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1 Introduction and results.

One of the techniques used to prove the algebraic independence of numbers is
Mabhler’s method, which deals with the values of so-called Mahler functions sat-
isfying a certain type of functional equation. In order to apply the method, one
must confirm the algebraic independence of the Mahler functions themselves. This
can be reduced, in many cases, to their linear independence modulo the rational
function field, that is, the problem of determining whether a nonzero linear com-
bination of them is a rational function or not. In the case of one variable, this
can be treated by arguments involving poles of rational functions. However, in the
case of several variables, this method is not available. In this paper we shall over-
come this difficulty by considering a generic point of an irreducible algebraic variety.
Theorems 1 and 2 in this paper assert that certain types of functional equations in
several variables have no nontrivial rational function solutions. As applications, we
shall prove the algebraic independence of various kinds of reciprocal sums of linear
recurrences in Theorems 3 and 4, and that of the values at algebraic numbers of
power series, Lambert series, and infinite products generated by linear recurrences
in Theorem 5.

Let = (wi;) be an n x n matrix with nonnegative integer entries. If
z = (21,...,2,) is a point of C™ with C the set of complex numbers, we define
a transformation €2 : C" — C" by

QZ: (H ijlj,...,Hij"j). (1)
j=1 j=1
Let {ax}r>0 be a linear recurrence of nonnegative integers satisfying
Atn = C1Qpin—1+ -+ cpar (E=0,1,2,...), (2)
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where aq, ..., a,_1 are not all zero and ¢y, ..., ¢, are nonnegative integers with ¢, #

0. We define a polynomial associated with (2) by
PX)=X" - X"t~ —c,. (3)

In this paper, we always assume that ®(+1) # 0 and the ratio of any pair of distinct
roots of (X)) is not a root of unity and that {ay}x>o is not a geometric progression

unless otherwise mentioned. We define a monomial
P(z) = z"" 2,0, (4)

which is denoted similarly to (1) by

P(Z) = (an_l, e ,ao)z. (5)
Let
C1 1 0 ... 0
Cy 0 ' :
Q=|: 0 (6)
: 1
¢, 0O 0

It follows from (1), (2), and (5) that
P(QFz) = 2%+t ..z, % (k> 0).

In what follows, C' and C denote a field of characteristic 0 and its algebraic closure,
respectively. Let F(z1,...,2,) and F[[z1,...,2,]] denote the field of rational func-
tions and the ring of formal power series in variables zq, ..., z, with coefficients in
a field F', respectively, and F'* the multiplicative group of nonzero elements of F.
The following are the main theorems of the present paper.

Theorem 1. Suppose that G(z) € C|[z1, ..., z,]] satisfies the functional equation

of the form
p+g—1

Gz) = aG(@2) + Y QuP(22)), ™)
k=q
where a # 0 is an element of C, ) is defined by (6), p >0, q > 0 are integers, and
QX)) e CO(X) (q<k<p+q—1) are defined at X = 0. If G(z) € C(z1,...,2),
then G(z) € C and Qi(X) € C (¢<k<p+q—1).
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Theorem 2. Suppose that G(z) is an element of the quotient field of
Cllz1, - - -, z)] satisfying the functional equation of the form

G(z) = ( H %(P(ﬂ'fz))) (), ®)

where Q, p, q, and Qr(X) are as in Theorem 1. Assume that Qr(0) # 0. If
G(z) € C(z1,...,2n), then G(z) € C and Qu(X) € C”* (¢<k<p+q—1).

First we shall state our results on algebraic independence of reciprocal sums of
linear recurrences, Theorems 3 and 4, obtained as applications of Theorem 1. We
prepare some notations.

Let {Rk}r>o0 be a linear recurrence expressed as
Ry =bip} + -+ bpf (k> 0), 9)

where by, ...,b, are nonzero algebraic numbers and p, ..., p, are nonzero distinct

algebraic numbers satisfying

1] > max{L, |paf, ... |pr|}- (10)
Typical examples of such { Ry }r>o are the Fibonacci numbers { F }r>o defined by
Fo=0, F, =1, Fiyo=Fo+Fp (k>0)
and the Lucas numbers { Ly };>o defined by

Lo=2, Ly =1, Lpyo=Lpy1+ Ly (K>0),

Fk:\}g(<1+2\/5>k_<1—2\/5>k> k> 0)

L <1+\/5>k+<1—\/5

since

and

S0 (RN g

We shall prove the algebraic independence of reciprocal sums of linear recurrences

such as

(11)
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where {b;}r>0 is a linear recurrence of algebraic numbers not identically zero,
{ar}r>0 is as above, and m > 1, h are integers. Here and in what follows, the
sum 22:20 is taken over those k which satisfy ay +h > 0 and R, 4, # 0. For

example, the algebraic independence of the numbers
/ 1

(he Z, me N)
k>0 (FcmJrh)m

can be deduced from Theorem 4 below. Here Z and IN denote the sets of rational
and positive integers, respectively.

It is interesting to compare our results to those obtained by various authors in
the case where {a}r>0 is a geometric progression. Lucas [7] showed that

1 7-V6
sz N 2

>

k>0

Let {px }r>0 be a periodic sequence of algebraic numbers not identically zero. Bund-
schuh and Pethd [1] proved by Mahler’s method that

P
kZO FQk
is transcendental if {py }r>0 is not a constant sequence and that

Dk
kZO Lgk

is transcendental for any {pg}r>0. Let @ > 1 and d be integers. Recently, Nishioka,
Tanaka, and Toshimitsu [12] proved that if {ps}r>0 is not a constant sequence, the

numbers
Pk (4>2 heZ meN) (12)
k>0 (Fadk+h)m
are algebraically independent, and if {py}r>0 is a constant sequence, the numbers
(12) excepting the algebraic number Y7, pr/Foor are algebraically independent;

and also the numbers

/ Pk

(d>2, he Z, me N)
k>0 (Ladk—f—h)m

are algebraically independent for any {py }x>0. These results depend on the fact that

the recurrences { Fj }r>o and {Ly}x>0 are binary, namely these can be expressed as

4



KSTS/RR-97/006
July 14,1997

(9) with » = 2. In the case of m = 1, the transcendence of each of these numbers
has already been proved by Becker and Topfer [1]. For a general {Rj}i>o not
necessarily binary, only the transcendency result has been obtained also by Becker
and Topfer [1]: If pq,. .., p, are multiplicatively independent, then the number

! Pk
Radk

k>0

is transcendental (cf. Remark 2 below).

Our results are concerned with the algebraic independence of the numbers (11)
with {ay }x>0 not a geometric progression. It is not necessary in our results to assume
that pq,...,p, are multiplicatively independent. In what follows, Ny denotes the
set of nonnegative integers and Q the field of algebraic numbers.

Theorem 3. Let {Ry}r>0 be a linear recurrence, represented as (9) with (10).
Then the numbers
kl k L
> am (@eQ”, 1€ Ny, meN) (13)
(Ray)

k>0

are algebraically independent.

Theorem 3 implies the algebraic independence of the numbers

1 by
Z (Rak>m (mEN)v

k>0

since a linear recurrence {by}x>o of algebraic numbers not identically zero can be
expressed as the linear combination of the sequences {k'a*}iso (a € Q" le Ny
with algebraic coefficients.

REMARK 1. It is proved in Tanaka [13, Remark 4] that
ar = 7" +o(7"),
where v > 1 and ¢ > 0, so that by (10) each sum in (13) converges.

REMARK 2. [t still remains unsolved to prove the algebraic independence of
the numbers (13) with {ag }r>0 a geometric progression and without the assumption

that py,..., p, are multiplicatively independent.
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Corollary 1. In addition to the assumptions on ®(X), suppose that ®(X) has

only simple roots. Then the numbers

Elak
Z/

E>0 (@q,)™

(&EQX, l € Ny, me N)

are algebraically independent.

Proof. Since ®(X) has only simple roots, a; in place of Ry can be expressed as
(9) with distinct roots py, ..., p, of ®(X). And (10) is also satisfied by the condition
on ®(X) (see Nishioka [10, Theorem 2.8.1]). Thus we can take a; as Ry.

EXAMPLE. Let {7} }x>0 be so-called “Tribonacci” numbers defined by
Tk+3 = Tk+2 + Tk+1 + Tk (k = 0, 1, 2, .. )

with the initial values Ty = 0, 77 = 1, and 75 = 2 and let {bx}r>0 be a linear
recurrence of algebraic numbers not identically zero. Then the numbers

>

k>1 (TTk)m

(me N)

are algebraically independent. We remark that 7} can be expressed as (9) with
r =3 and p1, po, p3 satistying pi1paps = 1, so that p1, ps, and p3 are multiplicatively
dependent.

If {Rg }x>0 is binary, we can deduce from Theorem 1 the algebraic independence
of the numbers (11) for various h, as in the case where {aj}r>0 is a geometric
progression stated above.

Theorem 4. Let {Ry}r>0 be a binary recurrence represented as
Ry = bipy + baply (k> 0),

where by, be, p1, and py are nonzero algebraic numbers satisfying |p1| > max{1, |ps|}.

Then the numbers
k,l k -
,(Ri)m (aeQ ,le Ny, me N, he Z) (14)
k>0 \Llag

are algebraically independent.
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Corollary 2. Let {Ry}r>o0 be a binary recurrence defined by
Ryyo = AR + AsRy, (k> 0),

where Ay and As are real algebraic numbers satisfying Ay # 0,]As| > 1, and A =
A? 4+ 4A5 > 0. Suppose that {Ry}r>o is not a geometric progression. Then the
numbers (14) are algebraically independent.

EXAMPLE. Let {Fj}r>0 be the Fibonacci numbers and let {by}x>o be a linear

recurrence of algebraic numbers not identically zero. Then the numbers

1 by

— (he Z, me N)
k>0 (FFk+h)m

are algebraically independent.

REMARK 3. In the case where {ay }x>0 is a geometric progression, a similar result
to Corollary 2 is obtained by Nishioka [11] under the assumption that Ry, Ry, A1,
and A, are rational integers and m = 1.

Next we state an application of Theorem 1 as well as Theorem 2. For the
sequence {ay }x>0, the author obtained the necessary and sufficient condition for the
numbers Y50 af, ..., Y50 @ to be algebraically dependent, where oy, - - -, o, are
algebraic numbers with 0 < |o;| < 1 (1 <4 < r). From Theorems 1 and 2 with
Lemmas 1, 3, and 5, we can prove the following:

Theorem 5. Suppose that the initial values ay, . .., an—1 of {ar}r>o0 are positive.
Let oy, -+, . be algebraic numbers with 0 < |a;| < 1 (1 <4 <r) such that none of
a;/a; (1 <i<j<r)isaroot of unity. Then

ar
Yo, Yt [[a-af)  (<i<n)

k>0 k>0 i k>0

are algebraically independent.

REMARK 4. The assumption that none of o;/c; (1 <i < j <) is a root of
unity cannot be removed even in the case where aq, ..., a,_1 have no common factor
as the following example shows: Let {ax}r>0 be a linear recurrence defined by

ap =2, a; =3, apyo=06ar1+ar (K=0,1,2,...).

7
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We put

) =Y 2% ge) =Y o h(z) = [[(1- =)

k>0 k>0 k>0

Let o be an algebraic number with 0 < | < 1 and ¢ = e™~1/3 = (1 + /=3)/2.
Then

+ f(Ca) = f(¢Pa) = 2f(¢Pa) — f(C*a) + f((Pa) =0,
+ g(Ca) — g(Ca) — 29(¢Pa) — g(¢*a) + g(¢Pa) = 0,
and

h(a)?h(Ca)h(CPa) T h(CPa) 2h(¢a) Th(Ca) = 1,

since agy =2 (mod 6) and age; =3 (mod 6) for any k£ > 0.

REMARK 5. If {a;}r>0 is a geometric progression, namely a; = ad® (k > 0) for
some integers a > 1 and d > 2, each of the numbers in Theorem 5 is transcendental
by the theorem of Mahler [8] ; however Theorem 5 is not valid in this case, since
there exist the following relations over Q: Let

ad®
adk Z adk
f(Z):ZZd, Q(Z):ZW, h(Z)ZH(l—zd),
k>0 k>0 k>0
and let o be an algebraic number with 0 < |a| < 1. Then
dy _ a o _ hla) _ a
o) = flat) = ot gla) —g(at) = 70, MO~ 1an

where a/a? is not a root of unity.

REMARK 6. The power series expansions of some of infinite products in Theo-

rem 5 have interesting property. Beresin, Levine, and Lubell [2] proved that if

[I(1—2M2) =3 ek)h,

k>0 k>0

where {Fy}x>0 is the Fibonacci numbers, then €(k) = 0 or +1 for any k£ > 0.

2 Proofs of Theorems 3-5.

In this section we derive Theorems 3, 4, and 5 from Theorems 1 and 2 by using

Lemmas 1-5 below. Let Q = (w;;) be an n X n matrix with nonnegative integer

8
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entries. Then the maximum p of the absolute values of the eigenvalues of €2 is itself
an eigenvalue (cf. Gantmacher [4, p. 66, Theorem 3]). We suppose that 2 and a
point & = (a, ..., a,), where a; are nonzero algebraic numbers, have the following

four properties:

(I) € is non-singular and none of its eigenvalues is a root of unity, so that in

particular p > 1.
(IT) Every entry of the matrix QF is O(p*) as k tends to infinity.
(IT1) If we put Q*a = (ozgk), ...,a!®) then
log|af”| < —cp* (1<i<n)
for all sufficiently large k, where c is a positive constant.

(IV) For any nonzero power series f(z) in n variables with complex coefficients
which converges in some neighborhood of the origin, there are infinitely many
positive integers k such that f(Q*a) # 0.

We note that the property (II) is satisfied if every eigenvalue of €2 of absolute
value p is a simple root of the minimal polynomial of (2.

Lemma 1 (Tanaka [13, Lemma 4, Proof of Theorem 2]). Suppose that ®(£+1) # 0
and the ratio of any pair of distinct roots of ®(X) is not a root of unity, where ®(X)
is the polynomial defined by (3). Let ) be the matrix defined by (6) and B, ..., Bs
multiplicatively independent algebraic numbers with 0 < |3;] <1 (1 <j <s). Letp

be a positive integer and put

Q' = diag(QP, ..., QP).

Then the matriz € and the point

have the properties (I)—(IV).

Lemma 2 (Nishioka [9]). Let K be an algebraic number field. Suppose that
fi(2),. .., fm(2) € K[|z1,...,24]] converge in an n-polydisc U around the origin

9
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and satisfy the functional equation of the form

( fi(z) ) ( f(9z) ) ( bi(2) )
: = Al o (15)
fm(2) fm(22) b (2)

where A is an m X m matriz with entries in K and b;(z) € K(z1,...,z,). Assume
that the n X n matriz 2 and a point a € U whose components are nonzero algebraic
numbers have the properties (1)—(IV). If fi(2), ..., fm(2) are algebraically indepen-
dent over K(z1,...,2,), then fi(a),..., fm(a) are algebraically independent.

Lemma 3 (Kubota [5], see also Nishioka [10]). Let K be an algebraic number
field. Suppose that fi(z),..., fm(z) € K|[z1,...,2,]] converge in an n-polydisc U
around the origin and satisfy the functional equations

fi(Qz) = a;(z) fi(z) + bi(z) (1 <i<m),

where a;(z),b;(z) € K(z1,...,2,) with a;(0) # 0. Assume that the n x n ma-
triz 0 and a point o € U whose components are nonzero algebraic numbers have
the properties (1)—(IV) and that a;(z) are defined and nonzero at Q*a for all
k>0. If fi(2),..., fm(2) are algebraically independent over K(zi,...,z,), then
fila), ..., fm(e) are algebraically independent.

Lemma 3 is essentially due to Kubota [5] and improved by Nishioka [10].

Let L = C(z1,...,2,) and let M be the quotient field of C|[z1,. .., z,]]. Let Q be
an n X n matrix with nonnegative integer entries having the property (I). We define
an endomorphism 7 : M — M by

[T(z) = [(Qz) (f(z) e M) (16)
and a subgroup H of L* by
H={gg"'|gel*}

Lemma 4 (Nishioka [9]). Suppose that fi; € M (i=1,...,k, j=1,...,n(3))

satisfy the functional equation of the form

— | %1 ' + ,
: o Cw V '
Jin(i) anl(i) 1o anzi) n()-1 @i fiTn(i) Din(i)

10
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where a;, ag? e C, a; # 0, as(?,l #0, and bjj € L. If fi; 1 =1,...,k, j =

1,...,n(i)) are algebraically dependent over L, then there exist a non-empty subset
{i1,... i} of {1,...,k} and nonzero elements cy,...,c. of C such that
Ay ==, cfy1+t--+efi €L

Lemma 5 (Kubota [5], see also Nishioka [10]). Let f; € M (i =1,...,h) satisfy
f7=afi+ b,
where a € L* and b; € L (1 <i<h), and let f; € M* (i=h+1,...,m) satisfy
fi = aifs,

where a; € L* (h+1 < i < m). Suppose that a, a;, and b; have the following

properties:

(i) If c; € C (1 <i < h) are not all zero, there is no element g of L such that
h
ag—g" = Zcibz‘«
i=1

(ii) apy1,---,am are multiplicatively independent modulo H .

Then the functions f; (1 <i < m) are algebraically independent over L.

Proof of Theorem 3. Let p1,..., p, be the algebraic numbers in (9). There exist
multiplicatively independent algebraic numbers f;,..., 0, with 0 < |5;| < 1 (1 <
J < s) such that

it =G I8, pilei=GI 8% 2<i<r), (17)
j=1 j=1
where (i, ..., are roots of unity and e;; (1 <i <r, 1 < j < s) are nonnegative

integers (cf. Loxton and van der Poorten [6], Nishioka [10]). Take a positive integer
N such that ¢V = 1 for any i (1 <i < r). We can choose a positive integer p
and a nonnegative integer ko such that ax, = a; (mod N) for any k > ko. By
Remark 1, there exists a nonnegative integer k; such that ag,1 > ai for all & > ky.
Therefore by (9) and (10), there exists a nonnegative integer ¢ > max{ko, k1 } such

11
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that R,, # 0 for all k > ¢. Let y;» (1 < j <s, 1 <X < n) be variables and let
yj = (yj17"'7yj7l) (1 S] S 8)7 Yy = (yla"'7ys)' Define

:Zx'f( HP fy)/ bebcakﬂP >) (m = 1),
k>q Jj=1

where P(z), z = (21,...,25), 1S the monomial given by (4) and Q is the matrix
given by (6). Letting

D:xg,ozeax, and 3= (1,...,1,0,...... 11, By,
ox . - -
we see that
! I k[ - T L m Lok
Dlfulas8) = XK (/0 00100 ) =X s
k=q =2 k}Zq( ak)
Hence Lk
> Dfua.8) €@ (aeQ", e Ny meN),
iso (Ra)™

and so it suffices to prove the algebraic independence of the values
D'fn(a,8) (a€eQ”, le Ny, meN).

Let
Q' = diag(QP,...,QP).

——— —
s

Then f,,(x,y) satisfies the functional equation

Jm(7,9)
= 2P f.(z,Qy)

p+qg—1

+ > xk( HP y ) /(b +Zb§“kHP )) . (18)
k=q = 7j=1
where Q'y = (WPy,,...,Qy,), and so D' f,,,(z,y) (I > 1) satisfy

leM<x7y)

l

[
= Z( )pl‘“x”Dﬂfm(x,ﬂ’w
p=0 \H

p+q 1

Z kl k (CakHP 61] bl+ZbCakHP e”) . (19)

12
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We assume that the values D'f,,(y,3) (0 < I <L, 1<m <M, 1 <o <t)are
algebraically dependent, where o, ..., a; are nonzero distinct algebraic numbers. It
follows from (18) and (19) that D'f,,(a,y) (0 <1< L, 1 <m <M, 1 <o <
t) satisfy the functional equation of the form (15), so that they are algebraically
dependent over Q(y) by Lemmas 1 and 2. Hence we see by Lemma 4 that

Oéil):...:ag (20)

and f.(as,y) (1 <m < M, 1 < o < v) are linearly dependent over @ modulo
Q(y), changing the indices o (1 < o < t) if necessary. Thus there are algebraic
numbers ¢,,, (1 <m < M, 1 <o <v), not all zero, such that

= Z Cmo (s, Y) € Q).

m=1o0=1

Since F(y) € Q[[y]] N Q(y), there are A(y), B(y) € Qly] such that

F(y) = A(y)/B(y), B(0)#0

(see Nishioka [9, Lemma 4]). Letting y, =--- =y, =2z = (z1,..., 2,), we have
G(z) = F(z,...,2)
———
= > Z (Zcma ) < PR 2)E /(b + Zbig“’“P(ka)Ei))
k>qgm=1 =2
€ Q(z1,...,2n),
where F; = ] 1 ezj € N (1 <i<r),since e;,...,e;s are not all zero for each 7.
Letting >°7_, ¢mo® = dp(k)af (1 <m < M), we ﬁnd

dm(k —i—p) = dm(k) (k > O)

by (20). Then G(z) satisfies the functional equation

pta-1l M r m
G(z) = afG(@2)+ 3 > dn(k)ey (ka(@’“z)’fl/(bl + Zbigfkpmkz)’fi)) ,
k=q m=1 i—2
so that by Theorem 1,
M T m o
= Z (k)0 (kaXEl/(ln + szgkaEl)> €eQ (g<k<p+q—1).
m=1

=2

13



KSTS/RR-97/006
July 14,1997

Hence

dn(k) =0 1<m <M, ¢g<k<p+q—1),
since ordx— (¢* X P/ (by + X1, bi¢* X)) " = mEy (1 <m < M). Letting n, =
a,/a; (1 < o < v), we see that ny,---,n, are distinct p-th roots of unity by (20)
and that d,,(k) = XV _jcmen® = 0 (¢ < k < p+ q — 1), which holds only if
Cm1 =+ = ¢y = 0. This is a contradiction, since ¢, (1 <m < M, 1 <o <)
are not all zero, and the proof of the theorem is completed.

Proof of Theorem 4. We assume that
1 Kok

(1<o<t, 0<I<L —H<h<H 1<m<M)
kzo(}tm+hyn

are algebraically dependent, where oy, . .., a; are nonzero distinct algebraic numbers.
Since |p1| > max{1l, |p2|}, there exists a nonnegative integer ¢ > max{ko, k1} such
that Ry, 45 # 0 for any h (—H < h < H) and for all k > ¢. Define

frm(z ZJE ( HP )% /(1 + b7 be(py tp2)” HP 6%)

k>q

(—thgH, 1<m< M),

where P(z),Q are given by (4), (6), respectively, and the roots of unity (;, (s and
the nonnegative integers e;; (1 = 1,2, 1 < j < s) are determined by (17). Letting
D and B be as in the proof of Theorem 3, we see that

(b "D fam(g, B) = DKl (b oy o™ /(14 by Mooy ) (o1 p2)™)

k>q
1k
kol
k>q (Rak+h)m
Hence

! ]flOé’; 1 _—h\m nl _
(Rapsn)™ (01 p1 )" D frm(aq, B) € Q
k>0 Ak

(0<I<L, -H<h<H 1<m<M, 1<0<1t),

m

and so D'fy, m(ae,B3) (0< I <L, —H<h<H 1<m<M 1<o0<t)are
algebraically dependent. By the same way as in the proof of Theorem 3, we see that

11):...:0{5 (21)

14
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and frm(oe,y) (—H <h < H, 1 <m< M, 1< <v) are linearly dependent
over Q@ modulo Q(y), changing the indices o (1 < o < t) if necessary. Thus there
are algebraic numbers cpe (—H <h < H, 1 <m < M, 1 <o <v), not all zero,
such that

= Z Z zl/: Chmafh,m(amy) S Q(y>

h=—H m=10=1

Letting y, =+ =y, =z = (21,...,2,), we have
G(2)
= F(z,...,2)
———

= 35 S (S cunmat ) (G PO 0+ b )P )

k>q h=—H m=1

S Q(Zl, Ce ;Zn);

where E; = >75_je;; € N (i = 1,2), since e, ..., e are not all zero for each i.
Letting 3>7_, chmo@® = dpm (k) (-H <h < H, 1 <m < M), we find

by (21). Then G(z) satisfies the functional equation

G(z)

= of (sz)
ptq—1

VYOS S e Jak (G P(QF2)" /(14 by 'ba(pr o) "G P(QF2) ™))
k=q h=—H m=1
so that by Theorem 1,

Qu(X) = Z 5" dun()a! B X /(14 b7 by pa) "G5 X))

—H m=1
€ Q (g<k<p+q-—1).

Hence

dpm(k) =0 (FH<h<H, 1<m<M, ¢<k<p+q-1),
since Qx(X) has some poles if dp, (k) (—H < h < H, 1 <m < M) are not all zero.
The rest of the proof is similar to that of the proof of Theorem 3.

15
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Proof of Theorem 5. There exist multiplicatively independent algebraic numbers
Bry...,0s with 0 < |5;] <1 (1 <j < s) such that

QO = Cz H ﬁje“ (]- <1< T), (22)
j=1
where (i, ..., are roots of unity and e;; (1 <i <r, 1 <j <s) are nonnegative

integers. Take a positive integer N such that ;¥ = 1 for any i (1<i<r) We
can choose a positive integer p and a nonnegative integer ¢ such that azy, = ai
(mod N) for any k > ¢. Let y;» (1 < j < s, 1 < X < n) be variables and let
Y; = (Y1, Ym) (1< <5),y=(yy,...,Y,). Define

fity) = ZC“’“HP “y,),

k>q 7j=1
G Iy POy,
gl(y) = a S e
%‘21—@*’ _ P(QFy )

and
hiy) = H<1—<akﬂp by.) ) (1<i<r)
k>q

where P(z) and Q are defined by (4) and (6), respectively. Letting

B=1,...,1,01,...... 1,01, B,
—— ——

we see that
ak
ZOQ ;i _Zﬁa hi(l@):H(l_aik)a
k>q k>q k>q

and so it suffices to prove the algebraic independence of the values

fi(B), g:(B), hi(B) (1 <i<r). Let

Q' = diag(Q”,...,0P).
—— —

Then f;(y), ¢:(y), hi(y) (1 < i <r) satisfy the functional equations

p+q 1

fily) = Z C“kHP by,

ptq—1 Cak s P(Qky )eij
. — Q/ 1 ]
gz(y) + Z 1 — Cak (Qk )ez] !

16
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and

ptq—1

hi(y) = ( kH ( -G H P(Q )) hi(Qy),
=q

where 'y = (QPy,, ..., Qy,). We assume that the values f;(3), ¢:(8), hi(8) (1 <

i <r) are algebraically dependent. Then the functions fi(y), ¢:(y), hi(y) (1 <i <

r) are algebraically dependent over Q(y) by Lemmas 1 and 3. Hence by Lemma 5

at least one of the following two cases arises:

(i) There are algebraic numbers b;, ¢; (1 <7 <), not all zero, and F(y) € Q(y)
such that

p+qg—1 r ’ ak P Qk €ij
F(y) —|— Z Z (b Cak H P yj em c CCak ((Qk ))e”> .

k=q =1
(23)

(i) There are rational integers d; (1 <4 < r), not all zero, and G(y) € Q(y)\ {0}
such that

G(y) = (pkf[ ﬁl <1 — (o ﬁ P(Qkyj)eijyi) G(y). (24)

j=1
Let M be a positive integer and let
Y; = Y, -+ Yjn) = (MY (1< <),
where M is so large that the following two properties are both satisfied:
(I) If (ei1,---,€is) # (€ir1y ..., €s), then -1 e;; M7 21 ey M.

(1) F*(z) = F(zM,. . M . 2M M
G (z)=GM, .. 2M MM

Then by (23) and (24), at least one of the following two functional equations holds:

' . ‘oo p+q—1 r o . Zgzakp Qk E;
0 FE =P S S <big}- Pty ] { (in)&)'

(i) G*(= (pﬁlﬁ (1— Co P(QF2)P )d) G(P=).

17
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Here E; = 325, ey M J (1 <4 <r) are distinct positive integers by the property (I),
since none of a;/a; (1 < i < j <r)is aroot of unity. By Theorems 1, 2, and the
property (II), at least one of the following two properties are satisfied:

(i) Forany k (¢ <k <p+q—1),

T

a : C; zakXEl : a ; N a ; e
> (gt LX) =3 (et e S ) €@ 29
=1 ? i=1 =1

(ii) Forany k (¢ <k <p+q—1),

[[1 - ¢ xP) =y eQ”. (26)
i=1
Suppose first that (i) is satisfied. Then we show that ¢; = 0 (1 < i < 7). Assume
contrary that ¢y,...,c, are not all zero. Let S={ie€ {l,...,r} | ¢; #0 } and let
i" € S be the index such that Ey < E; for any i € S\ {i'}. Since (E; --- E, + 1)Ey
is not divided by any E; with i € S\ {¢'}, the term ¢y (¢j* X Fi")Er-Ertl does not
cancel in (25), which is a contradiction. Hence ¢; = 0 (1 < i < r) and so by,...,b,
are not all zero, which is also a contradiction, since Ei,..., E, are distinct. Next
suppose that (ii) is satisfied. Taking the logarithmic derivative of (26), we get
B X

i=1

=0 (¢<k<p+q-—1).

This is a contradiction, since ordy—oE;¢* XFi~1 /(1 = (" XP) = FE;—1 (1 <i <),
and the proof of the theorem is completed.

3 Proofs of Theorems 1 and 2.

We need several lemmas to prove Theorems 1 and 2. Use the same notations as in the

preceding section, define an endomorphism 7 : M — M by (16), and adopt the usual

vector notation, that is, if I = (i1,...,4,) € Z", we write 2z’ = z{' - - z». We denote
by Clz1, ..., z,| the ring of polynomials in variables z1, ..., z, with coefficients in C'.

Lemma 6 (Nishioka [10]). If A, B € C|[z, ..., z,) are coprime, then (A7, BT) =
2! where I € Ny".

18
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Lemma 7 (Nishioka [10]). Let Q be an n X n matriz with nonnegative integer
entries which has the property (I). Let R(z) be a nonzero polynomial in Clz, . . ., z,)
and & = (x1,...,x,) an element of C" with x; # 0 for any i (1 <i <n). We put

R(Z) = Z C[ZI (C[ 7£ O)

I=(’i1,...,in)€A

If R(QFx) = 0 for infinitely many positive integers k, then there exist distinct ele-
ments I,J € A and positive integers a,b such that

m(I—J)Qa(Qb’v—E) —1
for all k > 0, where E is the identity matriz.
Lemma 8 (Nishioka [9]). If g € M satisfies
g =cg+d (c,deC),
then g € C.

Lemma 9. Let {ai}r>0 be a linear recurrence satisfying (2). Suppose that
{ak}r>0 is not a geometric progression. Assume that the ratio of any pair of distinct
roots of ®(X) is not a root of unity. Then the sequence {ay}r>o does not satisfy the

linear recurrence relation of the form
agy = cap (k>0),
where | is a positive integer and c is a nonzero rational number.

Proof. 1f | = 1, then a;, = apc® (k > 0), which contradicts the assumption in the
lemma. If [ > 2, then at least two of the roots of ¥(X) = X! — ¢ are those of ®(X).
This also contradicts the assumption, since the ratio of any pair of distinct roots of
U(X) is a root of unity.

Lemma 10. Let u = (uy,...,u,) satisfy trans. deg, C(u) =n —1. Iful,u’ €
C*, where I,J € Z"\{0}, then I and J are proportional, i.e. there exists a nonzero

rational number r such that [ =rJ.

Proof. Suppose contrary there are I = (iy,...,4,),J = (J1,..-,Jn) €
Z" \ {0} such that u!/,u’ € C* and I,J are not proportional. Assume that
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jx # 0. Then wuy is algebraic over the field C'(uy, ..., ux_1,Uxs1,---,Uy). Since
(u') (u’)™ = w7 € C* and j\I —iy)J is a nonzero vector whose A-th com-
ponent is zero, uy, ..., Ux_1,Uxt1,-- -, U, are algebraically dependent over C'. Hence
trans. deg C'(u) < n — 2, which is a contradiction.

Lemma 11. If ki, ky € Ny are distinct, then P(Q*2) — v, and P(Q*2z) — 1,
are coprime, where P(z) is the monomial defined by (4), Q0 is the matrix defined by
(6), and 1,72 € C*.

Proof. Suppose contrary there exists 7'(z) € Clz1, ..., z,) \ C which divides both
P(Q%2) —~; and P(Q*22) — 5. We may assume that k1 > ko. Let w = (uy, ..., u,)
be a generic point of the algebraic variety defined by T'(z) over C. Then T'(u) = 0
and trans. deg C(u) =n — 1. Since T'(u) = 0,

Ay +n—1 ay,
P(leu) = U ER e =M

and
Ako+n—1 ag
P(kau)_u12 ceeu 2_,}/_

By Lemma 10, there exists a mnonzero rational number ¢ such that
(Qky4n—1y- -0k ) = (Arytn—1,.--,ax,). Hence by (2), {ax}r>o satisfies the linear

recurrence relation agi,—r, = car (k=0,1,2,...), which contradicts Lemma 9.

Lemma 12. Let 2 be an n x n matriz with nonnegative integer entries which
has the property (I). Let R(z) be a nonzero polynomial in Clzy,. .., z,]. If R(Qz)
divides R(z)z!, where I € Ny", then R(z) is a monomial in zy,. .., 2,.

Proof. We can put
R(z) = 2" [[ ai(2)",
i=1

where J € Ny", e; (1 <i < v) are positive integers, and ¢;(2), ..., g,(2) are distinct
irreducible polynomials and not monomials. For each i (1 <i < v), g;(Q2z) can be

written as

9:(Qz) = hi(z)2",

where hi(z) € Clz1,...,2,] \ C is not divided by z1,..., z,, and H; € Ny". Since
2T (hy(2) 24 divides 2/ TV, gi(2)%,

v v

H hi(z) H g:(2)°. (27)

=1 =1
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Hence hi(2),...,h,(z) are irreducible, otherwise we can deduce a contradiction,
comparing the numbers of prime factors in (27); thereby

H hi(z)% = ¢ H gi(2)%,
i=1 i=1
where ¢ is a nonzero element of C. Therefore

R(Qz) =£(R(2)z", H=J(Q—-E)+> ¢H; € Z".
i=1
Let D = |det(©2 — E)|. Then D is a positive integer, since the matrix € has no
roots of unity as its eigenvalues. We extend the endomorphism 7 : M — M to the
quotient field M’ of formal power series ring C [[zl/ b, z1/P]] by the usual way.
Since the monomial S(z) = 275" € M’ satisfies S7(z) = S(z)z", we see that
F(z) = R(z)/S(z) € M’ satisfies F7(z) = {F(z) and so F'(z) € C by Lemma 8,

which means that R(z) is a monomial in z1,.. ., z,.

Proof of Theorem 1. Let v1,...,7 be the distinct roots of the least common
denominator of Qx(X) (¢ <k <p+qg—1). Then 7, ...,7 are nonzero elements of
C. There exists a positive integer M such that

ptq—1 ¢ pt+q-1
— ( I1 TI(P©F=z) ) Z Qr(P(QF2)) € Cla, ..., 24).

k=q j=1

Letting G(z) = A(z)/B(z), where A(z) and B(z) are coprime polynomials in

Clz1,- .., 2n], we have
prq—1 t
Az)B(z) 1] [P ;)™M
k=q j=1
p+q 1 ¢
= aA(2)B(z) ] [I(P — ) + R(2)B(2)B(Q"z)
k=q j=1

by (7). We can put (A(®z), B(Qz)) = 2!, where I € Ny", by Lemma 6. Then

p+q 1 ¢
B(z)|B(2)z" [ [I(P )" (28)
k=q j=1
and
p+q—1 ¢
2)B(Pz) [[ [P )M, (29)
k=q j=1
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First we prove that G(z) € C|z, ..., 2,]. For this purpose, we show that B(Q7z)
divides B(z)z!. Otherwise, by (28), there exists a prime factor T'(z) € C[z1,. .., 2,)
of B(2?z) such that

T(2)|(P(Q2%2) — ;) (30)

for some ko (¢ < ko < p-+ g — 1) and for some jy (1 < jo <t). Let w = (uq,...,uy,)
be a generic point of the algebraic variety defined by T'(z) over C. Then T'(u) =0
and

trans. degs C(u) =n — 1.

Letting z = w in (30), we see that
P(QMw) = ug """ un = . (31)

Since T'(z) divides B(z) and B(QPz) divides B(Q%*z) Hp+q ! L(P(QMPz) —
)™ by (29),

p+q—1 t

2)|B(Q%z) ) 1T TI(P P(QFP2) — )M

k=q j=1
Therefore T'(2) divides B(Q2%*z) by Lemma 11 with (30). Cotinuing this process, we
see that T'(z) divides B(2P*z) and so B(QP*u) = 0 for all positive integers k. Since

uy # 0 (1 <X <n), by Lemmas 1 and 7, there exist nonzero n-dimensional vector v
with rational integer components and positive integers d, e such that wV2 @ ~E) = 1
for all k£ > 0, where E is the identity matrix. Then

d__ dk+e
LV O-E)Q —1

for all k£ > 0. Letting v(Q? — E)Q°¢ = (b,_1,...,by) and letting {by }r>0 be a linear
recurrence defined by (2) with the initial values by, ..., b, 1, we have

uptn b = 1 (32)

for all & > 0. Therefore by Lemma 10, together with (2), {b; }x>0 satisfies the linear
recurrence relation

bk+d = Cbk (k Z 0), (33)

where ¢ is a nonzero rational number. On the other hand, there exists a nonzero
rational number ¢’ such that (axyin-1,...,ak) = (ba-1,...,b) by (31), (32), and
Lemma 10. Hence by (2), we have

Atk = C,bk (k‘ Z 0) (34)
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By (33) and (34), agyq = cay for all k > ky. Then by (2), axra = car (k > 0),
which contradicts Lemma 9, and so we can conclude that B(QFz) divides B(z)z!
Therefore B(z) is a monomial in zi,...,2, by Lemmas 1 and 12. Hence we can
conclude that G(z) € Clzy, ..., 2, since G(2) = A(2)/B(2) € C|[z1, - . ., za)].
Secondly we show that Qr(X) € C[X] (¢ < k < p+q—1). Foreachk (¢ < k < p+
—1),let Qr(X) = Up(X)/Vi(X), where Uy (X) and V(X)) are coprime polynomials
in C[X] with V,(0) # 0. Then Uy (P(9*2)) and Vi (P(92*2)) are coprime polynomials
in C[z1,...,2,) with V4(0) # 0. By Lemma 11, V4(P(Q2)) and Vi (P(Q¥ 2)) are
coprime if k # k. Since G(z) € C[z1, ..., 2,] and so G(QPz) € Clz, ..., 2z,],

p+g—1 Uk(P(ka))
2 Vi(P(2k2))

k=q

66[21,...7271]

by (7). Hence Vi (P(QF2)) divides Uy(P(Q2*2)) and so Vi(P(Q¥z)) € C~ for any
k(g <k<p+qg—1). Therefore Vj(X) € C”™ and so QX)) e CX] (¢ <k <
p+qg—1).

Finally we prove that Q(X) € C' (¢ < k < p+qg—1), which implies G(z) € C by
Lemma 8. To the contrary we assume that Qi (X) & C for some k (¢ < k < p+q—1).
Let g be the number of terms appearing in G(z). Iterating (7), we get

2g pt+q—1

G(Z) 2g+1G< 2g+1 Za Z Q Qkaz)).
=0

Then the number of terms appearing in the right-hand side is at least 2g + 1, since
(Qhgn-1 : .t () 7 (Qrgn_1 : ... : ap) in P"H(Q) for any distinct nonnegative
integers k and k' by Lemma 9 and so the nonconstant terms appearing in the right-
hand side never cancel one another. This is a contradiction, since the number of
terms appearing in the left-hand side is at most 2¢g, and the proof of the theorem is
completed.

Proof of Theorem 2. Letting G(z) = A(z)/B(z), where A(z) and B(z) are
coprime polynomials in C[z1, ..., z,], and letting for each k¥ (¢ < k < p+ ¢ — 1),
Qr(X) = Up(X)/Vi(X), where Uy (X) and V4 (X) are coprime polynomials in C[X],

we have

p+g—1 p+q—1

A(z)B(z) H Vi (P = A(QPz)B(z) 1:[ Ur(P(QF2)) (35)
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by (8). We can put (A(QPz), B(%z)) = 2!, where I € Ny", by Lemma 6. Let

U(X) = ¢ H;’;l(X — 1;)%, where ¢ is a nonzero element of C, g1, ..., Ver,
are the distinct roots of Ug(X), and eg,...,ex, are positive integers, and let
Vi(X) = dp TT7E (X — Ok;)/k, where dj is a nonzero element of C, Oxy,. .., Ok,
are the distinct roots of Vi(X), and fi1,..., fru, are positive integers. Then

Viels - -+ s Vhtgs Okls - - -5 Ok, (¢ < k < p+q— 1) are nonzero elements of C' and

p+q 1wy

A(QPz) “T0 TIP — Opj) T,

k=q j=1
p+q—1 g
A(z) | A=) TT TT(P(©Q%2) = yy)™,
k=q j=1
p+q 1

B(¥z) H H ’ij)ek]

k=q j=1

and

p+g—1 uy

B(z) B(z) ] TIP — O )Hi
k=q j=1
Hence by the same way as in the proof of Theorem 1, we see that A(QPz) divides
A(z)z! and that B(2Pz) divides B(z)z!. Therefore A(z) and B(z) are monomials
in zq,..., 2, by Lemmas 1 and 12. Then by (35) and the fact that U (0) # 0, Vi (0) #
0O(@<k<p+q-1),

p+q—1 p+g—1

[T U(P(QF2)) /) ] Vi(P(Q"2)eC".
k=q k=q

Here, Up(P(Qz)) and Vi (P(Q¥2)) (K # k)

Clz1,. .., 2, by Lemma 11, and Uy(P(2%2)), Vi(P(Q*2)) are coprime polynomi-
als in Clz1,...,2,] for each k (¢ < k < p+q— 1), since Ur(X) and Vj(X) are
coprime in C[X]. Therefore Up(X),Vi(X) € C° (¢ < k < p+ ¢ — 1) and so
QX)) e T (¢<k<p+q—1). Hence G(z) € C by Lemma 8, and the proof of

the theorem is completed.

are coprime polynomials in
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