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POINCARE-CARTAN CLASS AND DEFORMATION
QUANTIZATION OF KAHLER MANIFOLDS

HIDEKI OMORI*), YOSHIAKI MAEDA**) |
NAOYA MIYAZAKI*), AKIRA YOSHIOKA***)

ABSTRACT. We introduce a complete invariant for Weyl manifolds, called a Poincaré-
Cartan class. Applying the constructions of Weyl manifold to complex manifolds
via the Poincaré-Cartan class, we propose the notion of noncommutative Kahler
manifold. For a given Kéahler manifold, the necessary and sufficient condition for
a Weyl manifold to be a noncommutative Kéhler manifold is given. In particular,
there exists a noncommutative Kahler manifold for any Kahler manifold. We also
construct the noncommutative version of S!-principal bundle over a quantizable Weyl
manifold.

INTRODUCTION

The construction of deformation quantization of symplectic manifolds has been
extensively studied in recent works. The purpose of this paper is to present a co-
homological invariant of Weyl manifolds appeared in the construction of the star
products on a symplectic manifold. As introduced by Bayen, Flato, Fronsdal, Lich-
nerowicz and Sternheimer in [BFL], a deformation quantization, or more precisely a
star-product on a symplectic manifold M is an associative product * on C*°(M)[[v]],
the space of formal power series in v with coefficients in C*°(M), such that

(D1) fxg=fg+ 5{f,9} +---, for f,g € C(M), where {, } stands for the
Poisson bracket on M.

(D2) 1 f=f=fx1, vE center.

(D3) Complex conjugation f — f is an anti-automorphism of (C°(M)[[v]], *),
where 7 = —v.

By the localization theorem (cf. [OMY2], [O, p.312]), we may always assume that
the star-product * has the locality; i.e. supp f*g C supp fNsupp g as C[[v]]-valued
functions.

One construction of star-products for symplectic manifolds was first showed by
Vey [V] and Lichnerowicz [L] via a torsion free flat connection. Using different ap-
proaches, De Wilde-Lecomte [DL], Fedosov [F] and Omori-Maeda-Yoshioka [OMY1]
have proved the existence of a star-product for an arbitrary symplectic manifold.
De Wilde-Lecomte worked algebraically via careful cohomological arguments, while
Fedosov and Omori-Maeda-Yoshioka used geometric method on the Weyl bundle
(cf. [W]). Fedosov’s crucial idea is to construct a flat connection on the sections
of the Weyl bundle. [OMY1] built a noncommutative version of manifolds, called
Weyl manifolds from a given symplectic manifold. Thus, it is natural to ask how
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the constructions by [DL], [F] and [OMY1] relate to each other. Deligne [D] stud-
ied relationship between the construction of the star-product by De Wilde-Lecomte
and by Fedosov and showed that these constructions are equivalent to each other.
Recently, there has been interesting work on the equivalence of star products by
Xu [X] and Bertelson-Cahen-Gutt [BCG].

In this paper, we first remark the equivalence of the star-product constructed
in [OMY1]; The Weyl manifold, by definition (cf.§3.1), is constructed by patching
‘noncommutative coordinates’, and constructions of the star product are built on
that of Weyl manifolds. The quantum version of Darboux’s theorem (cf. [O], p.317)
combined with the inverse Moyal product formula (1.2) easily gives that all star-
products are obtained as the algebra of Weyl functions on a Weyl manifold (cf.
remark after Theorem 3.2). Fedosov’s flat connection is the connection on a Weyl
algebra bundle for which all Weyl functions are characterized as parallel sections.

We show in this paper that there is a bijective correspondence between the equiv-
alence class of Weyl manifolds and the second cohomology group H?(M, v*C[[v?]]).
(Theorem 3.5.) The correspondence is indeed given by a characteristic Cech 2-
cohomology class (cf. Definition 3.4) called the Poincaré-Cartan class which comes
from a patching of ‘quantized Darboux coordinates’ to make a noncommutative
manifold. The Poincaré-Cartan class has been proposed previously by Karasev and
Maslov in [KM] to be an invariant for their asymptotic quantization theory. It is
remarked that its integration on a circle coincides with the original Poincaré-Cartan
invariant (cf. [O]).

On the other hand, a characteristic class was defined by Nest-Tsygan [NT] in
terms of the curvature of the connection for the Weyl bundle, which distinguishes
Fedosov star-products up to equivalence (cf. [F]). The characteristic class defined
in [NT] may equal to the Poincaré-Cartan class for the Weyl manifold.

The main purpose of this paper is to apply the Poincaré-Cartan class to complex
manifolds and to propose the notion of a noncommutative Kahler manifold. A
Kahler manifold is a special type of symplectic manifolds with the option that their
coordinate transformations are not only symplectic but also holomorphic. For a
given Kahler manifold M, we give a necessary and sufficient condition for a Weyl
manifold over M to be a noncommutative K&hler manifold in terms of its Poincaré-
Cartan class (Theorem 4.6.). We also show that there exists a noncommutative
Kahler manifold for every Kéhler manifold (Theorem 5.2.).

The second subject of this paper discussed in §6 is, as an application of the
construction of star products via Weyl manifold, a construction of a quantum S*-
bundle over a symplectic manifold with the quantization condition. In patching
up the (noncommutative) local coordinates to obtain the Weyl manifold, we use
a derivation which generates a noncommutative version of the circle action on the
S1-bundle of a symplectic manifold satisfying the quantization condition.

Furthermore, if the base manifold M has a Kéhler structure, then the noncom-
mutative version of the associated line bundle has the structure which one may call
‘holomorphic line bundle’. This structure naturally gives the notion of holomorphic
sections, and the space of all holomorphic sections is a maximal commutative sub-
algebra. It should be remarked that the construction of star-products in [OMY1]
has an advantage of yielding naturally such constructions.
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1. WEYL FUNCTIONS

We first review briefly Weyl functions and Weyl diffeomorphisms on a Weyl
algebras. In [OMY1] we treated Weyl algebras over C and in [OMY3] we gave
several remarks on Weyl algebras over R. Here we start with a Weyl algebra over
R.

A Weyl algebra W is the algebra generated formally by

VaXla"' v-Xnvyl?"' ayvn

over R with the fundamental relations [v, X;] = [v,Yi] = 0, [X;, X;]=[V3,Y;] =0,
[X;,Y;] = —vé;;. The multiplication of the algebra is denoted by *. Then, the
Weyl algebra W can be identified with the algebra RI[[X,Y,v]] of formal power
series with the following product, called the Moyal product;

(1.1) a*b:aexp{—%(a;/\g)y}b,

o n .
where ag;;/\ayb = ) i=110x;a-Oy;b— 0y, a-9x,;b}. We put the usual adic-topology
on W. The formula (1.1) can be inverted to recapture the commutative product
as follows:

(1.2) a-b:aexp{%é}/*\a—y)}b,

where a?x/*\a_;b = Z?:] {9x; ax0y;b— Oy, ax0x,b}. This can be viewed as a method
of construction of a commutative product from the *-product. This idea appears in
83 to make a model space of a Weyl manifold, and in §6 to solve an equation given
by using *-product. We define an involutive anti-automorphism a — a by setting
Y,'ZXZ’, ?]‘:Y}, v=—v.

Note that there are other systems of elements (X7,--- , X, Y{,---,Y) of W
with the same fundamental relations which topologically generate the same W. We

call such Xi,---,X},Y/, .Y, quantum canonical generators (QC-generators).
1.1 Weyl function.
Let U be an open set of R?" with linear coordinates (z1, " ,&n, Y1, " ,Yn), and

Wy the trivial algebra bundle U x W. Let I'(Wy ) be the space of all continuous
sections of Wy with respect to the compact open topology. I'( W) is an associative
algebra over R under the pointwise *-product. Define the sections §;,n; of Wy by

Then, we have (&, n;] = —vdij, [€i,€;] = [n:,n;]) = 0. Consider a polynomial of the

form 9(5771) = ZaAuﬁ)\ : 77”7 Ay S R7 5 = (617"' 7§n)7 n = (7717"' 777n)7 which

can be viewed as a section of Wy, and we get
PEM)(p) = T 570:70,"pl(p), y(p)) X - V"
m

3
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Keeping this formula in mind for any R[[v]]-valued C'* function f, we define a
section f*(&,n), called a Weyl function, by the formula

(1.4) FHEmp) = EM 0:0," f(p) X - Y.

For f 6 C>®(U)[[v]] we call f* the Weyl continuation of f. Obviously &; = x , and
N = yl We define F(Wy ) to be the set of all Weyl functions. F(Wy) is a closed

subalgebra of I'(Wy) (cf.[OMY1]).
It is easily seen that the *-product f*x g* is given by the same formula (1.1), i.e

(15) FHrgh) = (fexo—2{0:A0 b}, (cf. [OMY1]),
Moreover, the involutive anti-automorphism a + a extends naturally on I'(Wy)
and F(Wy) = F(Wy). We have ft = (f)!.
1.2 Integration on Wy,.
For a Weyl function f* € F(Wy) with f integrable on U, we define the integral
of f* by
ff” = fde € R[[v]],

where dV = dzy -+ - dz,dy; - - - dy, is the usual volume element on U. Integratlon by

parts shows that if one of f, g has a compact support, then fU f{g/\a YrgdV = 0.
Hence, we have

(1.6) [ Fixgh =] f-gdV.
U U
In particular, we have
(1.7) [fivg = [gef,  TF=[F
U U U U

1.3 The contact Weyl Lie algebra.
We define a derivation Ly as follows:

Lov =202, LoX; =vX;, LoYi=vY;.

Together with a formal symbol 7, we define a Lie algebra, called a contact Weyl
Lie algebra, g = R & W with the bracket:

(1.8) lam + f,b7 + g] = aLog — bLof + [f, -
We easily see that [g,g] C v+ W . We set also 7 = 7 to define an involutive anti-
automorphism.

Definition 1.1. A linear mapping A : g — g is called a v-isomorphism, if A is
a Lie algebra isomorphism satisfying (i) A(v) = v, (ii) AW = W and (iii) the
restriction Alw is an algebra isomorphism.

D : g — gis called a v-derivation if D is a Lie algebra derivation satisfying
(1)D(v) = 0, (ii)DW C W and (iii) the restriction D|w is an algebra derivation.
(Cf.JOMY1] Definition 4.2. )

Although Lo and hence 7 depends on the choice of QC-generators, it is easy to
see that the v-isomorphism class of g is determined only by W

4
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Lemma 1.2. Every v-derivation D : g — @ can be written in the form D =
ad(v™1xf) + c ad(logv), where f € W, c € R.
If D(7) € v+W, then there are g € W and ¢ € R such that D = ad(g) +
cad(logv), and c is determined uniquely by D. g is determined only up to constant.
If D(7) € v?2+«W | then D = ad(v * g) where g is determined uniquely by D.

Here, we first remark that ad(v~!*f) and ad(log v) are defined by only symbolic
use of v" !« f and logv. Note that the above lemma is proved in [OMY1, Propo-
sition 4.3] in the case of complex coefficients, but the proof works also for the real
coefficients. Though the second statement was not given there, it can be seen easily
by the proof.

Let U be an open subset of R?® with coordinates 1, -+, Tn, Y1, , Yn, and
I'(gy) the space of all continuous sections of the trivial bundle gy = U x g over U.
We define a section by

(1.9) 7(p) = 7 — L (wi(p)Xi — zi(p)Y5).
The sections &;, 1; given by (1.3) are contained in I'(gy ), and we have

(110) [7~—7 él] =Vk gia [7:7771] =V*n, [fhnj] = —V(Sijv [%7 ’/] = 27/2-

We give several remarks for the complexification. The notion of Weyl algebras
and Weyl functions can be easily complexified by considering the tensor product
with C. We denote these by W and F(Wy)¢. W, F(Wy) are real subalgebras
of W€, F(Wy)C. The involutive anti-automorphism extends naturally by setting

1 = —1 to these complexified algebras.

Here, it should be careful that for instance W is not the subspace {a € W¢;a =
a}. To avoid the confusion that might occur, we define as follows: A linear mapping
®: F(Wy)¢ — F(Wy)© over R is said to have the hermitian property if ®(f) =
®(f) holds for every f, and @ is said to have the real-to-real property if ®(F(Wy)) C
F(Wy).

Notions of v-isomorphisms and v-derivations of g extend for the complexification
g¢ = g® C. Lemma 1.2 and the followed remark hold for the complexified case.

2. PATCHING DIFFEOMORPHISMS

2.1 Weyl diffeomorphisms and contact Weyl diffeomorphisms.

Let U and V be open subsets of R?" with coordinates 1, -+ ,Zn, Y1, ,Yn-
Consider the trivial algebra bundles Wy = U x W, and Wy =V x W over U and
V respectively. For a bundle isomorphism &:

WU —?;)Wv

! I

v —“2— v
we define the pullback ®* : I'(Wy) — I'(Wy) by (2*S)(p) = @' S(p(p)) where
 is the induced diffeomorphism on U.
A continuous algebra isomorphism ¥ : F(Wy ) — F(Wy) such that ¥(v) = v
will be called a pre- Weyl diffeomorphism. The following lemma is shown in [OMY1,
Lemma 3.2] :
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Lemma 2.1. For any pre-Weyl diffeomorphism ¥ : F(Wy) — F(Wy), there
ezists a unique bundle tsomorphism ® such that ¥ = ®*. In particular, the induced
diffeomorphism ¢ : U — V s a symplectic diffeomorphism with respect to the
natural symplectic 2-form Q = dz; A dy;.

A pre-Weyl diffeomorphism ¥ : F(Wy ) — F(Wy) is called a Weyl diffeomor-
phism, if ¥ has the hermitian property U(f) = ¥(f).
By Lemma 2.1 and the same proof of [OMY3] Proposition 2, we see easily that

any pre-Weyl diffeomorphism ¥ has the volume preserving property:

(2.1) J‘I’(f) =Jf~

Remark that the definition of Weyl diffeomorphism is slightly stronger than that
defined in [OMY1, Definition 3.4]. Though (2.1) is requested in the definition of
Weyl diffeomorphism in [OMY 3], this holds automatically by the above observation.

Note that the notion of v-derivations in Definition 1.1 extends naturally to
I'(gy). Remember that a v-derivation induces, by definition, an algebra deriva-
tion on I'(Wy).

Definition 2.2. A v-derivation = : I'(gy) — I'(gu) is called a contact Weyl vector
fieldif =(v) = 0, ZF(Wy) C F(Wy) and Z(7) € F(Wy).

2.2 Contact Weyl diffeomorphisms.

We call an isomorphism ®¢* : I'(gy ) — I'(gu) a pointless contact diffeomorphism
if ®°* is a Lie algebra isomorphism such that ®°*(v) = v, ®*(7) € 7 + F(Wy),
O*F(Wy) = F(Wy), and the restriction @“*|F(Wy) is an algebra isomorphism.
®°* is called a contact Weyl diffeomorphism, if the restriction to F(Wy ) gives a
Weyl diffeomorphism.

Proposition 2.3. Suppose U, V are diffeomorphic to the open unit disk D?™ of
R2™. For every symplectic diffeomorphism ¢ : U — V, there is a Weyl diffeomor-
phism @ : Wy — Wy inducing ¢ between base spaces. Moreover, ®* extends to a
contact Weyl diffeomorphism ®°* : I'(gyv) — I'(gy) such that ®°*(f) = ®°*(f).

Proposition 2.3 is given in [OMY1, Theorems 3.7 and 4.7] in the case of complex
coefficients, but this holds also for the real case by the same proof. In the proof of
[OMY1, Theorem 3.7], ¢ is requested to be a symplectic diffeomorphism of U onto

V. However this condition is easily removed by considering an exhausting family
of closed subsets of U and V.

The @ given by Proposition 2.3 is called a lft of ¢. Note that the lift ® of ¢ is
not unique in general.

Let W5 and F(W )€ be the complexification of Wy, and F(Wy) respectively.
Notions of pre-Weyl diffeomorphisms and Weyl diffeomorphisms extends naturally
on these complexified algebras.

Let I'(gy)€ be the complexification of I'(gyy). As in Lemma 1.2, the notion of
contact Weyl vector fields and pointless contact diffeomorphisms, etc. extends nat-
urally to I'(gr)©. By Lemma 1.2 and the remark mentioned in the last paragraph
of section 1, we have:
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Lemma 2.4. For a contact Weyl vector field = : I'(gu)© — I'(gu)C there exist
f e F(Wy)€ and ¢' € C such that = = ad(v '+ f) + ¢ ad(log v).
(1) If Z(7) € vxF(Wy)©, then f € vx F(Wy), ¢ € C, and ¢’ 1s uniquely
determined. v« f is determined only up to constant.
(2) If Z(%) € v*+I'(gu)€, then ¢’ =0, and f can be taken in v*xF(Wy)C, and
such f is unique.
(3) If = has the real-to-real property; =I'(gu) C I'(gu), then ¢/ € R and f can
be taken in F(Wy).
(4) If = has the real-to-real property, the hermitian property; Z(h) = Z(h) and
Z(F) € vxF(Wy), then ¢ = 0 and f can be taken in v**F(Wy), and hence
such f 1s unique.

Proof. (1) and (2) are easy to see by Lemma 1.2, and (3) is given by the similar
proof. For (4), we see by (1)-(3) that there are g € F(Wy) and ¢’ € R such that
= = ad(g) + ¢’ ad(logv). By the hermitian property, we have =(7) = =(7). It
follows that [7, g+ g] = 4c'v. Since g+ g € 3 150 ¥2FC(U)*, we have ¢’ = 0 and ¢
is written in the form g = > v gy, Tt follows f = v * g € 12 * F(Wy). This
yields Z(7) C v? * F(Wy), and hence f is determined uniquely by =. O

Considering formal expansion in v*, we see that if a pointless contact diffeomor-

phism ®°* : I'(gy)¢ — I'(gy)© induces the identity on the base space U, then ®°*
is written in the form

4]
(22) Hc* — H ead(vkhl)ec ad(u"l)ec' ad(log 14)’

o0

using hx € C°°(U)€ for every integer k > 0 and ¢, ¢’ € C, where the notation []°, Ix
means --- I -+ I 11 Iy. ¢’ is determined uniquely by ®°* by virtue of Lemma 2.4,
(1). By Lemma 2.4 we easily obtain the following:

Corollary 2.5. If a pointless contact diffeomorphism ®°* : I'(gy)© — I'(gy)© in-
duces the identity on the base space U, then hy, ¢, ¢’ in (2.2) satisfies the following:
(1) If @°*(F) € 7+ 2c + v2xF(Wy)C, then ¢/ =0, ho = 0, and ¢, hy (k > 1)
are unique.
(2) If ®°* has the real-to-real property; ®*I'(gu) = I'(gv), then ¢,¢’ € R and
hi € F(Wy).
(3) If ®°* has the real-to-real property and the hermitian property; ®°*(f) =
®*(f), then ¢’ =0, hyp = 0 for k > 0, and ¢ and hog41 (k > 0) are unique.
(4) If ®°* induces the identity on F(Wy)C, then there are ¢ € C[[v]], ¢ € C
such that ®°* = e¢ad(v~)+cad(og ) - Fyrthermore, if ®°* has the real-to-real
property and the hermitian property, then ¢’ = 0 and ¢ € R[[v?]].

Proof. Here we give the proof of (4). Set ®°*(7) = 7 +g¢, g € F(Wy)©. As
[7,&] = véi, [T,n;] = vn,, and ®°* is an isomorphism, we have [g,&;] = [g,7;] =0,
hence g € C[[v]]. The second statement of (4) follows easily. O

The next lemma is given in [OMY1]:
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Lemma 2.6. For every pre- Weyl diffeomorphism ®* : F(Wy)C — F(Wy)C there
is a pointless contact diffeomorphism ®* : I'(gy)¢ — I'(gu)C which extends ®*.

Proof. By Lemma 2.1, ®* induces a symplectic diffeomorphism ¢ on U. By Propo-
sition 2.3, there is a Weyl diffeomorphism ¥* which is a lift of ¢. Let ¥°* be a
contact Weyl diffeomorphism which extends ¥*.

Hence, ®*¥*~! induces the identity on the base space. It follows by Corollary
2.5, (3) that ®* = U*ed®W ¢ F(Wy)C. Note that ad(r~!) component is not
used, since these act trivially on F(Wy)¢. Hence we define a pointless contact
diffeomorphism ®* by We*e2d(h), O

A contact Weyl diffeomorphism ®°* has by definition the real-to-real property
and it may be assumed by Proposition 2.3 that ®* has the hermitian property.
We now remark the following:

Lemma 2.7. If a pointless contact diffeomorphism ®°* : I'(gy)¢ — I'(gu)€ has
the real-to-real property and the hermaitian property, then ®°*(7) is written in the
form

Fhgh+viagh + o+ gl b ga € CF(U).

3. POINCARE-CARTAN CLASSES

3.1 Weyl manifold.

Let Wy be a locally trivial algebra bundle with the fiber isomorphic to W. Then
for an open covering {V,} of M, there are local trivializations &, : Wy, — Wy,
associated to V,, where Wy, is the restriction of Wy and Wy, is the trivial algebra
bundle over U, (C R?"). Denote by ¢, : V, — U, the induced homeomorphism.

Definition 3.1. W)y is called a (real) Weyl manifold, if for each V,,, V3 such that
Vo N V3 # 0, the patching transformation

(3.1) Bop = Pp®" :Usp x W — Uga x W,

where Uy g = ¢a(Va NV3), induces a Weyl diffeomorphism ®7 5 Each @, : Wy, —
Wy, is called a local Weyl chart on Wiy, and Wy, is called the model algebra over
Va.
If @5 are merely pre-Weyl diffeomorphisms, then Wy, is called a pre-Weyl
manzfold.

By Lemma 2.1, the base manifold M of a pre-Weyl manifold W3, has a C™®
symplectic structure.
The following was the main theorem of [OMY1]:

Theorem 3.2. On every C™ symplectic manifold M, there exists a Weyl mani-
fold Wyy. In particular, the system of trivial Weyl algebra bundles {Wy_} can be
patched together via Weyl diffeomorphisms.

The notions of Weyl functions, the involutive anti-automorphism f — f, and
integration are naturally defined on a Weyl manifold Wy,.

8
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Denote by F(Wyy) the algebra of all Weyl functions on Wjs. Two Weyl man-
ifolds Wyy, W)}, are said to be isomorphic, if there is an algebra isomorphism
U : F(Wy) = F(Wy,) inducing the identity on the base manifold M.

Using the fact that F(Wjy) is linearly isomorphic to C*(M)[[v]], we translate
the algebra structure of F(Wyy) over to C°(M)[[v]]. In particular, C*(M)[[v]]
is a noncommutative associative algebra which can be viewed as a deformation
quantization of (C°°(M),-). Through this observation, we see also that complex
conjugation f — f is an involutive anti-automorphism of (C°°(M)[[v]], *).

Suppose conversely that we have a deformation quantization (C°(M)[[v]],*)
with an involutive anti-automorphism f — f such that f = f for any f € C*°(M)
and ¥ = —v. Let {V,} be a locally finite simple open covering of M. Note
that by the localization theorem [OMY2], the above *-product can be localized
on C(Vo)[[]]-

Here we need a definition;

Definition 3.3. For f € C=(U)[[v]], the body part b(f) of f is an R-valued C"*°-

function on U such that f —b(f) € vC>®(U)[[v]]. A system of elements &1, ,&2x
€ C>®(U)|[[v]] are called topological generators (T-generators), if the body parts
b(1),- -, b(&2n) are local coordinates on U.

By the same idea of Weyl continuation, every f € C*°(U)[[¢]] can be viewed as
a ‘function’ of &y, -+ ,&2,, whenever &, -+ , €3, are T-generators.

By the quantum version of Darboux’s theorem [O], there are elements &;,-- -,
€n, M, -+ ,mn of C°(U)[[v]] such that

(3.2) =&, Ti=mni, [£,&]=[im]=0, [&,ni]=—vdij,

which are T-generators. &y, - ,€n, 71, -+ , N are called quantum canonical gener-
ators (QC-generators).

As in (1.2), we use the inverse Moyal product formula to make a commutative
product o. We identify V,, with U, C R?". It is not hard to see that the mapping
f — f remains as an involutive automorphism of (C*°(V,)[[v]],0), and f o g is
decomposed for some k > 1 into

fog=f-g+> v'oulf.9), wulf,g)=m=ulg, f) € C*(Va).
I>k

Since the first component wy;, is a Hochschild 2-cocycle, and hence a Hochschild
2-coboundary by [OMY2, Theorem 2.2], it is easy to see that (C*°(V,)[[v]],0) is
isomorphic to (C°°(V,)[[v]],-) with the usual commutative product -. Hence, there
is an open subset U, of R™ and (C*°(V4)[[v]], *) is isomorphic to F(Wy, ) through
an isomorphism ¥} with the hermitian property.

On each V,, N Vj, the identity mapping of (C®(V, N V3)[[v]],*) onto itself re-
garded as (C*°(V3 N Vy)[[V]], *), induces a Weyl diffeomorphism @7, 5 : F(Wy,,) —
F(Wuy,,). Hence, any deformation quantization (C°(M)[[v]], ) with an involutive
anti-automorphism is obtained as an algebra of Weyl functions on a Weyl manifold.
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3.2 Poincaré-Cartan classes.

For a symplectic manifold M, there are Weyl manifolds over M which are not
isomorphic. We give the complete invariant for the isomorphism class of a Weyl
manifold as an element of H*(M)[[v?]].

Let {V,} be a covering of M. For each a let ¢, : V, = U, C R™ be a
symplectomorphic coordinate map.

Consider the trivial Lie algebra bundle gy, on U,. Recall that Theorem 3.2 was
proved [OMY1] by constructing a contact Weyl diffeomorphism @5 : I'(gu,.) —
I'(gu,,) for Vo NV # 0, patching gy, and gy, together. Let @7 ;5 be the restriction
a2 | F(Wo. ).

It is clear that {®} 5} gives a pre-Weyl manifold if and only if ®¢'; satisfy @57, = 1

and @505 &% = eCaprad(v ) +cls,ad(0gr) o every V, N Vs NV, # 0, where
capy € R[[V]] and ¢, 5, € R. The necessity is given by Corollary 2.5, (4), and
the sufficiency is given by that eCaprad(v)Hel g ad(logy) g the identity on each
subalgebra F(Wy,, ), where Uagy = @a(Va NV N V).

{®;4} gives a Weyl manifold if and only if @} has the hermitian property
furthermore. If this is the case, we see that ¢, 5, = 0 and cagy € R[[+*]]. Under
these situations the family {F(Wy, )} of algebras is patched together to give an
algebra sheaf on M.

It is easily seen that {c,g+} and {c,4. } are Cech 2-cocycles on M. (Cf.[O, p353],
[OMY1, Lemma 5.6].)

In what follows Weyl manifolds are our main concern, but pre-Weyl manifolds
are occasionally used for a supplementary role.

Definition 3.4. For a family {I'(gy,)} constructed on a Weyl manifold Wy,
{cap~} is called the Poincaré-Cartan 2-cocycle of {gu,, }.

If we set

(© 2
(3.3) Cafy = ca{g,y + Z/ZCEYB),Y +-
then {cg);,y} is cohomologous to a Cech cocycle given by the symplectic 2-form
on M (cf. [O, p357], [KM]). We call the cohomology class of {cag~} the Poincaré-
Cartan class of {Wy, } and denote it by ¢(Wpyr) = 3,50 v2Fc (Wyy).

In [OMY1], we constructed a Weyl manifold on M such that cqogy = C(QO/;V €R.
The following is essentially the same result of [D] and [NT]:

Theorem 3.5. The equivalence of Weyl manifolds Wy up to isomorphism s de-
termined by the Poincaré-Cartan class. Moreover, for every ¢ = 3,5, vk (2R ¢
H?(M)[[v?]] such that ¢ is the class of symplectic 2-form, there exists a Weyl
manifold Wy, whose Poincaré-Cartan class ¢c(Wyy) 1is c.

Proof. Let {cap+}, {c,3,} be Poincaré-Cartan cocycles of {gy, } and {gj;_ } respec-

tively. Suppose the Poincaré-Cartan classes coincide. Then, there exists bog €
R|[%]] on every V, N V3 # () such that by = —bgs and

C:)ﬂ'y — Capy = bap +bpy + bya-
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Note that bag can be replaced by bag + cap such that Cap + ¢cgy + ¢ya=0. Since
ebasad(* ™) js an automorphism, we can replace ¢ by (I’aﬂ = @g‘};ebaﬁad("q).
Since €b+#2d(*™") ig the identity on F(Wy,, ), thls replacement does not change
the isomorphism class of F(W)y), but it changes the Poincaré-Cartan cocycle from
{capy} to {c,p,}. Hence we can assume that we have two families {®}} and

{(I> s} of patching transformations such that

25,85, = L5 85, = ot

Since ®¢ (<I>°* )~! induces the identity on the base space, we see by Corollary 2.5,
(3) that there is a unique hqp such that @g’:g = fbg*ﬂead(”haﬁ). 2™ ") _terms
can be removed by using the ambiguity of b,s mentioned above. By a standard
argument of Cech cohomology, we see that ég*ﬂ = ead(”ha)(ﬁg*ﬂe_ad(”hﬁ). (See also
Lemmas 5.4 through 5.6.) This implies that two families are isomorphic.
Conversely suppose there is a Weyl diffeomorphism ¥ : W;, — Wy, which in-
duces the identity on the base manifold. That is, ¥* defines an algebra isomorphism
of F(Wyy) onto F(Wj,) with the hermitian property such that ¥*(v) = v. The
isomorphism ¥* is equivalently given by a family {¥%} of isomorphisms:

(3.4) Tt F(Wya) = F(W)
each of which induces the identity map on the base space U, such that
(3.5) £ Pos(Tp) 7 =25,

If we extend ¥, to a contact Weyl diffeomorphism ¥&*, then the replacement of
o by Ure (\Ilc*) makes no change of Poincaré-Cartan cocycle.

By (3.5) and Corollary 2.5,(4), we have @gfg = Ve, (vg)~! ebapad(¥™h)  How-
ever this type of replacements changes the Poincaré- Cartan cocycle within the same
cohomology class.

Suppose ¢ =} ;5 v c(2R) ¢ H2(M)[[v?]] is given. Then, we start with a Weyl
aﬂ*v} and changing patching Weyl
diffeomorphisms we construct a Weyl manifold with a Poincaré-Cartan class c.

Let 7%, : F(Wy,,) = F(Wu,,) be the patching Weyl diffeomorphism of W]E;))
and let ®¢% be its extension as a contact Weyl diffeomorphism. Let {cfféi)r} be
a Cech cocycle involved in ¢(2¥). Since the sheaf cohomology of C* functions
H?*(M, €) = {0}, there is hfﬂ) € C®(Uqyg) on each U,p such that

manifold WM with a Poincaré-Cartan cocycle {c

(3.6) —c3), = b+ ¢hsh) + 9t 2.
For a function rog € C®(Uag)[[v?]], we set hag = (h(;ﬂ))ﬁ + yzriﬂ. If we use

ag = @g’f@ead(”;’ﬁa) as patching diffeomorphisms for every V, N Vs # 0, then we

see
F ¥ FCH c c* ad(l/<1> hga) ad(l/@ ) ad(V<I> h )
orﬂ B'y 70{ =® ﬂ@ <I> aptBa ay hyp aaftay
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Here we used the general formula
(37) @g"‘gead(h) — ead(@;ﬁh)@g’b

for h € F(Wy,,), proved by the uniqueness of solution of ordinary differential
equations. By (3.6), we have

2

. 3 . - 2) _
(38) ead(’/(baﬁhﬁa)ead(”‘p;thﬁ)6ad("q’aahaw) — ¢ cgﬁwadu !

mod v,

By working on the term %, v%,-- -, we can tune up r,g by the same manner as in

[OMY1] so that

7 7 7 2 —
(2482 5hsa) ad(v @4 hyp) ad(v@h g han) — eu2cgﬁ)7adu '

It follows that {@ffﬂ} defines a Weyl manifold W), with the Poincaré Cartan class
¢©® 4 12:(2) | Replacing e by @g*ﬂ and repeating a similar argument as above,

we can replace the condition mod v* in (3.8) by mod v®. Repeating this procedure,
we have a Weyl manifold W), such that ¢(Way) = ¢ € H?(M)[[v?]]. O

4. NONCOMMUTATIVE KAHLER MANIFOLDS

In this section, we introduce a restricted notion of deformation quantization for
Kahler manifolds, which we call a noncommutative Kdhler mansifold.

4.1 Paracoordinates.

Let us first review the calculus of complex variables, which differs crucially
from the real case. Let U be an open subset of R™ with coordinate functions
T1, ,Zm, and C®(U)Y the space of all C-valued C'* functions on U. Consider
aset {z1, ,z,}in C®(U)C. Set

U={4.(p)ip €U}, ¢:(p)=(z1(p), " 2m(p)).

21,7+ ,2m are called paracoordinates of U, if the following conditions are satisfied:

(1) U is a real m dimensional C*° submanifold of C™ such that the complex
span of the tangent space T,U equals C™, i.e. T,U + \/—lTp[j =C™.
(2) ¥, : U — U is a diffeomorphism.

¥, is called the coordinate map of paracoordinates.
Oz;

. . or;
The inverse matrix of (52 L
J

) is occasionally denoted by (3;2), though we do not

define the derivative %% Moreover, a C° mapping f from U into C is written

in the form f(zy, -+ ,zm), even though z1,--- |z, are not necessarily independent
complex variables on U. Since z; are C* functions of z1,---, Tm, f(¥.(x)) is a
C° function of zy, --- , z,,. We define % as follows:

df <~ Oxx OF
0z p Oz; Oz

(4.1)

12
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Note that the right hand side of (4.1) is computed as elements of C°*°(U)“ or of
C*°(U)C. Higher order derivatives are defined similarly.

At each point p € U, {dzy1,--- ,dzp} forms a real basis in real coefficients of the
cotangent space Tgﬁ. Let uy, -+ ,um € C®(U)C be other paracoordinates with

U = {(u1(p),--- um(p));p € U}. We set:

0z; " 9z; Oy
4.2 = — hutd.d
(4.2) Ou;j ; Oy Ou;
although z; is not a genuine function of uj, -+ ,u,. Note that ¢, ! is a C™

diffeomorphism of U onto U’. The chain rule also holds for these.

4.2 Kahler manifolds.

Let M be a smooth symplectic manifold with a symplectic form €. For a function
f € C=(M)®, we denote by f the complex conjugate of f. The Poisson bracket
{, } defined by  satisfies {f,g} = {f, g} for any f,g € C=(M)C.

Note that a Kahler manifold M is characterized as a real symplectic manifold
covered by open subsets {V,} such that for each V, there is a homeomorphism
Yo : Vo = Uy C C™ with the following properties:

(1) The coordinate functions 2{,--- z5 on C” satisfy {28, 25} = {7, 2§} = 0,

(2) The matrix ({2, 2§}) is nondegenerate,

(3) On each intersection V, N V3, setting Uag = ¢ao(Va N V3), the coordinate

transformation @, = @05’ : Uag = Uga is holomorphic.

2, -+, 2% are called Kdhler coordinates (K-coordinates) on V.
We can assume that {V,} is a locally finite, simple open Stein covering: i.e. a
locally finite open covering such that V,, N---NVj,, is a contractible Stein manifold.
Let V be one of V,,. As is known in [KN], there exist K-coordinates zy,--- ,z,
on V. We can assume that there is a Kahler potential F' on V, i.e. a real valued

C* function F(z, 2) such that the symplectic form equals

V-1 8°F

4.3 Q= Qpdzp A dzy, Q1= — .
(4.3) > Quudze A dz Kl R
Setting =z = ———2_—13::, we have Q = > dz; Adz}, {zi,2]} = dij and {z],2]} = 0.
21,00t 20,21, , 2k are called complez canonical coordinates (CC-coordinates).

Since af:gzl is nondegenerate, the CC-coordinates are paracoordinates of V.
Note that the canonical conjugate variables z7,-- - , z} are not uniquely defined, as
z¥ can be replaced by zf = 2z} + a—f for any holomorphic function h. In using
CC-coordinates, the Poisson bracket becomes

of 0Og dg Of

(4.4) {f.9}=>( )

We consider the relationship between
_ - *
(4.5) Zi1yt 5 Zns Z1s 4 in and  zy,ccc  zZp, a1, L 20
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on V. Let ., ¢, be the coordinate maps of

(Z](P)7"' 7zn(p)721(p)7"' 7Zn(p))7 (Zl(p)v'” 1Zn(p)’zf(p)?"' 727*1(p))

respectively. We set V = {p.(p) € C*;p eV}, V' = {¢.(p) € C**;pc V}.

Let {t;,---tan} be a real coordinate system of V. Note that ¢le ! is a C™
diffeomorphism of V onto V'. Then, ¢/, ¢! can be written as ¢, ¢ (2, 2) = (2, 2*).
If we consider the inverse mapping of ¢’ ¢!, z can be viewed as a ‘function’ of
z,z*, which can be understood as a sort of implicit function theorem.

Note that {dz;, dz;}, {dz;, dz}} are real bases of the cotangent spaces T, and
TZ, respectively, and we have that there are relations:

. dz} =
(46) ZI 2

v—=1 O*F 0*°F )
—_— <7< n.
02,0z dzk + 02;0zy dz ), 1sisn

. 2p . . . . _
Since =2-E£ is non-singular, the above equality can be inverted to solve dzj.
02,07 g ’ q y

We consider the exterior algebra A*(V) = > AP9(V) consisting of elements of
the form:

w = Zwil...iwjl...jq(z,z*)dzfl A A dZ;kp A del AN dZ]‘q.
Define the partial exterior derivatives 0w, 0*w by:

7 Ow = Z {20 Wiy iy i $d2jo Ndzgy Ao Ndzf Adzj A+ Adzj,
0w =" {2ig, Wiy iy ju g Y2 Az Ao Adzl Ndzj A Adzj,.

Thus, 8%z} = Y (ad(zx)z})dz; = dzf, 0z =) —(ad(zf)z;i)dz} = dz;
Hence we may set

7]
0z;
Using the Jacobi identity for the Poisson bracket, we have

(o} =g —l0 )=

(0*)?=0*=0, 09*+09*9=0.

We set d = 0+ 3*. The following is a slight modification of the Poincaré lemma:

Lemma 4.1. Let V be an open contractible subset of M with CC-coordinates
(21,7 s Zny 255 28). If dw = 0 for w € AP(V), then there ezist 6; € AP~19(V)
and 0y € AP~V such that w = 0*0; + 063.

By Lemma 4.1, we have

Lemma 4.2. On a Kahler manifold M, every holomorphic coordinate transforma-
tion wap : Uag — Ugq induces a Poisson algebra isomorphism of the form:

* z a * (% - xo a\a
(4.8) 9904,3(2’?):990[3(2 ), ‘Paﬁ(ziﬂ):Z((d@aﬂ) 1)?-(2% + aqzaﬂ)
& k
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where gag 15 a holomorphic function.

Proof. Let z,--- ,2z, and wy,--- ,w, be K-coordinates on U,g and Ug, respec-
tively. Let z1,--- ,25,27, -+ ,2z5 and wy, -, Wy, w], -+ ,w, are associated CC-
coordinates respectively. Since w; = w;(2z); holomorphic function of zy,--- , z,,
we have also w; = w;(Z). Since w} = w}(2,2), and z; = z;(2,2%), we see that
w; = wi(z), wf = wi(z,2*). The Poisson isomorphism which induced by the

coordinate transformation is written as @7 g(w;) = wi(2), ¢%g(w]) = wi(z, 2%).
We define another Poisson isomorphism @7, ; by setting

~ % ~k ~ % 32 *
‘Paﬂ(wi) = w;(z), S‘oaﬁ(wi) = Z a—wk?k

using the correspondence similar to transition functions of cotangent bundle.
Since both (w1, ,wy,wt, - ,w}) and (wy,--- ,wy, W}, - ,w}) are CC-co-
ordinates, we have {w;, w} —w}} = 0. It follows that g; = w} — W] is holomorphic.
By {w},wi} = {@},@}} = 0, we have {&],g,;} — {&],9:} = 0, which implies
d(Y gi(w)dw;) = 0. By Lemma 4.1, we have g; = 2L.

Put g = gap(z). Since @44 is a holomorphic diﬁzlg;norphism, we have
ok 0 02k, yo  Oda
wi =0+ 5 = g o, 17 agz,gﬂ)'
O
It is obvious that ¢%, = 1, gaa =const, and on every Vo N Vg NV, # 0, we see
that
(4.9) PapPpyPya =1, Papdfa + Paygys + Jay = const..

4.3 Noncommutative Kahler manifold.

Let M be a Kahler n-manifold. In the following we give a noncommutative
version of K-coordinates. Viewing M as a real symplectic manifold, we construct
a real Weyl manifold Wy, as a locally trivial Weyl algebra bundle over M and a
noncommutative algebra F(Wy) of the Weyl functions of Wyy.

We now consider the complexifications W and F(Wj,)©. The complexification
F(Wy)€ is viewed as a subalgebra of the sections of the complex Weyl algebra
bundle W.

Let U be a contractible open subset of R2™.

Definition 4.3. (Cf. Definition 3.3.) For f € F(Wy ), the body part b(f) of f
is a C®-function on U such that f — b(f)! € v[(Wy)©. A system of elements
€1, b € F(Wy)C are called topological complex generators (TC-generators),
if the body parts (&), - -, b(€2,) are paracoordinates on U.

If &, -, &, are TC-generators, then these elements together with v generate a
dense subalgebra of F(Wy)©. ) )
On a local coordinate neighborhood U, TC-generators (i, -+ ,(n,Ci, -+ ,(n €

f("YU)C are called quantum Kdihler coordinates (QK-coordinates), if [(;,{;] =
[¢i»(;] = 0, and the body part of the matrix (—1[(;, (;]) is non-degenerate.
The following is easy to see:
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Proposition 4.4. Let U C C™ be a domain which is a Stein manifold. Suppose
Cly 5 Cn € F(Wu)© satisfy [(i,¢j] = 0. Then, for any holomorphic function
ft1, -+ ,tn) on a domain U, f((1, -+ ,(,) can be defined by using a polynomial
approzimation, to be an element of F(Wy)C.

Definition 4.5. A complexified pre-Weyl manifold W§; is called a noncommu-
tative Kahler manifold, if there is an open covering {V,} with QK-coordinates
2{, e 22 BY ... 22 of each F(Wy, )¢, the model algebra over Vj,, satisfying
the following: On every U,s = ¢a(Va N V3), two systems of the generators are
related through a pre-Weyl diffeomorphism @4 : F(Wy,, )¢ - T(WUM)C such

that there is a holomorphic mapping ¢.g = (goaﬂ, ~++ ,¢ng) of Uag onto Uge with

(410) bo(2) = Pus(2%):
wag is called a holomorphic coordinate change.

By the above definition, it is easily seen that the base manifold M of a noncom-
mutative Kahler manifold W§; is a Kahler manifold (cf.§4.2).

A function of QK-coordinates z® remains a function of QK-coordinates z” after
any patching transformation ®%,. Hence on the noncommutative Kahler manifold
WS, the notion of quantum holomorphic function is well-defined as a function of
2% on each Wga.

We now consider a Weyl manifold Wy over M and its complexification W§;.

Let {cap~} be the Poincaré-Cartan cocycle of {g(Us)}. Since constant functions
can be viewed as holomorphic functions, there is a natural homomorphism 7 of
H?(M) into H?(M, O), the sheaf cohomology group of holomorphic functions.

The following is the main theorem of this paper:

Theorem 4.6. A Weyl manifold Wy constructed on a Kahler manifold M s a
noncommutative Kihler manifold, if and only if 7(c?F)(Wyy)) = 0 for every k > 1.
In particular, if H*(M,O) = {0}, then any Weyl manifold constructed on M is a

noncommutative Kdhler manifold.

5. PROOF OF THEOREM 4.6

5.1 Quantum complex coordinates.
Let M be a Kahler manifold. According to [OMY1], there exists a Weyl manifold
we.

Theorem 5.1. There is an open covering {Vo} of M such that on every V, there
are QK-coordinates (Y, -+, ¢, (', -+, ¢S and the quantum canonical conjugate

1% G with [(F, (GO = —véij, [GF, (9 = 0.

Proof. We first take K-coordinates z{,--- , 23 and we make CC-coordinates on Uy;
P SRR . L

Set (& = (28)F, ¢ = (27*)F. Then, we get

(1) )= GG =0 (modv?), [(7.G°] = —vdy; (mod v?).
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Set as follows:

¢ = z/zaij (mod v?), [T, ¢ = v’c;;  (mod 1),

(5.2) 5] ' )
(67, ¢ = véij +v7bi;  (mod ).

Define a 2-form w as follows:
(5.3) w=Y (aijdz}* Ndz}® = bijdz}* Ndz§ + cijdzf Adzf)
By the Jacobi identity, we have dw = 0. Thus, by Lemma 4.1, there exists a 1-form

(5.4) 0=> Ndz}*+ > rk;dzf

such that df = w. . }
Replacing (7, (¥ by ¢; = (X — v, {§ = (7% + vk;, we obtain

[Q:i,(.:j] = [fi*aé:;] =0 (mod V3)7 [fiaff] = —vd;; (mod ’/3)-

Repeating this procedure yields Theorem 5.1. O
¢y, C GF Yy -, (e will be called guantum complex canonical generators

(QCC-generators).
5.2 Standard noncommutative Kahler manifold.
On a Kahler manifold M, we take a coordinate covering {V4} and K-coordinates

zy, -+, 28 on Uy, where Uy = ¢o(Vy). By using the argument in §4.2 on each U,,
there are CC-coordinates z{',--- , 2%, 27, -+, z:%. Identifying V,, with U,, we use

above CC-coordinates on V.
Let 9% : V4 — C2™ be the coordinate map of these paracoordinates and let
Vo = {0%(p); p € Vo }. We define a star-product *, on C®(V,)[[v]] by

(5.5) f*a g = fexp{-20.aAd.a}g.

(C®(Va)C[[V]], *a) can be viewed as the algebra of Weyl functions ]-—(VV‘-Z) of the
trivial complex Weyl algebra bundle Wf/ca over V,. Since V, is diffeomorphic to
Va through the coordinate map 2, F( W‘Z) may be written as F( VAVLC,; ). We now
identify C=(V,)¢[[v]] with ]:(W‘Z)

Let vos = @pps! be classical holomorphic coordinate transformations. By
(4.8), (4.9), we see the following: Under the same notations as in Lemma 4.2, we

set @} 5(v) = v and

T x z o T x * — *Q aga[i
(56)  Bp(]) = 9us(27), Bp(=") = Y ((dpas) ™ (17 + 55
k “k
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Theorem 5.2. (i) The mapping @Zﬂ extends to a pre-Weyl diffeomorphism of
(f(VAV‘%Q),*B) onto (f(w‘(/iﬁ),*a) such that

(5.7) e =1, 595,92, =1
Thus, we obtain a noncommutative Kdihler manifold WAC,} in which z2y,--- 29,
279, -, 2% are local QCC-generators.

(ii) Moreover, (i)Zﬂ extends to a pointless contact diffeomorphism @Cﬁ such that

c* d(v—? (0)
(5.8) Ber by der = om0 O ¢ g

and caﬂ7 defines a cohomology class in the coefficients C of the symplectic 2-form
on

Proof. Omitting subscripts a, 3, we denote by 2! = ¢!(z). By (5.5), we have

Ok vy 09y 1 _ 0 0z _ o
[Z ) (Zk + a_Zk)’ Z]] 82 azk - U(s’]
(5.9)
/ Oz L Bzm . dg
[Z,-,Zﬂzo, [ 8 / (2 + ) Z (Zm+62m)]:0
Thus, setting z/* = > = 92k . (5} + 3 ), we see z, ¢ ,zh, 21, ,zn are QCC-

generators of C™(V,4)¢ [[I/]]

We show that &* s extends to a pre-Weyl diffeomorphism. Since ¢qg is a sym-
plectic diffeomorphism, Proposition 2.3 gives a lift ¥} 5 of wa3. By Theorem 3.2,
we may assume that ¥ 5 are patching Weyl diffeomorphisms of a Weyl mamfold
Why.

We consider (\Il’;ﬂ)_lézﬂ on the above QCC-generators. Set

(Wog) " @0p(al) = 2l + iy (Thp) T @hs(=l") = =" + R}
By (5.9) together with Lemma 4.1, we easily see that there are elements hog €
C>®(Vyp)C[[v]] such that @aﬂ =¥s e2d(has)  Since ¥: 5 and e2d(kas) are pre-Weyl
diffeomorphisms, ®* s extends to a pre-Weyl dlffeomorphlsm (5.7) follows directly

from (4.9). Thus, we get a noncommutative Kéahler manifold Wy
Though we can make, by Lemma 2.6, a pointless contact diffeomorphism ®¢;

which extends ézﬂ, we construct @g‘b directly in two ways to obtain (5.8).
We define a contact Weyl Lie algebra I' (ggﬁ) by joining 7% with the relations

tiad)

(5.10) [78,v] = 22, ['rﬂ,ziﬂ] = yzfj, [+# *ﬂ] 1/2:’6.

To obtain the extension $* ag of @aﬂ we have only to I\now the function f,4 given

by @g}(rﬂ) = 7%+ fap- By (5.6), we set 2} = @} 45(2 lﬂ), 2 = prg(z I-ﬂ) on Uyg.
Then, by (5.9) and (5.10), fag must satisfy

(5.11) [T+ fap, 2l = vz, [T+ fc,,g,z;«*] = vz,

18



KSTS/RR-97/003
June 20, 1997

Note that [r*,h] = vE“h, where E® is the Euler operator given by E® =
Yoiq (28020 + 2% 0:ra). (5.11) can be rewritten by using the usual commutative
product, as

0

I£]
0z!

9 I
= fag = (I — E%)z}".

(5.12) 5

faﬂ = _(I - Ea)zzl’v

Thus, by solving (5.12) via Lemma 4.1, we found f,g. Since the right hand side of
(5.12) does not involve v, f,3 does not involve v. Put

(0)

Capy = 3(fap + Plpfon + Parfra)-

A o o (0) _
Then, we have cggy € C and @57, 25 @5, = eCapr 247
To find the de Rham cohomology class corresponding to cgoﬂ) , through the iso-

morphism between Cech cohomology and de Rham cohomology, we recall another
recipe of constructions of f,g. That is, we find a 1-form 6, on every V, such that
Pe30s—0a = %dfaﬂ on Vag = Vo NV, because {df,} defines a global closed 2-form.

To find 6., we remark that there is a one parameter family %; of symplectic
diffeomorphisms ¢y : Vogo = Vag,e such that Vog o = Vag, Yo = Land Vg1 = Vag,
1 = (phgr > Pay)- (Cf. [OMY3, Lemma A] and [KNz].) Define an infinitesimal
symplectic transformation H, by H; = (%¢t)¢;l. Since H, is a Hamiltonian vector
field, there is a C* function h; such that QLH; = —dh;.

Recall that a lift U¢* is given by solving £ W¢* = Ue*ad(Lhy). If we set U§*(7%) =
7% + f;, then f; must satisfy the differential equation

d 1 1
(5.13) priiie ;[ht,ft] + 2hy — ;[Tavht]‘

By the first construction of f,g, we may set f; = fog mod v.
Note that setting 6, = 1> (28dz}* — 2}dzy), we have 1[r% hy] = E%hy =
204.H,. Solving the equation of v°-component of (5.13), we have

1
(5.14) fas = ¥ / $1 (2 — 260 aH,)dt.

Note that € = df, on V, (cf. 4.2). By Cartan’s formula of Lie derivatives, we see
that

1 1
g = 207 / BV (dhy — d(B o Hy))dt = —207 / B L, Bt
JO 0

Hence we have df,p = 2(@0’;[35/3 - 9(1), by remarking df_léa = go’;ﬁég. Thus, we
see that dfg = 2 S dz Adz}™. The last assertion is proved. O

The noncommutative Kahler structure obtained by Theorem 5.2 seems to be
isomorphic to that of Karabegov [Ka].
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5.3 Proof of Theorem 4.6.

Suppose we have a Weyl manifold W), with the Poincaré-Cartan class {cagy}.
Let @7 5 be Weyl diffeomorphisms giving patching transformations, and let ®¢'; be
the lifts of (I)Zﬁ given in §3.2. Let ¢q3 : Uag — Usq be the coordinate transforma-
tion induced by ®7 5. ¢ap is a symplectomorphism and a holomorphic diffeomor-
phism at the same time.

By the assumption of Theorem 4.6, we have that for every k > 1, {(‘((12;,3} can be

written in the form 0(02{;2 = g((fﬂk) + @Zﬂg(ﬂ%{k) + sof,.rgg,zak), (k > 1) where gg;) is a

holomorphic function on Uyg = ¢o( Ve N Vp).
Beside @77, we define another family of pre-Weyl diffeomorphisms

X cx T c* 1 - k
(5.15) gﬂ — @aﬂ expz Y. lad(zﬂk 19512,8))
k>1

by using g((lzﬂk) given above. By (3.7), we see that {<T>g*ﬁ} satisfies

Fox F ok FCx Fex Fex Fe k— 2k % (2k) 2 % k
ap 5y P50 = Pap sy 72 exp ) i zkl—lad(VZ l(gfxﬂ) + (I)aﬂgﬁy + ‘I’ayg%)))-

Hence by (5.6), (5.8), we have

Lemma 5.3. $5,35 & = 05,35 2%, = eCamad(v ™),

The above lemma also shows that the system {é;*ﬁ} defines a pre-Weyl manifold
Wy;. However, we see also the following;:

Lemma 5.4. For each o, such that Vo, N Vg # 0, there exist a unique hog €
F(Wuy,,)C and a unique cap € C such that Qo = ég’*ﬂead(”haﬁ)ecﬂﬁa‘i(”_l)

Proof. We already know that f,s dose not involve v. Hence by (5.15) we see that
‘fg*ﬂ(rﬂ) is written in the form 7% + Ekzo vk % hgk, har € C>®(Uap). Apply
now Lemma 2.7 to ®7 ;. Since both @7, and @7, induce the same @qo5 on the
base spaces, we see by Corollary 2.5, (1) that @(’;ﬁ((i)zﬂ)"l(ra) is written uniquely
in the form 7% + 2c45 + v? * Ry Where hi 5 € F(Wy,,)¢. Hence, we have
Pex, = (i'g%ead(haﬁ)ecaﬁad("_l). We remark also that cqag + cgy + ¢ya = 0. O

The identities ®¢%5®%, = 1, $505, = 1 together with (3.7) yield hgo =
—@;ﬂhc,g and cag = —Cga-
In what follows we use

(5.16) Zﬂ — (Dzﬂeccxﬁad(v* )

instead of (izﬁ, since this replacement (5.16) does not change the Poincaré-Cartan
cocycle by the above remark.

The identity in Lemma 5.3 gives the following cocycle property for {hqag}:
Lemma 5.5. On I'(gu,,. ), we have 2d(has) ad Wi ghay) ad ¥ hoa) — p

The next lemma shows that this cocycle is a coboundary, and hence Wy & Wy,.
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Lemma 5.6. For each «, there ezists ho € F(Wy., )¢ such that

(5.17) e, = ead(”ha)\i;g*ﬂe—ad(uhﬁ).

Proof. Let @45 be the induced symplectic diffeomorphism by @5 Using Lemma
5.5, we have by identifying hos with an ordinary function that

(5.18) hag +@5hsy + Payhya =0  mod v.

Taking a partition of unity {¢+} subordinate to the covering {V,}, we set

(5.19) ha =Y @hybrhay € F(Wy,)C.

5
Using Lemma 5.5 again, we get hag = ha — ¢} 3hp. Setting

q’,;*ﬂ = ead(ha)\i,gbe—adwﬁ)’

we see that ¢, = \IJg*ﬁ mod v®. By Corollary 2.5, (1), there exists a unique izag

af
such that
(5.20) oy = G ed(has)
without e“2d(*™)_term. Repeating this procedure yields the Lemma 5.6. O

We now show Theorem 4.6. We first show the necessity; 7(c(*¥) (W) = 0
implies M is a noncommutative Kéhler manifold. We may assume by Lemma 5.6
that Wy is a pre-Weyl manifold with a system of patching diffeomorphisms ¥* 8

Since [v71,27] = 0 and [gf;)(zﬂ),zf] = 0, we have by (5.15), (5.16) and Theorem
5.2 that

(5.21) D22l = @152 = of 4(29).

This means the patching transformations are holomorphic.
Note that [z, 2] = —v{b(2{),b(2§)} modr. Hence we see the body part of
[22, 2;’]) is nondegenerate. Thus, Wy, is a noncommutative Kahler

the matrix (—1
manifold.

To prove the sufficiency in Theorem 4.6, let Wj; be a Weyl manifold with the
Poincaré-Cartan class ¢ = ), 2R, By definition of Weyl manifold Wj; for
a Kahler manifold M, there are a simple open Stein covering {V,}, a system of
trivial Lie algebra bundle {gy, } and a system of patching transformations {5}
Suppose that Wy is a noncommutative Kéhler manifold over M. Then, we may
assume that on each F(Wy,_ )¢ there are QK-coordinates 2y 2 By 2D
with the pre-Weyl diffeomorphisms ¥%; : F(Wy,,)¢ = F(Wy,,)¢ satisfying the
property (4.10). Since {®} 3} and {¥} 4} are patching diffeomorphisms of the same
Weyl manifold Wy, there is a pre-Weyl diffeomorphism ¥% for each o such that
L 5V5 = VL¥ 5. Hence Wiy can be viewed as a pre-Weyl manifold with patching
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diffeomorphisms ¥? ;. Let ¥’ be a pointless contact diffeomorphism which extends
U* .
af
On the other hand, remark that holomorphic coordinate change ¢, 4 in (4.10) can
be viewed as usual holomorphic coordinate transformations on the base manifold
M. By Theorem 5.1, there are QCC-generators z{,--- ,z3, x.f",--- ,Zr® on each
F(Wy.)€. By Theorem 5.2, we have pre-Weyl diffeomorphisms @:Y g and pointless
contact dlffeomorphlsms @C* which extend <I>
Since ¥* ( aﬂ)‘ 1nduces the identity on the base space Uyg, there is by (2.2)
hag € F(Wuy,,)¢ such that Ui = <I>* e*d(has) The terms e°2d(v™) gc'ad(logv)
need not be used because these are Identltles on f(WUaﬁ)C.
Note that W7 4(z;) = @aﬁ( z;) for every z;. We see that [z;, hag] = 0. It follows
that hqp does not involve z! variables, that is ‘holomorphic’.
We define ¥ by (I'C* “d(haﬁ) Then, U5 1s an extension of U2 s The Poincaré-
Cartan cocycle of WM 1s given as

ecap.,ad(y ) \Ifcﬁ\l’/%/ 70[ — @Cﬂ@ @c* ad(@aﬁhaﬁ) ad(d):whgw) ad(ha,o,)

By (5.8), we have eCapyad(v™h) ec(aof;v vTh) ead(®) s hap) gad (@5, hsy) cad(hya) et
) o
haﬂ = ZkZO thfx/;‘ Since Cafy = Zkzo 2k (aﬂ'y7 we have

&% shap + Phyhpy + hya =0 modw.

By identifying hgoﬁ) with an ordinary function, we get

0= pophes + Phyhigy + 2.

. R (0) -
Consider @77 = ®%e —2d(has) instead of % in the above arguments. Since
hgg are holomorphic, ®¢* ap can be used as patching diffeomorphisms to define a

noncommutative Kahler manifold.
Now by the same reason as above, there are hqg such that U7 ; = @7 5e
and hsg are holomorphic. Hence, we have

ad(vhag)

- o - 3% % %
Caprvad(v™h) _ ecggwad(u Y ad(v®5 s hap) Lad(vd5 hsy) Lad(Vhya)

Setting hog = Ekzo thikg, we have cflgv = g;aﬁh(o) + @ayhﬂv + h . This implies
that cffg , is a coboundary in the cochain complex with coeflicients O. Repeating

this procedure, we see {6512;7)} =0in H*(M, Q) for k > 1. Thus, we obtain Theorem
4.6.

6. CONSTRUCTION OF NONCOMMUTATIVE CONTACT ALGEBRAS

In this section we construct a certain algebra, called a noncommutative contact
algebra over a quantizable symplectic manifold.
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We use notations stated in §3. Let M be a symplectic manifold with the symplec-
tic form . We assume that M is quantizable, i.e., 2Q € H*(M;Z). We consider
a Weyl manifold Wj;. On each coordinate U,, we use 7 given by (1.9) and we

denote it by 7,. In this section we assume that the Poincaré-Cartan class ¢(Wyy)

(0)

is c(o)(WM). Since M is quantizable, we can assume that ¢ is taken as mnqagy,

afy
where nqgy € Z. Since [7*,v7!] = =2, we see that
(6.1) b5 LT =T + 2mnagpy.
This implies ®¢P5, fy‘(;e"’_'a = ¢™", and hence the associative algebras A(U,)

generated by €' and F(Wy,_ )¢ can be patched together to form an algebra sheaf.
We denote this patched algebra by A(M). Every element of A(U,) is written in
the form 3 fm €™, fr € F(Wy, )¢ and ®¢; are the patching transformations.

Let A, (M) be the subspace consisting of elements written in the form f, *ei™""
on each U,, where fo € F(Wy,). Am(M) is characterized as the eigenspace of

+ad(v™!) with the eigenvalue 2m. Clearly, we have

A = @) An(M),

meEZ

and Ag(M) = F(Wy)€ is a subalgebra of A(M).
Since @3 is a contact Weyl diffeomorphism, we see that there exists fog €
F(Wy,,)¢ on every Vo N Vg # 0 such that

(6.2) (7)) = () = i Han)
Lemma 6.1. There 1s Fog € F(WUM)C such that e'F*Ffap) = F, 5% ™ In
particular, we have

za

(6.3) e H) — BT (1 4 24sp) = (1 — 2isy) "2 e .

Proof. Consider t(s) = e'*(7"+fas) 4 =17 Since [v,9(s)] = 0, ¥(s) does not
involve 7. We have

d (o ca - a —
(6.4) d—;/)(s) = T T fap) g (ifag) ¥ €T = ith(s) x €7 x fap ke
s

Put g(s) = €7 * fag*e 7" . Since g(s) = €247 f, 5. we see g(s) € F(Wy, )¢,
Thus, we have a differential equation %z/;(s) = () *ig(s), where g(s) € F(Wy, )¢
is viewed as a known function. Note that F(Wy, )¢ & C®(U,)“[[v]]. By the Moyal
product formula, the above differential equation can be rewritten as a system of
differential equations on U,. It is easy to see that (6.4) has a unique solution in
C>(Ua) “[[v]]-

Note that

—is7% tv

1 —2sv]

-zt
e’’’ xtrxe

23



KSTS/RR-97/003
June 20, 1997

(6.3) is obtained by solving the equation (6.4) inserted the above quantity. d

Lemma 6.1 shows that ®¢%(g* ei’.'ﬁ) = &7 5(9) * Fagxe'™ for any g € F(Wy,)C.
Since et e = 7" +2t we see that €224(*™) gives an ! = {e‘!} action on
A(M). Hence the relation (6.2) together with Lemma 6.1 can be viewed as a
transition rule (coordinate transformation) of a ‘quantum’ S'-principal bundle and
the associated line bundle. Remark that the principal S'-bundle Pys constructed
on M via quantization condition is a contact manifold with a contact form as a
connection form whose curvature form is the symplectic form. We denote by L, the
line bundle associated to Pps. A(M) can be viewed as a noncommutative contact
algebra (C°(Ppr)C|[[v]], *) defined on Pyy.

We denote by Py, Ly the quantum principal bundle and its associated line
bundle respectively given by the patchwork mentioned above.

We suppose that W, is a noncommutative Kahler manifold over a Kahler man-
ifold M. By Theorem 5.1, there exist QCC-generators z{',--- , 2%, 27%,--+ ,22%. As
we did in (5.10), joining a new element 7% such that
(6.5) [72,22] = v2&, [F*, 25 = vzl [F*,v] = 203,
we construct a family of contact Lie algebras { gga }a. Since the v-isomorphism class
of gga depends only on Wg;, we see that the Poincaré-Cartan cocycle of {gga}a
gives the class ¢(®)(Wjy) in the coefficient C, which is assumed to be integral.

Proposition 6.2. For every V, there is an element Hy * 7" € A(Vy,) such that
[z;, Hy * €7 = 0. Moreover, if f € A(V,) satisfies [2&, f] = 0 for every i,
1 < i < n, then there is a holomorphic function h(z) such that f can be written in
the form h(z)* Hy x '™ .

Proof. We need only to show the first assertion. The inverse Moyal product formula
(1.2) for QCC generators z{,--- 2%, 21%,--- ,2:* gives a commutative product o.
Using the product o, the *-product is given by the Moyal product formula (1.1).
Take a function H(t) and put H, = H(D)_ 2zJ o z7*). We consider the system
of equations [2{, H * ¢!”"] = 0. By the Moyal product formula for the above QCC

generators, this equals

(6.6) (H oz0) %™ + Hx[z8,e7]1=0
Since €7 z& = 28 * €77 T¥)_(6.6) is reduced by using Lemma 6.1 to a differential
equation
v 1 d 1
6.7 —(l+ ———)=-H(t 1———=)H(#)=0.
(6.7) Ut = a0 = O
(6.7) can be solved in C*°(R)[[v]] and we have H € C*>(V,)[[v]]. O

By Proposition 6.4, we see that for every V, N Vg # () there are holomorphic
functions h*# such that

(6.8) C(Hpx ™) =hP x Hox '™

24



KSTS/RR-97/003
June 20, 1997

Thus, the quantum line bundle Ly of Lys is a holomorphic line bundle over M and
A(M) can be viewed as the algebra of sections of @, L.

Let H(M)[[v]] be the commutative algebra consisting of all holomorphic sections
of @50 L. I H(M)[[V] # {0}, H(M)[[v] can be viewed as a representation
space of Weyl functions on M.

As pointed out in [CGR], the multiplication operator combined with the pro-
jection to the space of all holomorphic sections is the essence of the Berezin rep-
resentation [Be], which coincides with the representation produced by geometric
quantization with respect to the Kahler polarization mentioned above.

[BCG]

(Be]
[BFL)

[CGR]
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