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Summary. A fundamental relationship is established between the eingenvalues of the
Laplacian of a closed Riemannian manifold and those of a finite graph which approxi-
mates the manifold.

0. INTRODUCTION

In this paper, we will study Laplacians on a graph whose edges have variable length.
- Let T be a (finite or infinite) graph. We asume on I' that there are at most finitely
many vertices adjacent to each vertex z € I, and that there is at most one edge, if it
exists, joining two distinct vertices and no edge joining a vertex with itself. Let V(T')
and E(T') denote the set of vertices of ' and the set of directed edges of I'. We write
z ~ yif z,y € V(T) are adjacent, and use the notations [z,y] or —[y, z] to denote the
directed edge from z to y.
To define a Laplacian on T, we introduce a length function and a weight function

I: E(T) — R,

m:V([) — Ry

satisfying I([z,y]) = I([y, z]) and
0.1 inf i(e) > 0.
O &8
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and define the inner products for f,g € L¥(V) and ¢,4 € L*(E) by
(£,9) = X m(@)f(@)g@), (6:8) = 3 S UEN(e).

As an analogue of the exterior derivative, we define a operator d : L*(V) — L*(E) by

(e, = L=,

From the assumption (0.1), this operator turns out to be bounded. The adjoint operator
6 : L*(E) — L*(V) is given by

89(z) = s 3 dlla,).
=
We define a Laplacian on (T, 1,m) by
Af(2) = 8df(a).
Then we obtain

(AL D) =(df.df),  Af(z) = m(lx) 2 f(lx(%m_y%y)‘
Yy ’

This gives a generalization of the Laplacian which was given in [D,K] for the case where
I'=1and m = m, in our setting.

In section 1, we show a relation between the bottom of the spectrum of the Laplacian
and an isoperimetric constant on a graph. To recall what is known for Riemannian
manifolds, let M be a noncompact Riemannian manifold of dimension 2 2. The Cheeger
constant of M, h(M), is defined by

. . A(0Q)
h(M) = u&f SOk

where § ranges over all open submanifolds of M with compact closure in M and with
smooth boundary. The bottom of the spectrum of the Laplacian, A(M), is defined by

M) =inf{(Af, HI(f, f) =1}.

In this setup, Cheeger has shown the following result in [C].

Theorem A. 1
A(M) 2 ZhZ(M).

And Buser has given an upper bound in [Bu].
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Theorem B. If the Ricci curvature of M™ is bounded below by —(n—1)62(6 2 0), then
A(M) £ cSh(M),
where ¢ 13 a constant depending only on the dimension.

In 1.1, we will show a counterpart of above results for an infinite graph. Let (T, I, m)
be an infinite graph with a length function / and a weight function m. We define the
bottom of the spectrum of A, A(I"), by

A =inf{(Af, HI(f, f) =1}.
Remark. It suffices to take the infimum only over functions with finite support from the
assumption (0.1). '

Let S be a subset of V(I"). Put

95 = {[z,y] € BE(T)|z € S,y ¢ S},
and call it the boundary of S. The cardinality of 85 is denoted as

L(3S) = {6S
and is called the length of the boundary of S. We define
A(S) =) m(z)
€S

and call it the area of S. The isoperimetric constant a of (T',1,m) is defined by

. L(0S)
(0.2) a= mf{ A(S)

Remark. (1) If T is the Caylay graph of Z? with respect to the canonical generators,
then & = 0. (2) If T is an infinite planar graph such that each vertex has seven adjacent
vertices, then a > 0 . See [D,K] for the proof .

Dodziuk and Kendall have shown the following result in [D,K].

Theorem C. Let (T,1,m;) be an infinite graph with | = 1. Then,

1
A g 5(12.

S cV(D), IS < oo}.

We will extend this result to a general graph as follows.
Theorem 1. Let (T,1,m;) be an infinite graph with inf.cp(ry I(e) > 0. Then we have
a 1
— 222> a2
where lo = infeEE(I‘) l(e)

On the other hand, for a compact manifold M, the Cheeger constant of M, h(M), is
defined by

=in A(S)
Y (AR AL

where S ranges over all compact (n — 1)-dimensional submanifolds of M , which divide
M into 2 open submanifolds My, M, satisfying OM, = M, = S. Cheeger has also
shown the next theorem in [C].
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Theorem D. We have
h2

/\1 4,

1\

where Ay is the smallest positive eigenvalue of the Laplacian on M.
And Buser has given an upper bound in [Bul.

Theorem E. If the Ricci curvature of M™ is bounded below by —(n—1)62(6 2 0), then
A(M) £ er(6h(M) + R* (M),

where ¢1 s a constant depending only on the dimension.

We will show a couterpart of above results in 1.2. Let (T, !, m) be a finite graph, and
S a subset of V(I'). We define

o(S;T) =i%f{£%|Tc S},

and

a(T) = ﬂ{max(oz(Sl; ), a(S2; )}

min
(51,52);51#0,5:#8,51NS,=
Ezample. Let C, denote a circle graph with n vetices. ‘The circle graph is a graph which
is homeomorphic to S*. Take ! = 1 and m = m; . Then,

a(Cp) = 2/[n/2).

We denote the smallest positive eigenvalue of the Laplacian on (T',l,m) as A;.

Theorem 3. Let (T',1,m;) be a finite graph with a length function I Then,

2 1
P 22 5(12,

where lo = min.eg(r) I(e).

In section 2, we study a spectral convergence among a class of finite graphs. For
compact Riemannian manifolds, Fukaya [F] has obtained a convergence theorem for
Laplacians. To recall a result from what is shown by him, let M(n,D) denote the
class of all Riemannian manifolds whose volumes are 1 and whose sectional curvatures
are not bigger than D?/diameter? and not smaller than —D?/diameter?. DM(n,D)
denotes the closure of M(n, D) with respect to the measured-Hausdorff-topology (which
is defined in [F]) in the class of all compact metric space X with a Borel measure u.
Then, he showed
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Theorem F. Iflimy g M; = (X, u) € DM(n, D) for {M;}; C M(n, D). Then, there
ezists a self adjoint operator P on L2(X,u) such that

Ak(P) = lim Ak(Ap,),

where A denotes the k-th eigenvalue of the each operator.

For finite graphs, we will show a kind of counterpart of above result. Let (T,I,m)
be a finite graph with a length function ! and a weight function m. I' turns out to be
a metric space by the path metric induced by ! where we assume [ is linear on each
e € E(T"). We define the total weight m(T) of (T',I,m) by

zeV(T)
and the symbol G(C) denotes the class of finite graphs whose total weights are not
bigger than C. We say {(T'n, ln)}n=1,2,... converges to (T', ) with respect to the Hausdorff
distance on graphs and write limpy (T, 1,) = (T, 1) if there exist simplicial maps
¢n:Tp—T

and positive number ¢,, such that

(0.3) lime, =0,

(0.4) € -neighborhood of ¢n(T'») is equal to T,

for each z,y € Ty, we have

(0.5) [d(¢a(2), $n(y)) — d(z, y)| < &n,

where we assume the map ¢, is linear on each ¢ € E(T',,). Let \(T,I,m), or simply

Ak(T'), denote the k-th eigenvalue of the Laplacian on (T,l,m). We have the following
theorem.

Theorem 4. Let {(Ty,l;,m;)}2, be a sequence of elements of G(C) and (T,1) a fintte
graph such that imy(T;, ;) = (T,1). Then there exists a weight function m on T and a
subsequence {(T';,1;,my;)}; such that for k =1,2,...,fV(T) -1,

(2.1) lLm Ak (T, 15, my;) = (T, 1, /),
J

and for k 2 §V(T),

(2.2) hm /\k(I‘J-, lj,mlj) = 0Q.
J
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In section 3, which is the main part of this paper, we study a relation between the
eigenvalues of the Laplacian of a closed manifold and those of its approximating graph.
For example, let S be the unit circle, and Ax(S') denote the k-th eigenvalue of the
Laplacian on S*. It is known that

{8}, = {0,1,1,4,4,9,9,...}.

Let (Cp,1s) be a circle graph of n-vertices with the length function I, = 27/n. Then
the sequence {(Cn,ln)}n converges to S as a metric space. We denote the eigenvalues
of the Laplacian on (Cy, ln,m1,) by spec(Cy). Then if n is odd, ’

n \2 27 n—1
spec(Ch) = (ﬂ) x {0,2(1 — cos 7), weey (1 — cos - m)}.
mul: =2
If nis even,
2 2 -2
spec(Cy) = (2—7;-) x {0,2(1 — cos -%), wey (1 = cos z - 7),4}.
mult. =2

Since lim, (5%)?2(1 — cos Zk7) = k2, we have
lim Ak (Cr) = A(S?),

for each k.

For general cases, let M be a closed Riemannian manifold. A subset V of M is called
e-separated if dp(z,y) 2 € for any distinct points r,y € V. We construct a graph from
a maximal e-separated subset V by joining the distinct points z, yin V by a edge if and
only if d(z,y) < 3¢, and call it an € — net in M. An € — net exists in M for any € > 0,
[K]. We will show the following theorem.

Theorem 6. Let M be a closed Riemannian manifold and (T'y,l,,my,) a 1/n -net in
M with the length function I, = 1/n for each n € N. Then,

1

C Iimsup /\k(I‘n,ln,m,") é /\k(M) é C’liminf)\k(I‘n,ln,mln)

for each k, where (M) is the k-th eigenvalue of the Laplacian on M and C is a number
depending only on the dimension.

From this theorem, we can know a rough behavior of the eigenvalues of the Laplacian
of M by ditecting that of T,,, which is easier since the function space over ', has finite
dimension. So far, the constant C strongly depends on the dimension, which grows
exponentially, and the author doesn’t know if the inequalities in Theorem 6 hold for a
constant C' which is independent on the dimension by taking a nice sequence of graphs
Lo
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1. THE BOTTOM OF THE SPECTRUM

1.1 The bottom of the spectrum for an infinite graph.

In this section, we show a relation between the bottom of the spectrum of the Lapla-
cian and an isoperimetric constant of an infinite graph. Dodziuk and Kendall have
shown the following result in [D,K].

Theorem C. Let (T,1,m;) be an infinite graph with | = 1. Then,

a?.

A

v
N =

In fact, this theorem is true for any ! with infeep(ry I(e) > 0.

Theorem 1. Let (T',1,m;) be an infinite graph with infeepry I(e) > 0. We have

a?.

A

A"

S e
v
N} =

where ly = inf.c gy I(e).

Remark. From this theorem, we have
al') =0 < A\T) =0.

Proof. We can prove Theorem 1 by a slight modification of Dodziuk and Kendall’s proof
in [D,K]. First, to show the second inequality, take f € L?(V) of finite support with
(f, ) = 1. Since (df,df) 2 (d|f],d|f]) and (|f],|f]) = (f, f), we can assume f 2 0.

Define
A=A(f) =Y 1F(=) - (),

where 37 means to take the sum over all the ordered pairs of vertices (z,y) with
z ~y . Then

A= (f@)+ F)If(2) - £

T~y

= > (f@)+ F))V([z,9]) V(Ll)([;%!)f)l

S [ DUl () + fw)) \! 2 (ﬂl()[—“;](;/»

T~y

Ty

< 20 W=y 2(f(=) + 2(0)} /2(dF, df)

T~y

(1.1) = 2/(f, ) V2(df, df) = 2/2(df, df).
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On the other hand, we can estimate A4 from below. Let
{f(2)lz € V(I)} ={0=Bo < By < -+~ < B},

and
Ki={z e V(D)If(z) 2 B:}.

Then
OKi = {[z,y]| f(=) 2 Bi, f(y) < Bi}.

From the definition of a, we have
aA(K;) £ L(OK;).

Since

N
A= 1@ -Fwl=2Y 3 I (fk) - Pw),
o SUE=h G,

if £ ~y, f(z) = Bi, f(y) = Bi—x < Bi, then

[2,9] € OK: N OK;_y --- N OK;_sos,

and
F2(2) = f2) = (B = A1) + -+ (BLpyr — B2,).
Thus
N
A =2Z Z (,3? —ﬂ?-l
i=1 [z,y]€8K;
N N
=2) LOK)(B! ~ F1) 2 2a ) ACK)(8? - £2.,)
=1 N . 1~%
=2a{ ) A(K)B? - > A(K:)BL,)
=1 =1
N
=2{>7 > m@)p} =223 m)fi(z)
i=1 z€K;/Ki_, z
(1.2) ‘ =2a(f, f) = 20.

Combining the two estimates (1.1), (1.2), we have

2a < A £ 2/2(df, df).
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Thus o £ V2),
(1.3) —a? <)\

To prove the other inequality in the theorem, let § be a subset of V(T'), and fs the
characteristic function of S. Then we have

(fs,fs)=A(S) and (dfs,dfs) < L(:S).
Thus
x < s, dfs) o L(DS)
- (fS,fS) - loA(S)’
(1.4) v
lo

We have Theorem 1 from (1.3) and (1.4). O

Corollary 2. Let (T',1,my) be an infinite graph with 1 = 1. We have

1]
v

A

1\v4
[N
Q

Furthermore, if the equality holds for the second inequality, then X is not an eigenvalue;
namely, there is no function f € L*(V) with (£, f) =1 and (Af, f) = A

Proof. Put Iy = 1 in Theorem 1, we obtain a 222 %—af?. The latter part is proved
by the maximum principle. Namely, assume there exists a function f € L*(V) with
(f,f) =1 and (df,df) = X in the case A = za?. Let zg be a point where f takes its
maximum. Then, it is seen that zq is an isolated maximum point of f or f is a constant
function from the equality condition of Schwarz inequality which is used to show (1.1).
Since I' is infinite and (f, f) =1, f can not be a constant function, thus z, is an isolated
maximum point of f. Then the set Ky in the proof of Theorem 1 consists of isolated
maximum points and it follows L(OKN) = A(KN). Then a = 1 from the equality
condition of the inequality (1.2). But, taking S = {z,y} in (0.2) for z,y € V(I') with
€ ~ y, we can show a < 1, since we have L(85) < A(S)—2. It contradicts & = 1 . Thus
there is no function f € L*(V) with (f, f) =1 and (df,df) = (Af, H=xx 0O

Remark. As is stated before, Dodziuk and Kendall [D,K] have already shown the same
inequality in this case.

1.2. The bottom of the spectrum for a finite graph.
In this section, we show a relation between \; and « for a finite graph.
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Theorem 3. Let (T',1,my) be a finite graph with a length function l. Then,

2oz 2
lo - -

l\)lv—-

where lp = min.cg(r) I(e).

Proof. Let fbe the eigenfunction for A; with (f, f) = 1. Put
f+(z) = max(f(2),0),

f-(2) = min(f(z),0),

and put
S+ = {z € V(DIf(2) > 0}, S_ = {z € V(D)|f(=) < 0}.

Since (f,1)r = 0, we have f1 #0, f_ # 0. As A1 f+(2) 2 Af4(z) and fy =0, we have

Qufar i) 5 (Bfs,f4) _ (dfsrdfy) 5 1 a?(54;T)

M= (f+:f4) = (f+, f4) (f+:f+) T2

where the last inequality is shown by the same argument as the second inequality in
Theorem 1. Also,

)\1 g a2(5’_,1—‘)

N

Therefore

12 = (max{a(5+,r)aa(5—’r)})2 > 2

since S4 # 0,5_ #0,S_NS; = §. To show 2 7@ 2 Ay, let Sy and S, be subsets of V(')
with S; # 0,52 #£ 0,5, NS, = . Define a functlon fon V(T') by

17 z GVSIa
fl@)={ -1, z€8,,
0, T ¢Sl USz.

Then, since (f, f) = A(S1) + A(S2), (df,df) S #(L(851) + L(8S2)), we have

=7

(df df) 2 L(OS)) + L(@Sy) 2 {L(@Sl) L(3S,) }
= l -

(£,f) Tl AS)TAS) =l AG) * A(S,)

Therefore, A\ < —a a
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2. SPECTRAL CONVERGENCE IN A CLASS OF FINITE GRAPHS

In this section we discuss a spectral convergence in a class of finite graphs. Let
(T',1,m) be a finite graph with a length function / and a weight function m. T turns out
to be a metric space by the path metric induced by I We have the following theorem.

Theorem 4. Let {(T;,1;,m;;)}$2, be a sequence of elements of G(C) and (T,1) a finite
graph such that img (T, 1;) = (T,1). Then there ezists a weight function M on T and ¢
subsequence {(T;,1;,my;)}; such that for k = L2,..,V() -1,

(2.1) lim /\k(I‘j,I,-,mlj) = (T, 1, ),
7

and for k Z §V(T),
(2.2) lim,\k(l‘j,l,-,ml,.) = 0Q.
j
To prove Theorem 4, we will need the following Lemma (see Chapter 1 of [Ch]) called
minimaz principle. We write L2(V(T')) just as L¥(T).

Lemma.

NG X))
MO=Emwn

where Fry1 runs over linear subspaces of L?(T) of dimension k + 1.

The expression (df, df)/(f, f) is called the Rayleigh quotient of f. Suppose simplicial
maps ¢; : I'y — T satisfy (0.3) ~ (0.5). We will show Claim 1 - Claim 5 in the following.

Claim 1. For sufficiently large i, we have

(2.3) ¢; is surjective,

(2.4) f(¢:7'(e)) =1,
for any e € E(I).
l

Proof of Clatm 1. Let Iy = mineep(ry l(e) > 0. If 7 is large enough to satisfy €; < 1%,
then we have that ¢; satisfies (2.3) and (2.4). O

Since (Ty,1;,my;) € G(C), taking a subsequence if necessary, lim; my,(¢7!(z)) exists
for each z € V(I'). We define a positive function # on T by

i7(2) = limmi, (67 (2),

and take it as a weight function on T.

Claim 2.

(2.5) Ak(T, 1, 7) 2 limsup A (T, i, my,),
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for k=1,2,..,4V(T) - 1.
Proof of Claim 2. We define a linear operator
¥;: L*(T) — LX)
by ¥i(f) = fo ¢; for f € L*T'). By a calculation using Claim 1, we have
(df, df)r = lim(d¥:(f),d¥:(f))r,,

and

(fL Hamy = Hm(2i(f), i(f))r..
Thus, for f € L?(T") with f # 0,

(df,df)r _ iy (4¥i(f), d%i(fNr,
(fiHDemy i (), Yl e,

Since W;(Fi41) is a linear subspace of L?(T;) of dimension k + 1 if Fr+1 1s a linear
subspace of L*(T"), we have \x(T, !, ) 2 lim sup;, Ak(Ty, liymy,), for k = 1,2, §V(T) -
1, by Lemma. 0O

(2.6)

Claim 8. If fis a function on a finite graph (G,1,m), then we have

1f(z) = f(W)] = V(df, df)Vda(, ),
for z,y € V(G), where dg( , ) is the distance induced from lon G.

Proof of Claim 3. Take vertices zg, 2, .., z,, of V(G)withzo = 2,2, = y,z; ~2431(1 =
0,1,.n —1), and dg(z,y) = iy I([i, ©i—1]). Then

£@) = fWI £ 30 1f(2) = flzin)] S \/Z (f(xl,-()z: £(+5)) [ e zi0)

é \/(df> df)\/dG($7 y)'_

O

Claim 4.
hmmf /\k(r‘,‘, l,', ml‘,) ; Ak(r‘, l’ Th),
for k=1,2,.. V() - 1.
Proof of Claim 4. We define a linear operator
®; : L*(Ty) — L(T)

by
Zyesrt () ™ (¥)9(Y)

2y (z) M (Y)

®i(9)(z) =
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for g € L*(T;) and = € V(). Let g; be the k -th eigenfunction on I'; with (9i,9:) = 1.
From (2.5), we can assume there exists some constant C(k) < oo such that (dgi,dgi)r, <
C(k) for any i. Then we can show

(2.7) Lim(®:(g:), q’i(gi))(r,m) =1,
and
(2.8) linll_inf(d@;(g;),d@i(g;))p < liml_inf(dgg, dgi)r,.

In fact, (2.8) is shown as follows. By Claim 3, for any z € V),

l9:(y1) — gi(y2)| < \/(dgi,dg;)r;\/dr;(y;,yz) < V(dgi, dgi)ri Ve

for any y1,y2 € ¢7'(z). Thus,

(2.9) 12:(9:)(=) — 9i(¥)] £ VEiV/(dgi, dgi)r; S Veiv/C(k),

for any y € ¢7 (z). It is seen from (2.9) and Claim 1 that

liminf{(d®:(g:), d®:(¢:))r — (dgi,dgi)r;} £ 0,

thus, we have (2.8). (2.7) follows from (2.9) and the definitions of ®;(g) and 7 . From
(2.7) and (2.8), we have :

o (d®i(gi),d®:(g:))r .. . (dgi,dg)r,
(2.10) R C P 3 o v e

Since the dimension of a linear subspace of L*(T;) may decrease when we map it
into L*(T") by ®;, we cannot immediately conclude liminf; Ae(Ty, li,my;) 2 A(T, 1, )
from (2.10) by the same argument as Claim 2. However, for any functions gy, ..., gx in
L*(T;) which are linearly independent, there exist functions 15+ Gk, in L*(T;) such
that the Rayleigh quotient of g; is arbitrarily near to that of g; for each j and that
®:(31), ..., i(gx) are linearaly independent in L?(T'). Thus, we have Claim 4 from
(2.10) using Lemma. 0O

Claim 5.
(22) llm Ak(l—‘i, li, ml:’) = 00,

for k 2 fV(T).

Proof of Claim 5. If the claim does not hold, then, taking a subsequence if necessary,
we have

(2.11) Lim A (T, i, my, ) < oo,
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for k = §V(T'). From (2.11) and Lemma, there are a positive number C < oo and

functions '
9i,05 -+ Gik
in L?(T;) such that
(2.12) (9i,a,9ib)r: = 62,0 S 0,55 k
and
(2.13) (dgi,aa dgi,a)l"; £C0<Za Sk

From (2.12),(2.13) and Claim 3, we have
(2.14) Um(®4(gi,a), 2i(9:,0))(r,m) = Sabs
for 0 = a,b £ k. It follows from (2.14) that for large 3,

®i(9i0), -, Pilgi k)
are linearly independent functions in L?(T'), which contradicts that dim(L*(T)) =
§V(T) — 1. Therefore, we showed the claim. OO
We have Theorem 4 from Claim 2, Claim 4, and Claim 5.

Corollary 5. Let {(T';,1;)}2,be a sequence of finite graphs and (T,1) a finite graph,
such that limpy (T;,1;) = (T,1) and there ezists a positive number C with V(L) < C for
any i. Then, taking a subsequence {(Ty,1;,my;)};, we have

hmAk(F],lJ, mlj) = Ak(rala ml)
7

for k=1,2,.. 4V(T) -1, and

(2.5) li}nAk(Pj,lj,mlj) = 00.

for k2 §V(T).

Proof. From §V(T;) < C, and limg/(T;, ;) = (T, 1), there is a positive number C’ with
(Tisli;my;) € G(C') for any i . Therfore, we can apply Theorem 4 with 7 = mi.
Corollary 5 is shown. O .

3. A RELATION BETWEEN A RIEMANNIAN MANIFOLD
AND ITS NET ON THE EIGENVALUES OF THE LAPLACIANS

In this section, we discuss a relation between a closed Riemannin manifold and its
net on the eigenvalues of the Laplacians. We have the following theorem.
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Theorem 6. Let M be a closed Riemannian manifold and (T'y,ln,my,) a 1/n-net in
M with the length function l, = 1/n for eachn € N. Then,

1

& limsup A (P, I, my, ) € Ae(M) £ Climinf \e(Tn, ln, 1, )

for each k, where Ap(M) is the k-th eigenvalue of the Laplacian on M and C is a number
which depends only on the dimension.

The proof consists of two parts. First, to show A(M) £ Climinf, A\ (T,,), we con-
struct a linear operator

Sy : L3(Ty,) — C=(M)

for each n, which satisfies

(dSn(£), dSu(m o (df, df)r,
B (Sa(£) Sa(fNm = = (f, fr

for sufficiently large n. Next, to show limsup,, Ax(T'n) S CAx(M), we construct a linear
operator

T, : C®(M) - L*(T,)

for each n with the following property. Let F be a finite dimensional linear subspace
of C*°(M), we denote the set {f € F|(f, f) = 1} by F(1). Then for any ¢ > 0, taking
sufficiently large n, we have

(dTa(f), dTw()r, < o (dfydFdar + ¢
A ) ) W

for each f € F(1).

Notations. For a point z € M, we put B(z,r) = {y € M|d(z,y) < r} and denote its
volume in M by vol(B(z,r)).

Constants. We introduce several constants which we will use to prove the theorem.
It is easily seen that there exist constants Cy,Cs,...,Cs which depend only on the
dimension d such that taking sufficiently large n, we have for any z; € T',,,

C1 é ﬂ{l‘J eln;z; ~ .'ZJJ'} é Cg,
d 1
n®vol(B(z;, ;L—)) £ Cs,
1
Cy S ndvol(B(:z,', -3;)),
Cs § ndvol(B(a:i, %)) é Cs,

’UOZ(B(.?Z,', %)) § C7'UOI(B(3:1', %)),
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and
#(Tr) S Csnlvol(M).

Proof of Theorem 6. Fix n and let {xj}’gzgr‘,,) = V(T's). Take a partition of unity {u, ;};
on M with the following properties.

2 .
supp(un,;) C B(z;, ;) for each j,

1
uUpj; =1 on B(z;,—),

3n
(dug,j(z),dun j(z)) En®,  for any z € M.

Since 3 un,; =1,
(3.1) Zdun,f: 0.
J

If d(z,z;) > 2 for z € M, then
(8.2) dug j(z) = 0.
We define a linear operator for each n,

Sp i L*(T,) — C°(M)

by
SalF)z) = > f(z;)m,;(z)
zj €lry,
for f € L*(T,,).
Claim 1. Taking sufficiently large n,
2C,Cs

(dsn(f)a dSn(f))M § nd—1 (df, df)l",.

for any f € L*(T,).
Proof of Claim 1. For each z € M, take z; € ', with d(z,z;) S L, then

dSu(f)z) = Y f(z;)dun,;(z)

Zjern

= Z(f(wk) — f(zj))dun,;(z) + f(zi) Z dun,j(z),
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using (3.1)

= Z(f(mk) — f(=;))dun,i(z),
using (3.2)

= > (f(z&) = f(z;))dun,;(2),

z; €T p;d(z,z;)S 2
[dSa(HE@IE > |(flzx) = fz))In
zj;d(zj,ze)S2
= Y (f(=) - fz5))In.
Thus,
(dSn(f)(z),dSn(f)(2)) < n?'(. > 1f(zi) = Fea)))?
sSn'C > (flz) — Fl=e)™

Therfore,

(dSa(f),dSa(£)) Sn*C2 3 { 3 (f(x,)—f(xk))%ol(B(mk,—)}

zr €y iGizi~zp

Ly oy U SE 26G

zR €y Gizi~vTy

£ (s

Claim 2. For sufficiently large n, we have
Proof of Claim 2.

G = 3 PledmuE) S 2 Y £)
z;€ln x,EFn
<£2-—1l- Z fz(:t])volB(:z:,, )

.'z:, €r,

<2 02 - / (S4(£), 5 (f))dM——2 (S F), Pt

17
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From Claim 1 and Claim 2, we have the next claim.

Claim 8. For sufficiently large n, we have

(dSn(f),dSn(f)m . 2C3Cs (df, df)r,,
(Salf), SN = Co ().’

We define a linear operator for each n

Tn:C®(M) — Lz(l‘n)

(7)o = ez T
" " volB(z;, 1)’
for f € C°(M) and z; € T',. Then, we have

Claim 4. Let F be a finite dimensional linear subspace of C*(M). Then for any small
€ > 0, taking sufficiently large n, we have

(dTn(f)7dTn(f))Fn < 18CZC3 (df‘l df)M +e
(Tu(£), Ta(fPr, = CiCs (fif)mM—c’

for each f € F(1).

To prove Claim 4, we first show the next two claims for each f € F(1) under the
same conditions as Claim 4. '

Claim 5.
2C.
(f, Fmt S G gz (Ta(F) Tal ), + eCrool(M),
and
Claim 6.

9,

(dTa(f), dTu(f))r, < n‘“{ Cs

C
(df, df ) + e;%:vol(M)} .

Proof of Claim 5. For any € > 0, taking n large, we have

J (DM < (T (F)(@0) + ool Bles, ),

n
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for any f € F(1) since F(1) is compact. Therefore,

(i sY [ o oam
<2 Z(Tn(f)(zi))zvolB(xg, %) +e€ Z volB(z;, %)

< 2,% D _(Talf)(2:))? +€C1 3 vol B(z,, i)

2Cs
C]_nd

= Z(Tn(f)(ms))zmz"(w-‘) +eCrvol(M)

= STl Tal e, + <Cruol(M).

~ O
Proof of Claim 6. Since F(1) is compact, taking n sufficiently large, for any z;,z; € T'p
with z; ~ z;, we have

2 [50s 1 (df, df)dM
(Tn(f)(xi)—Tn(f)($j))2§{ f”(v;lg(’x, T +e} & (zi,2),
1 2n

since d*(z;,z;) £ &,

18 nd 9
—_— df,dfYdM + —e¢.
n? Cs /;r(z;,-;l;)( o df)aM + nz

A

Therefore,

(@To(), dTu( s = 5 3 (TlF)a) = Tul (e3P

Qand_l' 902

< < i

=7 G Z,. /a(:.-,i%)(df’ YV + 5 M Tw)e
9C,n?-1 9C,n?-1

L ZZe - i L

< = /M (e, ) + 228wl (1)e
90277,‘1_1 9C2Tld_1

= —C‘s——(df, df)M + —Wvol(M)e.

O

From Claim 5 and Claim 6, we have Claim 4. OWe are now in the position to
complete the proof of Theorem 6. From Claim 3, we can conclude

202G,

4

Ae(M) lim inf A (T, [
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for each k by the same argument we did when we proved Theorem 4 in section 2. Also,
we have from Claim 4 that

. 18C,C3
S ——— (M
hmnsup )‘k(rm ln) ="C.Cs Ak( )

for each k. Thus We showed Theorem 6. O
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