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1. Introduction.

1.1. We consider an n-th order linear ordinary differential equation

1.1)

n d
ehy™ = 3 Bk b (x,€) y™ o (O <|z)]<m,0< €< &g, = a;) )
k=1

where z is a complex variable, and h, 7y and & are positive constants.
The coefficients px(z,€)’s are given by

1.1y

pi(z,€) :=pk-($ o (k=12,---,n),

where m, | and r are positive integers satisfying the singular perturbation condition :

m+1
(1.2) h>T2E
m+r
and the constants pi’s satisfy
n
P = Z G, P2i=— Z Q) Qkyy,  P3 = Z Qo) Oy Qg
k=1 k1<ka k1 <ka<ks

(1.3)

(1.4)

n
Prn—1:= (_l)n Z Gy Qg "~ Ok _ys P i= (_1)n+l H Qe
ki<ka<-<kn-1 k=1

a1 <ar (k=2,3,---,n); Vax #0.

Accordingly, the characteristic equation of (1.1) is given by

(1.5)

n

L(z,A\) =0, L(z,A):=A"= Y pe-2*™A"* = [[(A — axz™)

k=1 k=1

and then the characteristic roots are

(1.6)

The characteristic roots A (x)’s coincide at z = 0, then the origin = 0 is, by definition,
a turning point or a transition point of (1.1). The turning point z = 0 is also a singu-
lar point of (1.1) from (1.1)’. Thus we call the origin z = 0 a turning-singular point of (1.1).

1.2. The differential equation with a turning point is characterized by its character-
istic polygon introduced by Iwano-Sibuyal8]. The characteristic polygon is similar to
the Newton polygon for a differential equation with an irregular singular point. We can
analyse the asymptotic property of the differential equation near the turning point by its

A=M(z) i=apz™ (k=1,2,---,n).
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characteristic polygon. The characteristic polygon is, however, not effective for a case of
turning-singular points.

In general, the characteristic polygon is composed of several segments. The case of
one-segment characteristic polygon are analyzed by Nakano[11], Nishimoto(19], [20] and
Wasow[27] et al. for second order, higher order differential equations and systems of differ-
ential equations. The cases of two- and three-segment characteristic polygon are analyzed
by Nakano-Nishimoto[17] and Roos[23], [24] for second order differential equations, and
Nakano[14] analyzes certain third order differential equation with a two-segment charac-
teristic polygon. The second and the third order differential equations with a turning-
singular point are analyzed by Nakano[12], [13] and [15].

1.3 Our aim is to analyze the asymptotic property of solutions of (1.1). We use the
so-called stretching-matching method and the result is given in the theorem 7.2.

In the second section the domain 0 < || < zg is divided to two circular regions, in
each of which the differential equation (1.1) is reduced. They are called the outer and the
inner equations. In the third section the outer and the inner WKB solutions are obtained
and the inner WKB solutions have the double asymptotic property.

In the fourth and fifth sections topology of Stokes curves are analyzed and the brief
sketch of Fedoryuk’s theory about canonical regions is given, and the canonical region
for the inner equation is obtained in the sixth section. In the last section the matching
matrix connecting the outer and the inner solutions is calculated.

2. Reduction of the equation.

2.1. We see that the coefficient pi(z,€) has an asymptotic form

(2.1) pi(,€) = pe-a™™ +O( (ex™ V)" )
for small ez~ V/* (a:=1/(m +r) > 0) and z in the region
(2.2) Ke® < |z < o,

where K is a positive constant.
Thus the differential equation (1.1) is asymptotically equal to

n
(23) €nhy(n) — E E("'k)"pk 'ka y(n—k)
k=1
for small exz~V/* and z in the region (2.2).
Putting = te* (a stretching transformation ), we get
pe(@,€) = pep*®), p(t)=t"-1/t" (k=12,---,n).
Thus we can reduce the differential equation (1.1) to

@24) My =3 e peph )y (h' =h—(m+1)a>0," = %) .
k=1

in the region 0 < |z| < Ke®. By the singular perturbation condition (1.2), the exponent
I of € is positive, and so (2.4) is a differential equation of singular perturbation type.
We investigate the differential equation (2.4) in the region

2.5) 0< |t <oo
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instead of the region: 0 < |z| < Ke®, which is equivalent to a region: 0 < |t] < K. Then
two regions (2.2) and (2.5) have common interior points.

2.2. We call the differential equation (2.3) and (2.4) the outer equation and the inner
equation of (1.1) respectively, and the regions (2.2) and (2.5) are called the outer region
and the inner region of (1.1) respectively.

Summing up the above consideration we get

THEOREM 2.1. Consider the differential equation

n 1\ * d
(L1) ey =37 E(""‘)"pk(x”‘ - %) y ) (0 <la| S0, 0<e <&, = %) :

k=1
and suppose that positive constants h,l,m andr satisfy the singular perturbation condition:
(1.2) h—(m+1)a>0 (a:=1l/(m+71)).
Then the differential equation (1.1) is reduced in the outer region
(2.2) Ke* <lz| < xo
to the outer equation
(2.3) ey = kZ::l gnR p-ghm yn ) (’ = d%) :

and to the inner equation
nh’, (n) = (n—k)h' k (n—k) m 1 z d
(24) ey = Z 2 Dr-p (t) Yy p(t) =1 - {,—.1 ti=—, = a;
k=1
in the inner region
(2.5) 0 < |t| < oo,
where b :=h—(m +1)a.

3. The WKB solutions.

3.1. The WKB solution is, by definition, the leading term of the formal solution, that
is obtained by substituting a power series of ¢ in the differential equation.

LEMMA 3.1. A linear ordinary differential equation containing a small parameter ¢
 (n— n— d
B Hul=0, Lyl 3 e P a0 w@=1= 5 )

k=0
possesses the WKB solutions

; _ L= _ = At .
(32) yj(x,e)—exp (ELOAJ(t)dt ’; zo/\—jmdt) (7=12,--- ,M),

where \j(z)’s are characteristic roots of (3.1) which are roots of the characteristic equation
of (3.1) defined by

(3.3) L(xz,\) =0, L(z,X):= i g (z) A%,
k=0
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PROOF. Put a formal solution § := e=5®) 5% €7 a;(z) (ao(x) # 0) and substitute this
for y of (3.1). By using the Leibniz’s formula we get

L] = Tpo & £ret5® i L(z, )|

= L(z, 8'(2)) £20 €’ a5(x)

{ La(, 8'(@))S"(2) 520 € 45(2) + Ln(z, (@) (520 & 05(2)) }

By rearranging terms according to powers of ¢, the followmg equation holds:

L(z,8'(x)) ao(z) + £ {1 Lax(z, $'(2))S" (x) ao(@) + La(w, '(z)) ap(2) } + O(e) = 0

o Lz, 8'(x)) ao(z) = 0, 3La(z, §'(2))5"(2) ao(x) + La(x, §'(z)) ag(z) = O, -
Since L(z,S'(z)) = 0,8 (x) is a characteristic root. Putting S’ () = A (:v) ( j =
1,2,--- ,n), we get S(x) = [ A;(t)dt, and then

ag(z) = exp (—1 J5, LA,\(t,)\j(t))/L,\(t,)\,-(t)),\;-(t)dt) :
Since the characteristic polynomlal of (3.3) is L(z, A) = [Ti—; (A — Ae(2)), we get

Laa(®, M)/ La(z, A) = Ty Tiny Tapins(A — Me(@))/ g Ty (A — M)
= ez 2/ (M) — M (:c)) Thus we can get the formula (3.2). Q.E.D.

A=) elaj(z)

The WKB solutions are asymptotic expansions of the true solutions of (3.1), and they
have the double asymptotic property (Evgrafov-Fedoryuk|l], ®eaopiox[3], Leung[10]) such
that

LEMMA 3.2. Let D be a canonical region of(3.1). Then the WKB solution §;(x,€) (j =
1,2,--- ,n) has the double asymptotic property.

. ase — 0, x € D,
(34) e~ i@ { oS 0 Do cen

where y;(x,€) is the true solution of (3.1), and D is, by definition, & mazimal region in
which there exist n independent solutions of (2.4).

The proof is essentially same as Nakano et al.[16] and omitted here. We will give the
definition of a canonical region and construct it for (3.1) in §6

3.2. The solution of the outer equation (2.3) is called the outer solution of (1.1). The
solution of the inner equation (2.4) is called the tnner solution of (1.1). The differential
equations (2.3), (2.4) and (3.1) are very similar. Therefore we can obtain the leading
terms of formal outer and inner solutions from the lemma 3.1, which are called the outer
and the inner WKB solutions of (1.1) respectively.

THEOREM 3.1. The differential equation (1.1) has the outer WKB solutions

a m+1
(3.5) i (z,e) =" Z**f"f—-ﬁexp(““” ) (=12 ,n)

erm+1

and the inner WKB solutions
(36) e = p T exp (2 [ plo)ds) (=12, m).

PROOF. The characteristic equation and the characteristic roots of (2.3) are also given
by (1.5) and (1.6) respectively.

Then we have [ X;(z)/(A;(x)—M(z))dz = ma; log z/(a;—ax). By applying the formula
(3.2) we get the outer WKB solutions (3.5).
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In the same way we can get (3.6). Q.E.D.
4. Topology of Stokes curves (local property).

4.1. In this and the following two sections we sketch the Fedoryuk’s theory about
the canonical region to apply it to our differential equation. The Fedoryuk’s theory is
explained in Evgrafov-Fedoryuk[1], Fedoryuk[4], [5] and Wasow{29].

It is essential to analyze the maximal existence region of n independent inner solutions
of (1.1) which is called the canonical region of (2.4), because the existence region of
the outer solutions must be induced from the canonical region to apply the matching
method (§7). The outer solutions’ existence region is an angular sector whose boundaries
correspond to the boundaries of the canonical region as ¢ — oo (Nakano et al.[17]).

We are constructing canonical regions of (2.4) in the section six. To do it we have to
study topololy of Stokes curves.

The canonical region for the inner equation (2.4) is bounded by Stokes curves defined
by the equation

(4.1) REx(to,t) =0 (Xj (o) = Me(to), £ k),

1

(42) & (to,t) := & (to,t) — &k (o, 1), & (b0, ) := [ Aj(s)ds  (k,j=1,2,---,m),
0

and a curve defined by the equation

(43) SEi(to,t) =0 (Ajlto) = Mxto), 7 # k)

is called an anti-Stokes curve of (2.4), where );(t)’s are characteristic roots of the inner
equation (2.4).

4.2. The characteristic roots of the inner equation (2.4) are given A (t) = ax-p(t) (k =
1,2,--- ,n), where a;’s differ each other from the condition (1.4). The characteristic roots
Ax(t)’s coincide at zeros of p(t) which are turning points of (2.4) and are called secondary
turning points of the differential equation (1.1) (Nakano|14], Nakano-Nishimoto[17], Wa-
sow|29]).

They are the (m + r)-th roots of 1: t = e¥*/tm+)  (j=0,1,2,--- ,m+7—1). The
origin t = 0 is a singular point of (2.4) and it corresponds to the turning point = 0 of
(1.1) because of the definition of t: x = te®.

Since all a;’s are different each other, all A, (t)’s are different each other except secondary
turning points. Every difference of arbitrary two charactereistic roots contains p(t), and
it vanishes only at secondary turning points.

We get the local property of Stokes and anti-Stokes curves.

THEOREM 4.1. Ifr > 1, four Stokes curves emerge from a secondary turning point
to = eXm/mt1) (5 =0,1,2,--- ,m +7r — 1) in the directions
2k +1 -1

: ﬂ_%;jﬂ (=0,1,2,--- ,m+r—1;, k=0,1,2,3)
and they tend to other secondary turning points, the origin or the point at infinity.

Stokes curves approach the origin in 2r — 2 (r > 1) directions given by

% +1
2r—1)"

(44)  arg(t —to) =

(4.5) argt = (r>1, keZ)
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or approach oo in 2m + 2 directions given by

2k+1
— ——— > .
(4.6) argt Sm ¥ 1)7r (r>1, keZ)

PROOF. Let t, be a secondary turning point. We have to analyze the integral § :=
f,top(s)ds, p(s) = s™ —1/s". Put t = to + 7. Then, for small 7 the values of p(t)
are approximated such that p(t) ~ (m+r7)t ~1r (r ~0). By integrating this, we get
£ ~ (m4r)tr~'r2/2 (7 ~0). Near t = to the Stokes curves R £ = 0 have their arguments

2k+1 m—1
agT= T, argty {(7~0,kcZ)
From this equation we get four different arguments of Stokes curves near a secondary
turning point & = e*™/ (mtr),

_2k+1 m—1

argT = — 1~

Near the origin ¢ = 0, p(t) is approximated such that p(t) ~ =t (¢ ~ 0). Then

& ~i"/(r—1) (r > 1, t ~0). From the equation RE = 0, we get arguments argt =

(2k + 1)w/2(r — 1) (k € Z) near t = 0. Therefore there are 2r — 2 different directions in
which Stokes curves tend to the origin (cf. Theorem 5.2 for r = 1).

Near t = 0o, p(t) is approximated such that p(t) ~ t™. Then £ ~ ™/ (m+1) (t ~ 00).

From the equation R& = 0, we get arguments argt = (2k+1)7/2(m +1) (k € Z). There-

fore there are 2m + 2 different directions in which Stokes curves tend to the point at

infinity. Q.E.D.

jr (1~0;,j=0,1,2,--- ,m+r—1 k=0,1,2,3).

5. Topology of Stokes curves (global property).

5.1. By the definition, every Stokes curve of (2.4) emerges from a secondary turning
point (cf. (4.1)). Thus there are no Stokes curves which emerge from the origin, tend to
the point at infinity and do not pass through any secondary turning point. Any Stokes
curve can not cross other Stokes curves emerging from other seconday turning points and
they can cross only at the secondary turning points (Evgrafov-Fedoryuk|1], Fedoryuk(2]).

We are precisely analyzing the global property of Stokes curves and anti-Stokes curves
of (2.4).

THEOREM 5.1. (a) For arbitrary positive integers m and r, the pointt =1 is a
secondary turning point and two intervals on the positive real azis (t > 1, 0 <t < 1) are
anti-Stokes curves.

(b) When m + r is even, the pointt = —1 is a secondary turning point and two intervals
on the negative real azis (t < —1, —1 <t <0) are anti-Stokes curves.

(c) When m + 7 is odd, there is a Stokes curve connecting two secondary turning points
neighboring t = —1.

(d) When m +r = 4k (k € N), the points t = +i are secondary turning points, and
moreover

(1) if both m and T are odd, then four intervals on the imaginary azes (|t} > 1, 0 <
|St| < 1) are anti-Stokes curves, and

(2) if both m and r are even, then four intervals on the imaginary axes (ISt >1,0<
|St| < 1) are Stokes curves.

(e) Whenr =m +2,
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(1) every radial line, which passes through a secondary turning point and tends to the
origin and the point at infinity, is an anti-Stokes curve, and

(2) the unit circle |t| = 1 is composed of 2m +2 anti-Stokes curves.
PROOF. (a), (b) Since the function p(t) (= ™ — t~7) and its indefinite integral take real
values for all real t > 0 and the point ¢t = 1 is a secondary turning point for any m and r,
a part (t > 1) and a part (0 <t < 1) of the positive real axis are anti-Stokes curves for
any m and r, and the negative real axis is also consisted of two anti-Stokes curves when

m + 7 is even because the point £ = —1 is a secondary turning point. N
(c) Putting m + 7 = 2u + 1 (u € Z), secondary turning points are t = e2™/@utD) (5 =
0,1,2,---,2u) and neighboring secondary tuming points near t = —1 are given by ¢, :=

ewm/(2utl)  gnd ¢, := e@utD™/(2ut) Then, integrating p(t) from i to t; we get

m+r -t

12
= t)dt = r>1),
{ /tl p( ) (m + 1) (T‘ - 1) (tltz)r—l ( )
which is pure imaginary, because t; = ; and so gl -t = -t eiR
Ifr=1, we get
e=[ " p(t)dt = —log 2 2
= - — —_——= — me.
b P e am+1

Thus there is a Stokes curve connecting ¢, and 3.
(d) When m +r = 4k (r > 1, k € Z), secondary turning points are zeros of % — 1
and so two points ¢t = +i are secondary turning points, and we have

+it gmH . N Aer i 1
= [ pos = o (st ) T { e ) 0

If r = 1, we have
= ¢ (s)ds = —————i : ()™ 1 (21)™} —logt (>0

Thus, £ is real if both m + 1 and r + 1 are even. Therefore both positive and negative
imaginary axes are anti-Stokes curves if both m and r are odd. They are Stokes curves if
both m and r are even.

(e) When p(t) = t™ — 1/t™*2, the secondary turning points are expressed by ty =
eI™i/m+D) (5 =0,1,2,--- ,2m + 1) and we get the integral

1o —1)7
§:/t: p(t)dtz(——Jlr—)l(-r"‘+1+TTlﬁ—2) (0 < 7 < 00),

m

and so & takes only real values on the line ¢ = 7tg (0 < 7 < 00) for any j. This line is an

anti-Stokes curve.
If to = €™/ and t; = eUHD™/(m+1) we see that

" ot)d L (i, o~y 70
{ N V/to p(t)t_[m-i—l(e te )},—"&Tx

_ (jH1)xi —(g+1)mi\ _ [ gmi —jxi

m——+1{(e te )= (e™ +e )}
Both the indefinite and the definite integrals are real. Then an arc of the unit circle
between arbitrarily two secondary turning points is an anti-Stokes curve. Since there are
9m + 2 secondary turning points on the unit circle, there are 2m + 2 anti-Stokes curves
on the unit circle. Q.E.D.
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5.2. When r = 1, the origin is a regular singular point, and Stokes curve configuration
is fairly different from the case r > 1 near the origin though the Stokes curve configuration
is similar as the case r > 1 for large t.

THEOREM 5.2. Let m be a positive integer and r = 1. Then there is a Stokes curve
passing through all secondary turning points. It is homotopic to a circle.

The unit circle |t| = 1 is neither a Stokes curve nor an anti-Stokes curve. A radial line
Jrom 0 to oo passing through a secondary turning point is an anti-Stokes curve.

Near the origin, level curves defined by RE¢ = const.(> 0) are closed curves around the
origin and they are homotopic to a circle, and level curves defined by S & = const. are
radiai iines emerging from the origin.

PROOF. If we put t, := e*™/(m+1) and ¢, 1= @7+D™/(m+1) and integrate p(t) from #; to
t; along the unit circle |t| = 1, then we see that
242

£= / " p@ydt = [—l—e("'“)”" - 01] mr__
t m+1 Ziix m+r

Thus there is a Stokes curve connecting neighboring secondary turning points ¢; and t,,
but the unit circle |t] = 1 is neither a Stokes curve nor an anti-Stokes curve because the
indefinite integral is neither only real nor only imaginary on the whole circle.

If we integrate p(t) from O to oo passing through a secondary turning point t; =
e?7%#/(m+1) along the radial line ¢t = 7, (0 < 7 < 00), then we see that the integral

- [ (r-b)a- [ (-

takes real values only. Then the radial lines t = 7¢; (0 < 7 < 1) and t = 7¢, (r > 1) are
anti-Stokes curves proceeding from the secondary turning point ¢, (cf. Theorem 4.2 (e)).

Near the origin the function p(t) is approximated such that p(t) ~ —1/t, and we have
§ ~ —log|t| —sargt (t ~ 0). Then R¢ takes positive values near the origin, and a level
curves defined by ¢ = const. is a circle |t| = const. around the origin. Level curves
defined by 3¢ = const. are radial lines defined by argt = const. and they emerge from
the origin. By the way, a Stokes and an anti-Stokes curves are level lines of level 0. Q.E.D.

When m and r are given, we can draw outline of Stokes and anti-Stokes curves by the
theorems above. Several cases are shown in Fig. 4.

6. The Canonical region.

6.1. A Stokes region of (2.4) is defined to be a simply connected region bounded by
Stokes curves of (2.4) and it does not contain any Stokes curve as an interior points.
There are two types of Stokes regions, the one is @ half-plane type and the other is a strip
type.

If we consider £ = £(t) := &;(to, t) (to is a secondary turning point) as a mapping from
the ¢-plane to the ¢-plane it is conformal except secondary turning points and singular
points. Level lines ¢ =const. and ¢ =const. on the #-plane are mapped vertical and
horizontal lines on the ¢-plane respectively. A Stokes region of half-plane type is mapped
one-to-one onto a region R{ > C or RE < C, a Stokes region of strip type is mapped
one-to-one onto a region C < R& < (.

For example, D, is a Stokes region of strip type and other Dj’s are Stokes regions of
half-plane type in Fig. 4-1.
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The maximal existence region of each solution y;(z,€) in the lemma 3.2 is called a
\j-admissible region, which is consisted from adjacent several Stokes regions. In order to
prove the existence theorem (lemma 3.2), we have to show an existence of A;-admissible
region (Nakano et al.[16]). This proving technique is very similar to the case of the local
theory (Fukuhara{7], Wasow(28] et al.), and in order to get a );-admissible region it is
sufficient to show the existence of routes along which £ — +o00, —o0.

The maxima) existence region of n independent solutions, which is called a canoni-
cal region, is an intersection of all \j-admissible regions for j = 1, 2,--- ,n (Evgrafov-
Fedoryuk|1], Fedoryuk|5], cf. Kelly[10]). '

Since the origin and the point at infinity are irregular singular points of the inner equa-
tion for r > 1, there are two directions or paths tending to them along which R& — £oo
as t — 0, oo. Those routes are given by anti-Stokes curves, for example, L2, Ls and Lo, L4
in Fig. 4-1.

6.2. A canonical region is mapped one-to-one onto one or more sheets of the £-plane
together with slits emerging from the images of the secondary turning points.

For example, Dy and D, in Fig. 4-1 is mapped onto a right half plane (R > 0) and a
strip region (3(cos & — 1) < R < 0) of the ¢-plane by & = £(t) := [{ p(s)ds respectively,
and other Dj’s are mapped onto a right or a left half plane of the &-plane.

The region (U: _oDi U U:leJ') is a canonical region for (2.4) and it is mapped onto
a region consisted of two left half planes, two right half planes and a strip region between
them with slits of the {-plane.

In Fig. 4-2, Dy and D, are Stokes regions of half-plane type and their images are
£(Dy) = {£ : RE > 0} and £(Dy) = {€ : RE < 0} by the mapping &() := [y p(s)ds.
D, is a special Stokes region of strip type, because it is mapped onto a strip region
D = {£: Ck < F€ < Cry1, RE > 0} and the image of the sum of infinitely many D;’s,
ie., U:o:_ooDk is a half plane (R¢ > 0). In Fig. 4 the solid lines denote Stokes curves
and the broken lines denote anti-Stokes curves.

7. The matching matrix.

7.1. The outer region (2.3) and the inner region (2.5) are overlapped for small ¢, and
there exist the true outer and the true inner solutions of (1.1) in them respectively.

Taking an appropriate point belonging to both regions, we can compute a linear relation
between the outer and the inner solutions. This relation can be represented by a matrix
and it is called the matching matriz (Wasow[27]).

Using n independent outer solutions y;?"‘ (z,€)’s, we get a vector form solution

(71) Y‘mt = t[ ygnt(za 6) ’ y;mt(z,’g) y T yzut(x’ 5) ]7

and we call Y the outer solution of (1.1), too.
Similarly, we get the inner solution of (1.1.) of vector form

(72) Yin = t[ y;‘n(x’ 6) ’ y;n(x,e) y T y;n(zag) ]
Since the matching matrix M relates Y°* and Y*" linearly, M has to satisfy the relation »
(7.3) MYy =Y™

The matching matrix M = [m;,] is an n X n matrix.

9
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By using the WKB solutions (3.5) and (3.6), we can compute the matching matrix.

THEOREM 7.1. The asymptotic representation of the matching matriz M = [m;j]
defined by (7.3) is given by

(7‘4) M~ eamdlag[ Zk;ﬂ EZ‘E Zk;ﬂ oy ! Zk;en an—ag ] (6 N 0)

PROOF. Let Y be the outer WKB solution of vector form which is defined by sub-
stituting the outer WKB solutions g;""s for y;“”s in (7.1). Similarly the inner WKB

solution of vector form Y is defined.
The matching relation (7.3) is asymptotically represented by

(7.5) MY ~ Y™ (g—0).

Elements of the matrix relation (7.5) satisfy

Zmﬂ'y]' Ng_;n (6“’0,]:1,2,,17:)

i'=1

or
n go;ut
(7.6) ZmJ]’—’:"—lﬁ—Nl (6—)0;]:1,2’-..,"’).
4'=1 Y
Put
(7.7) z=np, t=np, p=¢2 |y =1

Then, z belongs to the outer region (Ke* < |z] < ) and t (= zp~?) belongs to the
inner region (0 < |t| < co) when & = p** is small. A new complex parameter n will be
defined soon later.

By substituting = 7p and € = p?/® in the outer WKB solutions (3.5), we get

Zk;&, a] —a aj"m+1 m+1-2h/a
(7.8) = (no)" kexp| L TTh .
Similarly, we get from (3.6) and (7.7)

nm+1

(7.9) G~ (np )" 240 T exp (n—

—-m—1-2h'/a 0
4 ) (p—0).

The exponent of p in the exp-term of (7.9) is
2 2
-m—1-=h'= ~m—1——(h—(m+1)a) =m+1 ~2h.
a a «@

The last term is equal to the exponent of p in the exp-term of (7.8).
Then, from (7.8) and (7.9) we get

sout ~aj —a;
(710) %’W ~ pzm Zk;ﬁj aj—ag — Eam2k¢j aj=a (p — O)
2
and
(7.11)
~q;ut —a
%‘_ ~ pm}_““¢J "r“k+mz’°¢1' %' "% exp ( m +cll]"’m+1 mHl- 2h/°) (1#£75p—0).
J
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There are two routes along which Rt (¢t =7np~1, p > 0) is either positive or negative.
Those routes are anti-Stokes curves L; and Lg emarging from the secondary turning points
t = 1 in Fig.4-1, for example.

If we choose a parameter 7 such as 9™+ > 0 for aj — a; > 0, and if we choose 7
such as ®9™*! < 0 for a7 — a; < 0, then the magnitude of the exp-term of (7.11) tends
to +o00 as p — 0. From (7.6) and (7.10), (7.11) we get

ax

(7.12) myy ~ ETEHEE myy  0(j£) (€= 0),
then the matching matrix (7.4) follows. Q.E.D.

7.2. Thus we could analyze the asymptotic property of the solutions of the differential
equation (1.1) in a region of 0 < |z| < zy. We conclude our analysis as

THEOREM 7.2. We suppose the singular perturbation condition (1.2). Then the
differential equation (1.1) is reduced to the outer and inner equations (2.3) and (2.4) in
the outer and inner regions (2.2) and (2.5) respectively.

The outer and the inner WKB solutions (3.5) and (3.6) are asymptotic expansions of
the true solutions of the outer and the inner equations of (1.1) respectively.

The outer and the inner solutions are related by the matching matriz (7.4).
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Fig.4-2. Stokes curve configuration for p(t) =t - 1/¢.



