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1 Introduction

Stable distributions are characterized as limiting distributions of normalized

partial sums of independent and identically distributed random variables. Self-

decomposable distributions (also called L distributions) are natural extensions

of stable distributions and are given by limiting distributions of normalized par-

tial sums of independent random variables, which are not necessarily identically

distributed but satisfy the infinitesimal condition, (see Remark 1.1 below). For

details about stable and self-decomposable distributions, the readers can refer

to, e.g., Gnedenko-Kolmogorov [4]. Urbanik [10], [11] and Sato [8] studied a

sequence of decreasing subclasses {Lm, 1 ≤ m ≤ ∞} of self-decomposable dis-

tributions containing all stable distributions.

On the other hand, semi-stable distributions have also been well studied as

extensions of stable distributions for long time. (See, e.g., Meerschaert-Scheffler

[7] and the references therein. Also see Choi [2].) As is well known, semi-

stable distributions are characterized as limiting distributions of subsequences

of normalized partial sums of independent and identically distributed random

variable. However, although self-decomposable distributions are natural exten-

sions of stable distributions, it seems that the distributions extending semi-stable

distributions in the same way have not been well recognized.

In this paper, we shall define semi-selfdecomposable distributions as lim-

iting distributions of subsequences of normalized partial sums of independent

random variables, which are not necessarily identically distributed but satisfy

the infinitesimal condition. We shall introduce a way of making a new class of

limiting distributions derived from a class of distributions, which is similar to

that introduced by Sato [8]. We replace limits of full sequences in Sato [8] by

that of subsequences. This idea leads us to constructing not only the class of

semi-selfdecomposable but also new decreasing classes corresponding to {Lm}
by Urbanik and Sato.
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Throughout this paper, we shall use the following notation. P(Rd) is the

class of all probability distributions on Rd, I(Rd) is the class of all infinitely

divisible distributions on Rd, L(Rd) is the class of all self-decomposable (or

L) distributions on Rd, SS(Rd) is the class of all semi-stable distributions on

Rd, µ̂(z) is the characteristic function of µ ∈ P(Rd), µ∗t is t-th convolution of

µ, t ≥ 0, L(X) is the law of X, 〈 , 〉 is the Euclidean inner product in Rd, and

‖ · ‖ is the norm induced by 〈 , 〉 in Rd.

Definition 1.1. Let H ⊂ P(Rd) and 0 < b < 1. µ ∈ P(Rd) is said to

belong to the class Q(H, b) if there exist independent Rd-valued random vectors

{Xj}, an > 0, ↑ ∞, cn ∈ Rd, {kn} ⊂ N, kn ↑ ∞ such that

lim
n→∞

an

an+1
= b, (1.1)

L(Xj) ∈ H, (1.2)

L

 1

an

kn∑

j=1

Xj + cn


 → µ, (1.3)

lim
n→∞

max
1≤j≤kn

P

{∥∥∥∥
1
an

Xj

∥∥∥∥ > ε

}
= 0, ∀ε > 0. (1.4)

Remark 1.1. When (1.4) is satisfied, we say that random variables {a−1
n Xj , 1 ≤

j ≤ kn, n = 1, 2, · · · } satisfy the infinitesimal condition.

Remark 1.2. If we can take kn = n, (then automatically b = 1), then the above

class is turned out to be the one which Sato [8] studied.

Remark 1.3. Although we are dealing with Rd-valued random variables {Xj},
the normalization in (1.3) is scalar. The normalization by linear operators might

be the natural procedure in higher dimensions. Generalization to the operator

normalization will be studied in the forthcoming paper.

In Section 2, we shall give some basic results on Q(H, b). In Section 3, the

class of semi-selfdecomposable distributions will be introduced as Q(P(Rd), b),
3
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together with a decreasing sequences of subclasses of it given through the proce-

dure in Definition 1.1. Also a necessary and sufficient condition for a distribution

belonging to those classes will be discussed. In Section 4, we shall give another

necessary and sufficient condition in terms of Lévy measures.

After we completed this paper, we had a chance to see a recent paper by

Bunge [1]. We want to make some comments on his paper here.

For µ ∈ P(R1), Urbanik decomposability semigroup D(µ) is defined as the

set of c ∈ R such that µ̂(z) = µ̂(cz)ρ̂c(z),∀z ∈ R for for some ρc ∈ P(R1). In

Bunge [1], he says that µ is C-decomposable if C ⊂ D(µ), where C is an arbitrary

closed multiplicative subsemigroup of [0, 1] containing 0 and 1, and denotes that

the set of such laws by LC . L[0,1] is the class of all self-decomposable distributions

on R1. He also introduces the class LC(H) for H ⊂ P(R1) as follows:

LC(H) ={µ ∈ P(R1) : ∀c ∈ C \ {0, 1},
there exist independent random variables {Xj} ⊂ H

and {an} ⊂ (0,∞), {cn} ⊂ R such that

lim
n→∞

an/an+1 = c and L

an

−1
n∑

j=1

Xj + cn


 → µ}.

(1.5)

Then he studies

LC
m = LC(LC

m−1),m = 0, 1, 2, · · · with LC
−1 = P(R1).

Among other results he gives a necessary and sufficient condition for that µ ∈
LC

m, which has a similar form as one of our results below.

However, a big difference between his paper and ours is that we are dealing

with random variables satisfying the infinitesimal condition, but it is not neces-

sarily the case in Bunge [1]. Thus, the distributions studied in Bunge [1] are not

necessarily infinitely divisible. Nevertheless, he shows that µ ∈ LC
∞ =

⋂∞
m=0 LC

m
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is infinitely divisible. Therefore it might be interesting to characterize the class

LC
∞ by Lévy measure and compare it with our classes in this paper.

Finally, we must mention the name of Loève as a pioneer of the decom-

posable problem. (This history is also mentioned in Bunge [1].) Loève [5] (also

see [6], page 352) defined the c-decomposability in one dimension. Namely, µ is

called c-decomposable for 0 < c < 1, if µ is in LC(P(R1)), where C in (1.5) is

{cn}∞n=0 ∪ {0}, and he proved results similar to our Theorems 2.1, 3.1, 3.2 and

3.5 below in his setting. Also, when c-decomposable µ is infinitely divisible, he

gave one-dimensional version of our Lemma 4.1 below.

2 Some basic results for Q(H, b)

Proposition 2.1. Q(H, b) ⊂ I(Rd).

Proof. Obvious from (1.3) and (1.4). ¤

Proposition 2.2. Let ν ∈ P(Rd). Then Q({ν}, b) ⊂ SS(Rd).

Proof. Sine L(Xj) = ν in Definition 1.1, {Xj} are i.i.d. random vectors. So

the requirements in Definition 1.1 are well known as those for that the limiting

distribution µ is semi-stable.

Remark 2.1. In the ordinary definition of semi-stable distributions, it is as-

sumed that limn→∞ kn/kn+1(=: p, say) exists, instead of (1.1). However, as a

result, (1.1) follows. Furthermore it is known that there exists α ∈ (0, 2] uniquely

so that bα = p.

Proposition 2.3. Let 0 < b < 1. Then Q(H, b) ⊂ Q(H, bm), m = 1, 2, , · · · .

Proof. Let µ ∈ Q(H, b). Then there exist {Xj}, {an}, {cn}, {kn} as in Definition

1.1. Define

ãn = anm, c̃n = cnm, k̃n = knm.
5
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Then

lim
n→∞

ãn

ãn+1
= lim

n→∞
anm

a(n+1)m
= bm,

and (1.3) and (1.4) hold with the replacements of an, kn, cn by ãn, k̃n, c̃n. Hence

µ ∈ Q(H, bm). ¤

Definition 2.1. H ⊂ P(Rd) is said to be completely closed if H is closed under

convergence, convolution and type equivalence. Here H is said to be closed

under type equivalence if L(X) ∈ H implies L(aX + c) ∈ H for any a > 0 and

c ∈ Rd.

Definition 2.2. H ⊂ P(Rd) is said to be completely closed in the strong sense

if H ⊂ I(Rd), H is completely closed and H is closed under t-th convolution for

any t > 0.

Proposition 2.4. Let 0 < b < 1 and suppose that H is completely closed.

Then Q(H, b) ⊂ H.

Proof. If µ ∈ Q(H, b), then it follows from the complete closedness of H and

(1.3) that µ ∈ H. ¤

Theorem 2.1. Let 0 < b < 1.

(i) Suppose that H ⊂ P(Rd) is completely closed. Then a necessary condition

for that µ ∈ Q(H, b) is that there exists ρ0 ∈ H ∩ I(Rd) such that

µ̂(z) = µ̂(bz)ρ̂0(z), ∀z ∈ Rd. (2.1)

(ii) Suppose that H is completely closed in the strong sense. Then the existence

of ρ0 ∈ H ∩ I(Rd)(= H) satisfying (2.1) is also sufficient for that µ ∈ Q(H, b).

(iii) If H is completely closed in the strong sense, so is Q(H, b).

Proof. (i) Suppose µ ∈ Q(H, b). Then there exist {Xj}, {an}, {cn} and {kn}
6
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satisfying the conditions in Definition 1.1. We have

1
an

kn∑

j=1

Xj + cn =


 1

an

kn−1∑

j=1

Xj +
an−1

an
cn−1


 (2.2)

+


 1

an

kn∑

j=kn−1+1

Xj + cn − an−1

an
cn−1




and denote the characteristic functions of the left hand side of (2.2) and of the

first and the second terms on the right hand side of (2.2) by ϕn(z), ϕn,1(z) and

ϕn,2(z), respectively.

By (1.3), ϕn(z) → µ̂(z). Next if we use (1.1), we have

ϕn,1(z) = E


exp



i

〈
z,

an−1

an


 1

an−1

kn−1∑

j=1

Xj + cn−1




〉




 → µ̂(bz).

By Proposition 2.1, we know that µ ∈ I(Rd), and hence µ̂(z) 6= 0,∀z ∈ Rd.

Therefore, the limit χ(z) := limn→∞ ϕn,2(z) exists and

χ(z) =
µ̂(z)
µ̂(bz)

. (2.3)

The right hand side of (2.3) is continuous at z = 0. Hence χ(z) is the characteris-

tic function of a probability distribution (ρ0, say). Thus µ̂(z) = µ̂(bz)ρ̂0(z), ρo ∈
P(Rd).

Since ρ0 is the limiting distribution of the normalized sums of independent

random vectors {Xj} satisfying (1.4), we have ρ0 ∈ I(Rd). Furthermore, the

assumption that L(Xj) ∈ H and the complete closedness of H imply that ρ0 ∈
H.

(ii) We first note that (2.1) implies that µ̂(z) 6= 0,∀z ∈ Rd. If not, there

exists z0 ∈ Rd such that µ̂(z0) = 0, µ̂(z) 6= 0 when ‖z‖ < ‖z0‖. Then by (2.1),

0 = µ̂(z0) = µ̂(bz0)ρ̂(z0). Since 0 < b < 1, µ̂(bz0) 6= 0, and so ρ̂(z0) = 0, which

contradicts the assumption that ρ0 ∈ H ∩ I(Rd).
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We construct {Xj}, {an}.{cn}, {kn} satisfying (1.1)–(1.4) in Definition 1.1.

First choose {kn} ⊂ N (k0 = 0) such that

lim
n→∞

max
1≤i≤n

∣∣∣ρ̂0(bn−iz)1/(ki−ki−1) − 1
∣∣∣ = 0. (2.4)

It is enough to choose {kn} such that kn − kn−1 → ∞ as n → ∞. Define a

sequence of independent random vectors {Xj} by

L̂(Xj)(z) = ρ̂0(b−iz)1/(ki−ki−1), ki−1 < j ≤ ki

and let

Yn = bn
kn∑

j=1

Xj .

Then we have

L̂(Yn)(z) =
kn∏

j=1

L̂(Xj)(bnz) =
n∏

i=1

ki∏

j=ki−1+1

L̂(Xj)(bnz)

=
n∏

i=1

ρ̂0(bn−iz) =
µ̂(bn−1z)
µ̂(bnz)

· · · µ̂(z)
µ̂(bz)

=
µ̂(z)

µ̂(bnz)
,

where we have used the fact that µ̂(z) 6= 0,∀z ∈ Rd. Thus

lim
n→∞

L̂(Yn)(z) = µ̂(z),

which assures (1.1) and (1.3) with an = b−n.

It follows from (2.4) that

lim
n→∞

max
1≤j≤kn

| ̂L(bnXj)(z)− 1| = 0,

implying (1.4). (See, e.g., Chung [3], Theorem 7.1.1.) Furthermore, the assump-

tion that ρ0 ∈ H ∩ I(Rd) and the complete closedness in the strong sense of H

assure that ρ∗t0 ∈ H, implying that L(Xj) ∈ H. This is (1.2). This completes

the proof of the statement (ii) of the theorem.
8
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(iii) We only show that Q(H, b) is closed under convergence. Let µn ∈
Q(H, b) and suppose µn → µ∞. By (2.1), for each n ≥ 1,

µ̂n(z) = µ̂n(bz)ρ̂n,0(z), ρn,0 ∈ H ∩ I(Rd).

Since µn converges, limn→∞ ρn,0(=: ρ∞,0 , say) exists. Since H and I(Rd) are

completely closed, ρ∞,0 ∈ H ∩ I(Rd). Therefore

µ̂∞(z) = µ̂∞(bz)ρ̂∞,0(z), ρ∞,0 ∈ H ∩ I(Rd),

which means that µ∞ ∈ Q(H, b) by the statement (ii) of this theorem.

Closedness under convolution, type equivalence and t-convolution can be

shown similarly. ¤

3 The class of semi-selfdecomposable distributions and its subclasses

In this section, we define the class of semi-selfdecomposable distributions and

its subclasses given through the procedure in Definition 1.1 staring from H =

P(Rd), and give some characterizations for these classes.

For each b ∈ (0, 1), define

L0(b) = Q(P(Rd), b)

and

Lm(b) = Q(Lm−1(b), b), m = 1, 2, , · · · . (3.1)

Definition 3.1. Let 0 < b < 1. A probability distribution µ ∈ L0(b) is called

b-semi-selfdecomposable, or simply semi-selfdecomposable on Rd.

Remark 3.1. According to the terminology by Loève [5], our µ ∈ L0(b) may

should be called b-decomposable. However, b-decomposable distributions in the
9
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sense of Loève are not necessarily infinitely divisible. Our L0(b) is a subclass of

I(Rd). So, in parallel to naming for semi-stable random variables, we want to

call our µ ∈ L0(b) semi-selfdecomposable.

Theorem 3.1. Let 0 < b < 1.

(i) A necessary and sufficient condition for that µ ∈ L0(b) is that for some

ρ0 ∈ I(Rd), (2.1) holds.

(ii) L0(b) is completely closed in the strong sense.

Proof. First note that since H = I(Rd) is completely closed in the strong sense,

it follows from Theorem 2.1 that Theorem 3.1 is true if we replace L0(b) by

Q(I(Rd), b). So, to prove the theorem, it is enough to show that

Q(P(Rd), b) = Q(I(Rd), b). (3.2)

However, since Q(P(Rd), b) ⊃ Q(I(Rd), b), it is enough to show that

Q(P(Rd), b) ⊂ Q(I(Rd), b).

Suppose that µ ∈ Q(P(Rd), b). Since H = P(Rd) is completely closed, it

follows from (i) of Theorem 2.1 that for some ρ0 ∈ I(Rd), µ̂(z) = µ̂(bz)ρ̂0(z),

∀z ∈ Rd. Since this is the condition in (ii) of Theorem 2.1 with H = I(Rd),

we see that µ ∈ Q(I(Rd), b). This concludes (3.2), completing the proof of the

theorem. ¤

Theorem 3.2.

L(Rd) =
⋂

0<b<1

L0(b).

Proof. Theorem 2.1 and Corollary 2.4 in Sato [8] assure that µ ∈ L(Rd)

if and only if for any b ∈ (0, 1), there exists ρb ∈ I(Rd) such that µ̂(z) =

µ̂(bz)ρ̂b(z),∀z ∈ Rd. Hence by (i) of Theorem 3.1 we conclude that µ ∈ L(Rd)

if only if µ ∈ L0(b) for any b ∈ (0, 1). ¤

Theorem 3.3. Let 0 < b < 1 and m = 1, 2, · · · .
10
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(i) Lm(b) is completely closed in the strong sense.

(ii) A necessary and sufficient condition for that µ ∈ Lm(b) is that for some

ρm ∈ Lm−1(b),

µ̂(z) = µ̂(bz)ρ̂m(z), ∀z ∈ Rd.

Proof. By (ii) of Theorem 3.1, L0(b) is completely closed in the strong sense.

So, by the definition (3.1) and (iii) of Theorem 2.1, Lm(b),m = 1, 2, · · · , are

completely closed in the strong sense, which is the statement (i). Then the

statement (ii) is given by (i) and (ii) of Theorem 2.1 and Proposition 2.1. ¤

Theorem 3.4. Let 0 < b < 1 and put

L∞(b) =
∞⋂

m=0

Lm(b).

Then

(i) L∞(b) is completely closed in the strong sense.

(ii) L∞(b) = Q(L∞(b), b). Namely, L∞(b) is invariant under the Q(·, b)-
operation and hence a necessary and sufficient condition for that µ ∈ L∞(b)

is that for some ρ∞ ∈ L∞(b), µ̂(z) = µ̂(bz)ρ̂∞(z),∀z ∈ Rd.

(iii) L∞(b) is the largest class among the classes which are invariant under the

Q(·, b)-operation.

Proof. (i) We have seen that Lm(b),m ≥ 0, are completely closed in the strong

sense. So is L∞(b).

(ii) Since L∞(b) is completely closed, it follows from Proposition 2.4 that

L∞(b) ⊃ Q(L∞(b), b). So, it is enough to show the converse inclusion.

Let µ ∈ L∞(b). Then µ ∈ Lm(b),∀m ≥ 0. By (i) of Theorem 3.1 and (ii)

of Theorem 3.3, for each m ≥ 0 there exists ρm ∈ Lm−1(b) (with the convention

L−1(b) = I(Rd)) such that µ̂(z) = µ̂(bz)ρ̂m(z). Since µ̂(z) 6= 0,∀z ∈ Rd, we
11
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have

ρ̂m(z) =
µ̂(z)
µ̂(bz)

,

which is independent of m. If we write it ρ̂∞, then ρ∞ ∈ Lm−1(b),∀m ≥ 0,

equivalently, ρ∞ ∈ L∞(b) and

µ̂(z) = µ̂(bz)ρ̂∞(z), ∀z ∈ Rd.

Since L∞(b) is completely closed in the strong sense, it follows from (ii) of

Theorem 2.1 that µ ∈ Q(L∞(b), b).

(iii) Suppose that H(⊂ P(Rd)) satisfies that Q(H, b) = H. Obviously for each

m ≥ 0

H = Qm(H, b) ⊂ Qm(P(Rd), b) = Lm−1(b),

where

Qm(H, b) =

m︷ ︸︸ ︷
Q(Q(· · · (Q(Q(H, b), b), · · · ), b).

Thus

H ⊂
∞⋂

m=0

Lm−1(b) = L∞(b).

The proof of the theorem is thus completed. ¤

Corollary 3.1. Let 0 < b < 1.

I(Rd) ⊃ L0(b) ⊃ · · · ⊃ Lm(b) ⊃ · · · ⊃ L∞(b).

Proof. Obvious from Proposition 2.1, the complete closedness of Lm(b), m ≥ 0,

and Proposition 2.4. ¤

Theorem 3.5. Let µ ∈ SS(Rd) and suppose that for some a, b ∈ (0, 1) and

c ∈ Rd,

µ̂(z)a = µ̂(bz)ei〈z,c〉, ∀z ∈ Rd. (3.3)

Then µ ∈ L∞(b).
12
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Proof. If we put

ρ̂(z) = µ̂(z)1−aei〈z,c〉, (3.4)

then we have from (3.3) that

µ̂(z) = µ̂(bz)ρ̂(z). (3.5)

So, to have that µ ∈ L∞(b), it is enough to show that ρ ∈ L∞(b) by (ii) of

Theorem 3.4.

Since µ ∈ SS(Rd) ⊂ I(Rd), ρ in (3.4) is in I(Rd). Thus by (3.5), µ ∈ L0(b).

Since L0(b) is closed under t-th convolution and under type equivalence, we

have that ρ ∈ L0(b). Thus again by (3.5), we see that µ ∈ L1(b). Similarly we

conclude that µ ∈ Lm(b),∀m ≥ 0. ¤

4 Characterizations of Lm(b) by Lévy measures

Any probability distribution µ ∈ Lm(b),m ≥ 0, is infinitely divisible and its

characteristic function µ̂(z) has the following Lévy-Khintchine representation:

µ̂(z) = exp

{
i〈z, γ〉 − 1

2
〈Az, z〉+

∫

Rd\{0}
g(z, x)ν(dx)

}
, (4.1)

where ν (called Lévy measure of µ̂(z)) is a measure on Rd \ {0} satisfying
∫
Rd\{0}(1 ∧ ‖x‖2)ν(dx) < ∞, A is a symmetric nonnegative definite matrix,

γ ∈ Rd,

g(z, x) = ei〈z,x〉 − 1− i〈z, x〉1D(x),

D = {x ∈ Rd : ‖x‖ ≤ 1} and 1D(x) is the indicator function of D. In this

section, we give a necessary and sufficient condition for that µ ∈ Lm(b) in terms

of its Lévy measure ν.

Definition 4.1. f : R → R is said to be wide-sense convex with period a > 0,

if for any s ∈ R and δ > 0,

f(s + δ)− f(s) ≤ f(s + δ + a)− f(s + a).
13
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Let S = {x ∈ Rd : ‖x‖ = 1} and for any E ∈ B((0,∞)) and B ∈ B(S),

write

EB := {x ∈ Rd \ {0} : x = rξ, r ∈ E, ξ ∈ B}.

Lemma 4.1. Let µ ∈ I(Rd) and ν be its Lévy measure. Let 0 < b < 1.

A necessary and sufficient condition for that µ ∈ L0(b) is that for any G ∈
B(Rd \ {0}), ν(bG) ≥ ν(G), where bG = {bx : x ∈ G}. Furthermore, this

condition is equivalent to that for each B ∈ B(S), f(s) = ν((e−s,∞)B) is wide-

sense convex with the period − log b.

Proof. Recall from (i) of Theorem 3.1 that µ belong to L0(b) if and only if there

exists ρ0 ∈ I(Rd) such that

ρ̂0(z) =
µ̂(z)
µ̂(bz)

.

If we write the Lévy-Khintchine representation of ρ̂0(z) formally, it is

exp
{

i〈z, (1− b)γ + c〉 − 1
2
〈(1− b2)Az, z〉

+
∫

Rd\{0}
g(z, x)

(
ν(dx)− ν(

dx

b
)
)}

, (4.2)

where

c =
∫

b<‖bx‖≤1

bxν(dx).

Thus, for that ρ0 ∈ I(Rd), namely for that (4.2) is actually the Lévy-Khintchine

representation of an infinitely divisible distribution function, it is necessary and

sufficient that

ν(G)− ν(
1
b
G) ≥ 0, ∀G ∈ B(Rd \ {0}).

As to the second half of the lemma, it is enough to notice that if ν(G) ≤
ν(bG), then

f(s+δ)− f(s) = ν((e−s−δ, e−s]B)

≤ ν((be−s−δ, be−s]B) = f(s + δ − log b)− f(s− log b),
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and its converse argument is also verified. ¤

Theorem 4.1. Let 0 < b < 1. For that µ ∈ L0(b), it is necessary and sufficient

that µ ∈ I(Rd) and its Lévy measure is ν ≡ 0 or

ν(EB) = −
∫

B

λ(dξ)
∫

E

dFξ(r), E ∈ B((0,∞)), B ∈ B(S). (4.3)

Here λ is a probability measure on S, for each r > 0, Fξ(r) is ξ-measurable, and

for each ξ ∈ S, Fξ(r) is right continuous and nonincreasing,

limr→∞ Fξ(r) = 0,

Fξ(b(r + δ))− Fξ(br) ≤ Fξ(r + δ)− Fξ(r) ≤ 0 (4.4)

for every δ > 0 and r > 0, and for each ξ ∈ S

0 < −
∫ ∞

0

(1 ∧ r2)dFξ(r) =
∫

Rd\{0}
(1 ∧ ‖x‖2)ν(dx) =: K < ∞, (4.5)

where the value K is independent of ξ. This representation is unique in the

following sense. If ν 6≡ 0 and two pairs (λ, Fξ) and (λ̃, F̃ξ) satisfy the above con-

ditions, then λ = λ̃ and Fξ = F̃ξ for λ-a.e. ξ. (We call Fξ, uniquely determined

in this sense, the F -function of µ ∈ L0(b).)

Remark 4.1. If µ ∈ SS(Rd) and for some a, b ∈ (0, 1) and c ∈ Rd, µ̂(z)a =

µ̂(bz)ei<z,c>, then it is known that there exists α ∈ (0, 2] uniquely such that

b = a1/α. (See, e.g., Choi [2], Proposition 2.5.) If α 6= 2, µ is purely non-

Gaussian and A = O, ν 6≡ 0 in (4.1). Then it is known that ν have the form

ν(EB) = −
∫

B

λ(dξ)
∫

E

d

{
Hξ(r)

rα

}
, E ∈ B((0,∞)), B ∈ B(S),

where λ is a probability measure on S, for each r > 0, Hξ(r) is ξ-measurable,

for ξ ∈ S, Hξ is right continuous nonnegative function of r > 0, Hξ(r)/rα is

nonincreasing in r > 0 and Hξ(br) = Hξ(r). Also

0 < −
∫

(1 ∧ r2)d
{

Hξ(r)
rα

}
= const. < ∞,
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independent of ξ. (See Choi [2], Proposition 2.3.) Therefore Hξ(r)/rα is the

F -function of this µ. If we put

Fξ(r) =
Hξ(r)

rα
,

then

Fξ(b(r + δ))− Fξ(br) =
Hξ(b(r + δ))

a(r + δ)α
− Hξ(br)

arα

=
1
a

{
Hξ(r + δ)
(r + δ)α

− Hξ(r)
rα

}
≤ Fξ(r + δ)− Fξ(r) (≤ 0),

which is (4.4). Thus the F -function of this semi-stable µ satisfies the condition

in Theorem 4.1.

Remark 4.2. We have seen in Theorem 3.2 that L(Rd) ⊂ L0(b), for any

b ∈ (0, 1). This can also be checked by the Lévy measure in Theorem 4.1. We

know that the Lévy measure of µ ∈ L(Rd) is

ν(EB) =
∫

B

λ(dξ)
∫

E

kξ(r)
r

dr, E ∈ B((0,∞)), B ∈ B(S),

where λ is a probability measure, for each r > 0, kξ(r) is ξ-measurable, for each

ξ ∈ S, kξ(r) is a nonnegative nonincreasing and right continuous function of

r > 0, and

0 <

∫ ∞

0

(1 ∧ r2)kξ(r)dr = const. < ∞

independent of ξ. (See Sato [8].) Therefore
∫∞

r
{kξ(u)/u}du is the F -function of

µ. If we put

Fξ(r) =
∫ ∞

r

kξ(u)
u

du,

then for any b ∈ (0, 1),

Fξ(b(r + δ))− Fξ(br) =
∫ b(r+δ)

br

dFξ(u)

= −
∫ b(r+δ)

br

kξ(u)
u

du = −
∫ r+δ

r

kξ(bv)
v

dv.

16
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Since kξ(bv) ≥ kξ(v), the above is

≤ −
∫ r+δ

r

kξ(v)
v

dv = Fξ(r + δ)− Fξ(r).

Thus the F -function of L distribution satisfies the condition in Theorem 4.1 for

each 0 < b < 1 and hence L(Rd) ⊂ L0(b),∀b ∈ (0, 1).

Proof of Theorem 4.1.

(Necessity.) Let µ ∈ L0(b) and ν 6≡ 0. Put N(u,B) = ν([u,∞)B). Define

a probability measure λ on S by

λ(B) =
1
K

∫

(0,∞)B

(1 ∧ ‖x‖2)ν(dx) (4.6)

= − 1
K

∫ ∞

0

(1 ∧ u2)dN(u,B), B ∈ B(S).

For each u > 0, N(u, ·) is absolutely continuous with respect to λ. Hence for

each s ∈ R, there exists a nonnegative ξ-measurable function hξ(u) such that

N(e−s, B) =
∫

B

hξ(s)λ(dξ), B ∈ B(S).

If s1 < s2, then for any B ∈ B(S),

N(e−s1 , B) ≤ N(e−s2 , B),

implying that for any B ∈ B(S),
∫

B

(hξ(s1)− hξ(s2))λ(dξ) ≤ 0.

Thus

hξ(s1) ≤ hξ(s2), λ− a.e.ξ, (4.7)

where the set of λ-measure one depends on s1 and s2.

Now, from Lemma 4.1, N(e−s, B) is wide-sense convex with the period

− log b, and so for any B ∈ B(S), any s ∈ R and any δ > 0,

N(e−(s+δ), B)−N(e−s, B) ≤ N(e−(s+δ−log b), B)−N(e−(s−log b), B).
17
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Therefore for each B ∈ B(S),
∫

B

(hξ(s + δ − log b)− hξ(s− log b)− hξ(s + δ) + hξ(s))λ(dξ) ≥ 0.

Hence for λ-a.e. ξ, (where the set of λ-measure one depends on s and δ,)

hξ(s + δ)− hξ(s) ≤ hξ(s + δ − log b)− hξ(s− log b). (4.8)

If we put

S1 = {ξ ∈ S :(4.7) holds for all rational numbers s1 and s2 with s1 < s2,

and (4.8) holds for all rational numbers s

and for all positive rational numbers δ},

then λ(S1) = 1.

If we put, for each ξ ∈ S1,

h̃ξ(s) = sup
s′<s,s′:rationals

hξ(s′),

then h̃ξ(s) is, for each ξ ∈ S1, left continuous and nondecreasing with respect to

s, and for each s > 0, ξ-measurable, and it satisfies (4.8) with the replacement

of hξ(s) by h̃ξ(s), and then

N(e−s, B) =
∫

B

h̃ξ(s)λ(dξ).

If we put

Fξ(r) = h̃ξ(− log r),

then Fξ(r) is, for each ξ ∈ S, right continuous and nonincreasing with respect

to r, and

N(e−s, B) = −
∫

B

λ(dξ)
∫ ∞

e−s

dFξ(r).

Namely, we have

ν([u,∞)B) = N(u,B) = −
∫

B

λ(dξ)
∫ ∞

u

dFξ(r) (4.9)
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and we see that

ν(EB) = −
∫

B

λ(dξ)
∫

E

dFξ(r). (4.10)

On the other hand, it follows from (4.6) and (4.9) that for each B ∈ B(S),

λ(B) = − 1
K

∫

B

λ(dξ)
∫ ∞

0

(1 ∧ r2)dFξ(r),

and hence

−
∫ ∞

0

(1 ∧ r2)dFξ(r) = K, λ− a.e.ξ, (4.11)

which is (4.5). We denote the set of λ-measure one for which (4.11) holds by S2.

To end the proof for the necessity, we show that Fξ(r) constructed above

satisfies (4.4) and (4.5). For any ξ ∈ (S1 ∩S2)c, we define Fξ(r) suitably so that

(4.4) and (4.5) are satisfied. Since λ((S1 ∩ S2)c) = 0, this construction does not

change the representation (4.10). For any ξ ∈ S2, the property (4.5) is nothing

but (4.11). For each ξ ∈ S1, we check (4.4). We have

Fξ(b(r + δ))− Fξ(br)

= h̃ξ(− log b(r + δ))− h̃ξ(− log br)

= h̃ξ(− log(r + δ)− log b)− h̃ξ(− log r − log b)

= −{h̃ξ(− log(r + δ) + δ′ − log b)− h̃ξ(− log(r + δ)− log b)},

where δ′ = log(r + δ)− log r > 0. Then it follows from (4.8) that

Fξ(b(r + δ))− Fξ(br)

≤ −{h̃ξ(− log(r + δ) + δ′)− h̃ξ(− log(r + δ))}
= h̃ξ(− log(r + δ))− h̃ξ(− log r)

= Fξ(r + δ)− Fξ(r),

concluding (4.4).
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(Sufficiency.) By Lemma 4.1, it is enough to show that ν(bG) ≥ ν(G) for

any G ∈ (Rd \ {0}). By (4.3), for any E ∈ B((0,∞)) and B ∈ B(S),

ν(bEB) = −
∫

B

λ(dξ)
∫

bE

dFξ(r) = −
∫

B

λ(dξ)
∫

E

dFξ(br).

Thus by (4.3),

ν(bEB)− ν(EB) = −
∫

B

λ(dξ)
∫

E

d(Fξ(br)− Fξ(r)) ≥ 0.

(The uniqueness of the representation.) Suppose ν is represented by λ and

Fξ(r) as in (4.3). By (4.6), λ is unique. Hence Fξ(r) is also unique for λ-a.e. ξ

by (4.3). This completes the proof of Theorem 4.1. ¤

Definition 4.2. Let 0 < b < 1. For a function F : (0,∞) → R, define

EbF (s) = F (bs)− F (s)

and its m-th iteration

Em
b F (s) =

m∑

j=0

(−1)m−j

(
m

j

)
F (bjs).

Also define, for δ > 0,

∆δf(s) = f(s + δ)− f(s).

Then we say that F has the property (m, b) if

∆δEj
b F (s) ≤ 0, 1 ≤ ∀j ≤ m,∀s > 0,∀δ > 0.

When F has the property (m, b) for any m ≥ 1, then we say that it has the

property (∞, b).

Theorem 4.2. Let 0 < b < 1 and m = 0, 1, 2, · · · ,∞. A necessary and sufficient

condition for that µ ∈ Lm(b) is that µ ∈ L0(b), and if ν 6≡ 0, then the F -function,

Fξ, of µ has the property (m + 1, b) for λ-a.e. ξ.
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Proof. The property (1, b) is nothing but (4.4) in Theorem 4.1. Thus the state-

ment for m = 0 is that of Theorem 4.1. For general m, we show the statement

by induction. Suppose that Theorem 4.2 is true for m = m0.

(Necessity.) Suppose that µ ∈ Lm0+1(b) and ν 6≡ 0. Then by (ii) of

Theorem 3.3, there exists ρm0+1 ∈ Lm0(b) such that

µ̂(z) = µ̂(bz)ρ̂m0+1(z).

Let Fξ be the F -function of µ. The Lévy measure ν̃ of ρm0+1 is

ν̃(EB) = −
∫

B

λ(dξ)
∫

E

d(Fξ(r)− Fξ(
r

b
))

Put

p(ξ) =
∫ ∞

0

(1 ∧ r2)d(Fξ(r)− Fξ(
r

b
)).

Then 0 < p(ξ) < K. Let

λ̃(dξ) =
1

K̃
p(ξ)λ(dξ)

and

F̃ξ(r) =
K̃

p(ξ)
(Fξ(r)− Fξ(

r

b
)),

where K̃ is determined so that λ̃ is a probability measure on S. Then F̃ξ(r)

is the F -function of ρm0+1. Since ρm0+1 ∈ Lm0(b) by the assumption of the

induction, F̃ξ(r) satisfies the property (m0 + 1, b) for λ-a.e. ξ. Thus

∆δEj
b F̃ξ(r) =

K̃

p(ξ)
∆δEj

b (Fξ(r)− Fξ(
r

b
)) ≤ 0, 1 ≤ ∀j ≤ m0 + 1,∀s > 0,∀δ > 0.

From this we see that

∆δEm0+2
b Fξ(r) ≤ 0, ∀s > 0,∀δ > 0. (4.12)

Since µ ∈ Lm0+1(b) ⊂ Lm0(b) by the assumption of the induction, we know that

∆δEj
b Fξ(r) ≤ 0, 1 ≤ ∀j ≤ m0 + 1,∀s > 0,∀δ > 0.
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This together with (4.12) assures that Fξ has the property (m0 + 2, b).

(Sufficiency.) Suppose that Fξ has the property (m0 + 2, b). If we follow

the proof above from the bottom to the top, we see that ρm0+1 ∈ Lm0(b). Thus

µ̂(z) = µ̂(bz)ρ̂m0+1(z), ρm0+1 ∈ Lm0(b),

implying, by (ii) of Theorem 3.3, that µ ∈ Lm0+1(b).

The statement fro m = ∞ is obvious from that for finite m’s and from the

definition of L∞(b). This completes the proof of the theorem. ¤

In Proposition 2.3, we have seen that

Q(H, b) ⊂ Q(H, bm), m = 1, 2, · · · ,

where, of course, bm < b. Thus it might be asked whether

Q(H, b2) ⊂ Q(H, b1), 0 < b1 < b2 < 1.

We conclude the paper to answer this question negatively, by applying Lemma

4.1. The following example is due to Sato [9].

Example 4.1. Let d = 1 and let µ be an infinitely divisible distribution with

the Lévy measure ν :

ν(dx) =
∑

n∈Z

k(2n)δ2n(dx),

where k(·) > 0 is a monotone decreasing function and δa(dx) is the δ-measure

at a. Then µ ∈ L0( 1
2 ) but µ 6∈ L0( 1

3 ) as follows. For each 0 < x < y, we have

ν((x, y]) =
∑

x<2n≤y
n∈Z

k(2n) ≤
∑

x
2 <2n−1≤ y

2
n∈Z

k(2n−1) = ν
((x

2
,
y

2

])
,

where we have used k(2n) ≤ k(2n−1). Thus for each B ∈ B((0,∞)),

ν(B) ≤ ν(
1
2
B),
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implying µ ∈ L0( 1
2 ) by Lemma 4.1. However,

ν

((7
2
, 4

])
= k(22) > 0 = ν

((7
6
,
4
3

])
= ν

(
1
3

(7
2
, 4

])
.

Thus there exists B ∈ B((0,∞)) such that ν(B) ≤ ν( 1
3B) is not satisfied. Hence

again by Lemma 4.1, µ 6∈ L0( 1
3 ).

Acknowledgment. The authors wish to thank Ken-iti Sato for his valuable com-

ments and discussions. Example 4.1 is due to him. They are also very grateful

to John Bunge for his leading their attention to the early work of Loève.
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