [10]). If A,B ∈ C[z1, . . . , zn] are coprime, then (Aτ , Bτ ) =

zI , where I ∈ N0
n.
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Lemma 7 (Nishioka [10]). Let Ω be an n × n matrix with nonnegative integer

entries which has the property (I). Let R(z) be a nonzero polynomial in C[z1, . . . , zn]

and x = (x1, . . . , xn) an element of C
n

with xi 6= 0 for any i (1 ≤ i ≤ n). We put

R(z) =
∑

I=(i1,...,in)∈Λ

cIz
I (cI 6= 0).

If R(Ωkx) = 0 for infinitely many positive integers k, then there exist distinct ele-

ments I, J ∈ Λ and positive integers a, b such that

x(I−J)Ωa(Ωbk−E) = 1

for all k ≥ 0, where E is the identity matrix.

Lemma 8 (Nishioka [9]). If g ∈ M satisfies

gτ = cg + d (c, d ∈ C),

then g ∈ C.

Lemma 9. Let {ak}k≥0 be a linear recurrence satisfying (2). Suppose that

{ak}k≥0 is not a geometric progression. Assume that the ratio of any pair of distinct

roots of Φ(X) is not a root of unity. Then the sequence {ak}k≥0 does not satisfy the

linear recurrence relation of the form

ak+l = cak (k ≥ 0),

where l is a positive integer and c is a nonzero rational number.

Proof. If l = 1, then ak = a0c
k (k ≥ 0), which contradicts the assumption in the

lemma. If l ≥ 2, then at least two of the roots of Ψ(X) = X l− c are those of Φ(X).

This also contradicts the assumption, since the ratio of any pair of distinct roots of

Ψ(X) is a root of unity.

Lemma 10. Let u = (u1, . . . , un) satisfy trans. degC C(u) = n− 1. If uI , uJ ∈
C×, where I, J ∈ Zn\{0}, then I and J are proportional, i.e. there exists a nonzero

rational number r such that I = rJ .

Proof. Suppose contrary there are I = (i1, . . . , in), J = (j1, . . . , jn) ∈
Zn \ {0} such that uI , uJ ∈ C× and I, J are not proportional. Assume that
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jλ 6= 0. Then uλ is algebraic over the field C(u1, . . . , uλ−1, uλ+1, . . . , un). Since

(uI)jλ(uJ)−iλ = ujλI−iλJ ∈ C× and jλI − iλJ is a nonzero vector whose λ-th com-

ponent is zero, u1, . . . , uλ−1, uλ+1, . . . , un are algebraically dependent over C. Hence

trans. degC C(u) ≤ n− 2, which is a contradiction.

Lemma 11. If k1, k2 ∈ N0 are distinct, then P (Ωk1z) − γ1 and P (Ωk2z) − γ2

are coprime, where P (z) is the monomial defined by (4), Ω is the matrix defined by

(6), and γ1, γ2 ∈ C×.

Proof. Suppose contrary there exists T (z) ∈ C[z1, . . . , zn]\C which divides both

P (Ωk1z)−γ1 and P (Ωk2z)−γ2. We may assume that k1 > k2. Let u = (u1, . . . , un)

be a generic point of the algebraic variety defined by T (z) over C. Then T (u) = 0

and trans. degC C(u) = n− 1. Since T (u) = 0,

P (Ωk1u) = u
ak1+n−1

1 · · ·uak1
n = γ1

and

P (Ωk2u) = u
ak2+n−1

1 · · ·uak2
n = γ2.

By Lemma 10, there exists a nonzero rational number c such that

(ak1+n−1, . . . , ak1) = c(ak2+n−1, . . . , ak2). Hence by (2), {ak}k≥0 satisfies the linear

recurrence relation ak+k1−k2 = cak (k = 0, 1, 2, . . .), which contradicts Lemma 9.

Lemma 12. Let Ω be an n × n matrix with nonnegative integer entries which

has the property (I). Let R(z) be a nonzero polynomial in C[z1, . . . , zn]. If R(Ωz)

divides R(z)zI , where I ∈ N0
n, then R(z) is a monomial in z1, . . . , zn.

Proof. We can put

R(z) = zJ
ν∏

i=1

gi(z)ei ,

where J ∈ N0
n, ei (1 ≤ i ≤ ν) are positive integers, and g1(z), . . . , gν(z) are distinct

irreducible polynomials and not monomials. For each i (1 ≤ i ≤ ν), gi(Ωz) can be

written as

gi(Ωz) = hi(z)zHi ,

where hi(z) ∈ C[z1, . . . , zn] \ C is not divided by z1, . . . , zn, and Hi ∈ N0
n. Since

zJΩ ∏ν
i=1(hi(z)zHi)ei divides zI+J ∏ν

i=1 gi(z)ei ,

ν∏

i=1

hi(z)ei|
ν∏

i=1

gi(z)ei . (27)
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Hence h1(z), . . . , hν(z) are irreducible, otherwise we can deduce a contradiction,

comparing the numbers of prime factors in (27); thereby

ν∏

i=1

hi(z)ei = ξ
ν∏

i=1

gi(z)ei ,

where ξ is a nonzero element of C. Therefore

R(Ωz) = ξR(z)zH , H = J(Ω− E) +
ν∑

i=1

eiHi ∈ Zn.

Let D = | det(Ω − E)|. Then D is a positive integer, since the matrix Ω has no

roots of unity as its eigenvalues. We extend the endomorphism τ : M → M to the

quotient field M ′ of formal power series ring C[[z
1/D
1 , . . . , z1/D

n ]] by the usual way.

Since the monomial S(z) = zH(Ω−E)−1 ∈ M ′ satisfies Sτ (z) = S(z)zH , we see that

F (z) = R(z)/S(z) ∈ M ′ satisfies F τ (z) = ξF (z) and so F (z) ∈ C by Lemma 8,

which means that R(z) is a monomial in z1, . . . , zn.

Proof of Theorem 1. Let γ1, . . . , γt be the distinct roots of the least common

denominator of Qk(X) (q ≤ k ≤ p + q− 1). Then γ1, . . . , γt are nonzero elements of

C. There exists a positive integer M such that

R(z) =




p+q−1∏

k=q

t∏

j=1

(P (Ωkz)− γj)
M




p+q−1∑

k=q

Qk(P (Ωkz)) ∈ C[z1, . . . , zn].

Letting G(z) = A(z)/B(z), where A(z) and B(z) are coprime polynomials in

C[z1, . . . , zn], we have

A(z)B(Ωpz)
p+q−1∏

k=q

t∏

j=1

(P (Ωkz)− γj)
M

= αA(Ωpz)B(z)
p+q−1∏

k=q

t∏

j=1

(P (Ωkz)− γj)
M + R(z)B(z)B(Ωpz)

by (7). We can put (A(Ωpz), B(Ωpz)) = zI , where I ∈ N0
n, by Lemma 6. Then

B(Ωpz)|B(z)zI
p+q−1∏

k=q

t∏

j=1

(P (Ωkz)− γj)
M (28)

and

B(z)|B(Ωpz)
p+q−1∏

k=q

t∏

j=1

(P (Ωkz)− γj)
M . (29)
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First we prove that G(z) ∈ C[z1, . . . , zn]. For this purpose, we show that B(Ωpz)

divides B(z)zI . Otherwise, by (28), there exists a prime factor T (z) ∈ C[z1, . . . , zn]

of B(Ωpz) such that

T (z)|(P (Ωk0z)− γj0) (30)

for some k0 (q ≤ k0 ≤ p + q − 1) and for some j0 (1 ≤ j0 ≤ t). Let u = (u1, . . . , un)

be a generic point of the algebraic variety defined by T (z) over C. Then T (u) = 0

and

trans. degC C(u) = n− 1.

Letting z = u in (30), we see that

P (Ωk0u) = u
ak0+n−1

1 · · ·uak0
n = γj0 . (31)

Since T (z) divides B(Ωpz) and B(Ωpz) divides B(Ω2pz)
∏p+q−1

k=q

∏t
j=1(P (Ωk+pz) −

γj)
M by (29),

T (z)|B(Ω2pz)
p+q−1∏

k=q

t∏

j=1

(P (Ωk+pz)− γj)
M .

Therefore T (z) divides B(Ω2pz) by Lemma 11 with (30). Cotinuing this process, we

see that T (z) divides B(Ωpkz) and so B(Ωpku) = 0 for all positive integers k. Since

uλ 6= 0 (1 ≤ λ ≤ n), by Lemmas 1 and 7, there exist nonzero n-dimensional vector v

with rational integer components and positive integers d, e such that uvΩe(Ωdk−E) = 1

for all k ≥ 0, where E is the identity matrix. Then

uv(Ωd−E)Ωdk+e

= 1

for all k ≥ 0. Letting v(Ωd − E)Ωe = (bn−1, . . . , b0) and letting {bk}k≥0 be a linear

recurrence defined by (2) with the initial values b0, . . . , bn−1, we have

u
bdk+n−1

1 · · ·ubdk
n = 1 (32)

for all k ≥ 0. Therefore by Lemma 10, together with (2), {bk}k≥0 satisfies the linear

recurrence relation

bk+d = cbk (k ≥ 0), (33)

where c is a nonzero rational number. On the other hand, there exists a nonzero

rational number c′ such that (ak0+n−1, . . . , ak0) = c′(bn−1, . . . , b0) by (31), (32), and

Lemma 10. Hence by (2), we have

ak+k0 = c′bk (k ≥ 0). (34)
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By (33) and (34), ak+d = cak for all k ≥ k0. Then by (2), ak+d = cak (k ≥ 0),

which contradicts Lemma 9, and so we can conclude that B(Ωpz) divides B(z)zI .

Therefore B(z) is a monomial in z1, . . . , zn by Lemmas 1 and 12. Hence we can

conclude that G(z) ∈ C[z1, . . . , zn], since G(z) = A(z)/B(z) ∈ C[[z1, . . . , zn]].

Secondly we show that Qk(X) ∈ C[X] (q ≤ k ≤ p+q−1). For each k (q ≤ k ≤ p+

q−1), let Qk(X) = Uk(X)/Vk(X), where Uk(X) and Vk(X) are coprime polynomials

in C[X] with Vk(0) 6= 0. Then Uk(P (Ωkz)) and Vk(P (Ωkz)) are coprime polynomials

in C[z1, . . . , zn] with Vk(0) 6= 0. By Lemma 11, Vk(P (Ωkz)) and Vk′(P (Ωk′z)) are

coprime if k 6= k′. Since G(z) ∈ C[z1, . . . , zn] and so G(Ωpz) ∈ C[z1, . . . , zn],

p+q−1∑

k=q

Uk(P (Ωkz))

Vk(P (Ωkz))
∈ C[z1, . . . , zn]

by (7). Hence Vk(P (Ωkz)) divides Uk(P (Ωkz)) and so Vk(P (Ωkz)) ∈ C
×

for any

k (q ≤ k ≤ p + q − 1). Therefore Vk(X) ∈ C
×

and so Qk(X) ∈ C[X] (q ≤ k ≤
p + q − 1).

Finally we prove that Qk(X) ∈ C (q ≤ k ≤ p+q−1), which implies G(z) ∈ C by

Lemma 8. To the contrary we assume that Qk(X) 6∈ C for some k (q ≤ k ≤ p+q−1).

Let g be the number of terms appearing in G(z). Iterating (7), we get

G(z)− α2g+1G(Ω(2g+1)pz) =
2g∑

l=0

αl
p+q−1∑

k=q

Qk(P (Ωk+lpz)).

Then the number of terms appearing in the right-hand side is at least 2g + 1, since

(ak+n−1 : . . . : ak) 6= (ak′+n−1 : . . . : ak′) in P n−1(Q) for any distinct nonnegative

integers k and k′ by Lemma 9 and so the nonconstant terms appearing in the right-

hand side never cancel one another. This is a contradiction, since the number of

terms appearing in the left-hand side is at most 2g, and the proof of the theorem is

completed.

Proof of Theorem 2. Letting G(z) = A(z)/B(z), where A(z) and B(z) are

coprime polynomials in C[z1, . . . , zn], and letting for each k (q ≤ k ≤ p + q − 1),

Qk(X) = Uk(X)/Vk(X), where Uk(X) and Vk(X) are coprime polynomials in C[X],

we have

A(z)B(Ωpz)
p+q−1∏

k=q

Vk(P (Ωkz)) = A(Ωpz)B(z)
p+q−1∏

k=q

Uk(P (Ωkz)) (35)
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by (8). We can put (A(Ωpz), B(Ωpz)) = zI , where I ∈ N0
n, by Lemma 6. Let

Uk(X) = ck
∏tk

j=1(X − γkj)
ekj , where ck is a nonzero element of C, γk1, . . . , γktk

are the distinct roots of Uk(X), and ek1, . . . , ektk are positive integers, and let

Vk(X) = dk
∏uk

j=1(X − δkj)
fkj , where dk is a nonzero element of C, δk1, . . . , δkuk

are the distinct roots of Vk(X), and fk1, . . . , fkuk
are positive integers. Then

γk1, . . . , γktk , δk1, . . . , δkuk
(q ≤ k ≤ p + q − 1) are nonzero elements of C and

A(Ωpz) | A(z)zI
p+q−1∏

k=q

uk∏

j=1

(P (Ωkz)− δkj)
fkj ,

A(z) | A(Ωpz)
p+q−1∏

k=q

tk∏

j=1

(P (Ωkz)− γkj)
ekj ,

B(Ωpz) | B(z)zI
p+q−1∏

k=q

tk∏

j=1

(P (Ωkz)− γkj)
ekj ,

and

B(z) | B(Ωpz)
p+q−1∏

k=q

uk∏

j=1

(P (Ωkz)− δkj)
fkj .

Hence by the same way as in the proof of Theorem 1, we see that A(Ωpz) divides

A(z)zI and that B(Ωpz) divides B(z)zI . Therefore A(z) and B(z) are monomials

in z1, . . . , zn by Lemmas 1 and 12. Then by (35) and the fact that Uk(0) 6= 0, Vk(0) 6=
0 (q ≤ k ≤ p + q − 1),

p+q−1∏

k=q

Uk(P (Ωkz))

/ p+q−1∏

k=q

Vk(P (Ωkz)) ∈ C
×
.

Here, Uk(P (Ωkz)) and Vk′(P (Ωk′z)) (k 6= k′) are coprime polynomials in

C[z1, . . . , zn] by Lemma 11, and Uk(P (Ωkz)), Vk(P (Ωkz)) are coprime polynomi-

als in C[z1, . . . , zn] for each k (q ≤ k ≤ p + q − 1), since Uk(X) and Vk(X) are

coprime in C[X]. Therefore Uk(X), Vk(X) ∈ C
×

(q ≤ k ≤ p + q − 1) and so

Qk(X) ∈ C
×

(q ≤ k ≤ p + q − 1). Hence G(z) ∈ C by Lemma 8, and the proof of

the theorem is completed.
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