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Introduction

For a positive integer k , let Sk be the space of all Siegel cusp forms of weight k£ on
Sp(2,Z) . Suppose f € S is an eigenform, i.e., a non-zero common eigenfunction of the
Hecke algebra. Then we define the spinor L-function attached to f by

(0.1)  L(s, f,spin)

1
= H{(l - O‘O,pp—a)(l - aO,pal,pp—s)(l - aO,pa2,pp—s)(1 - O‘O,pal,palpp_s)}
p

and the standard L-function attached to f by

-1

(0.2) L(s, f,st) := H (1—p%) H(1 — o p ) (1 — ajpp?) ,

4

where p runs over all prime numbers and «;, (0 < j < 2) are the Satake p-parameters
of f. The right-hand sides of (0.1) and (0.2) converge absolutely and locally uniformly
for Re(s) sufficiently large.

For an indeterminate ¢t , we put

Hy(t, f,spin) := (1 — ag,pt) (1 — ag,pa1,pt) (1 — ao,paz pt) (1 — ag par,paz pt)

and
2
HP(t7f7S—t) = (1 - t) H (1 - aj_,zlzt) (1 - aj,Pt) ’
Jj=1
where H,(t, f,spin) , Hu(t, f,st) € R[t].
Definition. (cf. Kurokawa [7]) We say that f € Si satisfies the Ramanujan—Petersson

conjecture if the absolute values of the zeros of H,(t, f,spin) are all equal to p_(k -%) for
all p.
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Since the Satake p-parameters satisfy a%,palvpazyp = p?*=3 | thisis equivalent to saying
that

laip| = lagp| =1 forallp,

that is, the absolute values of the zeros of Hy(t, f,st) are all equal to 1 for all p, or to
saying that

1 0 0 0 0
0 a b 0 0O
st,(f):=]10 b, ap 0 0 | €SOBR) foralp,
0 0 0 ¢ 4
0 0 0 —d ¢
a1p+ai; a1, — ay, asp+ az, azp — g,
where @y = —So—% , by = —S5E oy = ot dy = — (o

Langlands [9]).

For an even integer k, let S; be the Maafl subspace of Sy (cf. Maafl [11, 12, 13],
Andrianov [3], Zagier [18]). We know that if f belongs to the Maaf3 space S, f doesn’t
satisfy the Ramanujan—Petersson conjecture. Now, our conjecture takes the following
form:

Conjecture. (cf. Kurokawa [7, Conjecture 3])

If k is an even integer, any cusp eigenform of weight k in the orthogonal complement
of the Maap space satisfies the Ramanujan—Petersson conjecture. If k is an odd integer,
any cusp eigenform of weight k satisfies the Ramanujan-Petersson conjecture.

We will analyze this conjecture from elementary properties of L-functions.

Although several authors make numerical researches on our conjecture, so far we don’t
know even the existence of f which satisfies the Ramanujan—Petersson conjecture (cf.
Kurokawa [7], Skoruppa [17]).

Notation

1°. As usual, Z is the ring of rational integers, Q the field of rational numbers, R the
field of real numbers, C the field of complex numbers.

2°. Let m,n € Z, m,n > 0. If A is an m X n-matrix, then we write it also as A("™™)
and as A(™ if m = n. The identity matrix of size n is denoted by 1,,.

3°. Forn € Z, n > 0, let A(™) be a diagonal matrix with diagonal entries a3, - - , ay.
We denote it by d(a1,- - ,an).

4°. For n € Z, n > 0, let I'™ := Sp(n, Z) be the Siegel modular group of degree n and
let §, be the Siegel upper half space of degree n, that is,

Hn={Z=X+i¥ eC™|'Z=2, Y >0)}.
5°. We put

Tg(s) = n~%T (-;-) and Tg(s) := 2(27)°T(s) = Tp(s)Ta(s + 1) ,

where I'(s) is the gamma function.
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§1 Preliminaries

Let k be a positive integer. A holomorphic function f on §), is called a Siegel modular
form of weight k if it satisfies

(fIM)(Z):=det (CZ +D)—kf((AZ +B)(CZ+ D)™ = f(2)

forall Z € $, and M = c» p»

n = 1. The space of Siegel modular forms of weight k is denoted by M.
We define the Siegel operator ¢ on M} by

(2£)(2) = Jim f ((ﬁ 2))

for Z € $Hp—1. Then the operator ¢ defines the map & : M7} — M,?—l . Suppose
f € M. Then it is called a cusp form if it satisfies &f = 0.

€ I’ and if it is holomorphic at the cusps when

In what follows, we restrict ourselves to the case n = 2 and we omit subscripts con-
cerning the case n = 2 when there is no fear of confusion.

We define Gt := G*Sp(2,Q) by
t 0 12 _ 0 12
M(_12 0)M—/L(M)(_12 0) ,,u(M)>O},

and for a prime number p, Gj := Gt NGL(4,Z p~1]) .

Let M (resp. Hp) be the free C-module generated by the double cosets I'gT’, g € Gt
(resp. G;,L). Then H is a commutative algebra and we call it the Hecke algebra (over C).
We get H = ®,H, , where the tensor product is the restricted one. Moreover, the struc-
ture of H, is known: For 0 < j < 2, let w; be an automorphism of C[Xoil,Xlil,Xzﬂ]
such that

Gt = {M € GL(4,Q)

wo(Xo):Xo, wo(Xl):Xz, wo(X2)=X1,
wy(Xo) = Xo X1, wi(X1) = X7, wi(X2) = X,
'wg(Xo):Xon,’wz(Xl):Xl, wl(X2)=X2_l .

The automorphisms w; (0 < j < 2) generate a finite group W. We call it the Weyl

group. We get
UH, —= CX,*, X%, X,

where C[X,%!, X, ¥, de:l]W is the W-invariant subalgebra of C[X,*!, X; il,Xgil].
For g € Gt ,let I'gl’ = U;=1 I'g; be a decomposition of the double coset I'gT" into left
cosets. For f € My (resp. Sk) , we define the Hecke operator (I'gT") by

FITGT) = w(9)* > flg; -
=1
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Then we get a homomorphism H — End(Mjy) ( resp. End(Sk) ) .
For § € Z , § > 0 and a prime number p, we put

T(p'):= ). (TgD),
u(g)=p°
where g = d(p%, p?2,p®*,p*?) € G;’ ,dj,e; €Z(j=1,2)and0<d; <dy <e2<ey .
Suppose f € M} is an eigenform. We denote the eigenvalue of (I'gT") on f by Af(I'gl')
and that of T(p®) on f by As(p®) .
If the homomorphism Ay : H, — C coincides with the composite map of the isomor-
phism ¥ and the evaluation map

w
C[Xoil’Xlil,Xz:l:l] C ,
then the numbers aq p, a1 p, @2 p € C*, the Satake p-parameters of f, are uniquely deter-

mined modulo W. In this case, they are uniquely determined by

As(TplyT) = P_sag,po‘l,pO‘?,p o AH(p) =001+ 01,p)(1 +0zp)

(X0, X1,X2)—(a0,p,1,p,22,p)

and
’\f (Fd(l,p,pZ,p)F) = p—lag,p(al,l’ + a2:l’)(1 + al:Pa2,P) + (p_l - p_s)ag,pal:POQ)P )
up to the action of the Weyl group W.

We summarize some facts on Siegel modular forms and on L-functions attached to
them.
In what follows, we suppose that f € Sy is an eigenform.

(I) It follows from the hermiteness of Hecke operators (I'gl'), ¢ € G, that we have
Af(IgI') € R. In fact, by Kurokawa (8], we know that the eigenvalues on f of the Hecke
algebra over Q generate a totally real finite extension of Q.

(IT) We put

2
A(s, f,st) := Tn(s) [ Te(s + & — 5)L(s, f,st)
Jj=1
Andrianov-Kalinin [4] and Bocherer [5] (cf. Piatetski-Shapiro and Rallis [16]) have
discovered that A(s, f,st) has a meromorphic continuation to the whole s-plane and
satisfies the functional equation

A(s, f,5t) = A(L— s, fyst) .
Moreover, Mizumoto [14] has shown that it is entire.
(IIT) We put
A(s, f,spin) := T'¢(s)T'c(s — k + 2)L(s, f,spin)
Andrianov [1] has shown that A(s, f,spin) has a meromorphic continuation to the
whole s-plane and satisfies the functional equation
A(s, f,spin) = (=1)*A(2k — 2 — s, f, spin) .
For an odd integer k, it is entire.

For an even integer k, Evdokimov [6] and Oda [15] have shown that A(s, f,spin) has
a simple pole at s = k (or equivalently, at s = k — 2) if and only if f € S}.
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§2 Results

First we note that the set {0y, , al_’; , 02, az_’;} is invariant under the action of
the Weyl group W.

Lemma. For an eigenform f € Sk, the set {a1, , al_;, , A2 O"Zzl;} is one of the
following types:

Type I {pal ] p—a1 L] pa2 ] p—az} or {__pa1 ) _p—a1 3 _paz 9 _p—az} ) 'where
aj,a ER and 0 < ay < ay .

Type II. {e® , e~ p*, p=%}or{-1, =1, —p*, —p~*} , wherea €R ,0<a
and 0 < 0 < 27.

Type IIL.  {p®e'® , p~2e™ | pte=*® | p=2"*}, wherea €R,0< a and 0 < 4 < 2.
Type RP. {ei®t | e=i01 | ei% | =02} where 0< 6,60, < 2.

Proof. By Hy(t, f,st) € R[t] , we have

-1 1y _ foe—— el e 1
{er,p s QA1p s X2,p a2,p} ={a1,, @,; ,Gp, azp }.

From this fact , Lemma is proved except for signatures in type I and in type I
In type I, it follows from Ag(p) € R that we have ag, € R . Combining this with
ag’palypagm = p?¥~3, we obtain oy pas, > 0 .

In the same way, we can determine signatures in type II. 0O

Theorem. Conjecture holds if any eigenform f € Sy satisfies the following conditions:
(A) For any prime p, the logarithms of the absolute values of the zeros of H,(t, f, spin)
(o7 equivalently, of H,(t, f,st)) to the base p are independent of p.
(B) For all but a finite number of primes p , Hy(t, f,spin) and Hy(t, f,st) have no
negative real zeros.

With the use of the Satake parameters, we can replace the condition (A) by the
following form:

(A') For any primes p and q, by the suitable action of the Weyl group,
log, |1 ,p| =log, || and log, |az,p| = log, |az,q|

hold.

If we note that our L-functions L(s, f,spin) and L(s, f,st) are unramified at all p in the
sense of Langlands [9] , we can understand that “any prime” in (A) is “any unramified
prime”. If so, (A) is true for many L-functions which have the Euler product expansions,
e.g., the Riemann zeta function, the Diriclet L-functions, the Hasse-Weil L-functions and
so on.
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Proof.  For a positive integer k , let f € Si be an eigenform.

We note that , under the condition (A) , the types of {0y, , al_’ll, , Qgp , a;’;} are
the same for all p. If {0y, , a;; , O2.p , a{)},} is of type I (resp. type II, type III or
type RP) for any prime p , we say that f is of type I (resp. type II, type III or type RP).

In what follows , we assume that f satisfies the condition (B) .

If f is of type I, then for almost all p , Hy(t, f,st) is the following form:

Hy(t, f,5t) = (1 = )(1 = p™)(1 = p~*t)(1 — p™t)(1 — p™**1) ,

where a; and a; are independent of p . Then L(s, f,st) has a pole at s =1+ a; . This
contradicts the fact (II).
If f is of type II, then for almost all p , Hy(t, f,st) is the following form:

Hy(t, fst) = (1 = 1)(1 — e t)(1 — e~ t)(1 —p*1)(1 ~ p~°1)

where 0 < 8, < 27 and a is independent of p . Then L(s, f,st) has a poleat s =14+a .
This contradicts the fact (II).
If f is of type III , then for almost all p , Hy(t, f,spin) is the following form:

Hy(t, f,spin) = (1 —p’“‘%“t) (1 —p’““%““t) (1 - p’“‘%e“’*’t) (1 - pk_%e_iePt) ,

where 0 < 6, < 27 and a is independent of p . Then L(s, f,spin) has a pole at s =
k— 1 +a.If kis an odd integer , this contradicts the fact (IIT). If k¥ is an even integer,

wehavefESZanda:%. O

For an odd integer k , we put Sf = {0} when there is no fear of confusion.

Suppose that any eigenform f € S} satisfies the condition (A) .

If f of type I occurs , then there exist infinitely many prime numbers such that A¢(p) <
0 and As (T'd(1, p,p?,p)T) <O ..

If f of type II occurs , then there exist infinitely many prime numbers such that
Ai(p)=0.

If f of type III occurs , then f € S} or there exist infinitely many prime numbers such
that Ag(p) < 0.

So we have:

Corollary 1. Let f € Sk be an eigenform.
If f satisfies the condition (A) and if Af(p) > 0 for almost all p , then f satisfies the
Ramanujan—Petersson conjecture or f belongs to the Maaf space Sy .

Now we define some L-functions attached to Siegel modular forms.
Let sym? be the symmetric square representation of GL(n,C) , i.e. ,

sym? : GL(n,C) — GL (%,C) .
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For an eigenform f € Si , we put

(2.1) L(s, f,sym?(st)) == [ det (115 — sym®(st, (f)p~*) "
4

and

-1
(22)  L(s, f,sym*(spin)) = [ ] det (110 — sym?(spin (f))p~+2+)
P
where spinp(f) := d(ao,p, @0,p01,p, 00 pQ2,p, Ao, p&1,pa2 p). The right-hand sides of (2.1)

and (2.2) converge absolutely and locally uniformly for Re(s) sufficiently large.
For 0 = sym?(st) or ¢ = sym?%(spin) , we put

A(s,f,a) = F('Safv J)L(Sa.ﬂa) )

where I'(s, f,0) is the suitable I'-factor of L(s, f,0) .
Then we expect the following:

(C) Let 0 = sym?(st) or o = sym?(spin) .
For any eigenform f € Sy , A(s, f,0) has a meromorphic continuation to the whole
s-plane and satisfies the functional equation

A(s, f,o)=¢€(f,0)A(1 —s, f,0),

where e(f,0) is a constant. Moreover, I'(s, f,0) has no poles and zeros at s=r € R,
r>1 and if A(s,f,0) has a pole at s=r € R, r > 1, then f € S;.

The following is proved in the same way as Theorem.

Corollary 2. If the condition (C) holds, Conjecture 13 equivalent to saying that any
eigenform f € Sy satisfies the condition (A).

Remarks. (i) For an even integer k , let S;* be the orthogonal complement of the Maaf
space S¥, that is , Sy = S;- @ St .

For k = 20, 22, 24, 26 ,let f € SZJ‘ be an eigenform. Then,ifp =2, 3, 5, Hp(t, f,st)
and H,(t, f,spin) have no negative real zeros (cf. Skoruppa [17, Table 4]).

(i) If f € Sy, then L(s, f,sym?(spin)) diverges at s = 2.

(iii) In (C), we don’t assert absolute convergence of L(s, f, o) for Re(s) > 1.
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