

Research Report

KSTS/RR-93/001  
Feb. 17, 1993

On Standard  $L$ -functions attached to  
 $\text{Alt}^{n-1}(\mathbb{C}^n)$ -valued Siegel modular forms

by

Hideshi Takayanagi

Hideshi Takayanagi  
Department of Mathematics  
Keio University

Department of Mathematics  
Faculty of Science and Technology  
Keio University

©1993 KSTS  
Hiyoshi 3-14-1, Kohoku-ku, Yokohama, 223 Japan

**On standard  $L$ -functions attached to  $\text{Alt}^{n-1}(\mathbb{C}^n)$ -valued  
 Siegel modular forms**

HIDESHI TAKAYANAGI

Dept. of Mathematics, Keio University

**Introduction**

In [23], we studied some properties of standard  $L$ -functions attached to  $\text{sym}^l(V)$ -valued Siegel modular forms of weight  $\det^k \otimes \text{sym}^l$ . More precisely, let  $\det^k \otimes \text{sym}^l$  be an irreducible rational representation of  $GL(n, \mathbb{C})$  with the representation space  $\text{sym}^l(V)$ , where  $V$  is isomorphic to  $\mathbb{C}^n$  and  $\text{sym}^l(V)$  is the  $l$ -th symmetric tensor product of  $V$ . Let  $f$  be a  $\text{sym}^l(V)$ -valued holomorphic cusp form of weight  $\det^k \otimes \text{sym}^l$  for  $Sp(n, \mathbb{Z})$  (size  $2n$ ). Suppose  $f$  is an eigenform, i.e., a non-zero common eigenfunction of the Hecke algebra. Then we define the standard  $L$ -function attached to  $f$  by

$$(0.1) \quad L(s, f, \underline{\text{St}}) := \prod_p \left\{ (1 - p^{-s}) \prod_{j=1}^n (1 - \alpha_j(p)^{-1} p^{-s})(1 - \alpha_j(p) p^{-s}) \right\}^{-1},$$

where  $p$  runs over all prime numbers and  $\alpha_j(p)$  ( $1 \leq j \leq n$ ) are the Satake  $p$ -parameters of  $f$ . The right-hand side of (0.1) converges absolutely and locally uniformly for  $\text{Re}(s) > n + 1$ . We put

$$\Lambda(s, f, \underline{\text{St}}) := \Gamma_{\mathbb{R}}(s + \varepsilon) \Gamma_{\mathbb{C}}(s + k + l - 1) \prod_{j=2}^n \Gamma_{\mathbb{C}}(s + k - j) L(s, f, \underline{\text{St}}) \quad ,$$

with

$$\Gamma_{\mathbb{R}}(s) := \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \quad , \quad \Gamma_{\mathbb{C}}(s) := 2(2\pi)^{-s} \Gamma(s) \quad ,$$

and

$$\varepsilon := \begin{cases} 0 & \text{for } n \text{ even,} \\ 1 & \text{for } n \text{ odd.} \end{cases}$$

Then we have the following [23, Theorem 2, 3]:

**Theorem.** *For  $k, l \in 2\mathbb{Z}$ ,  $k > 0$  and  $l \geq 0$ ,  $\Lambda(s, f, \underline{\text{St}})$  has a meromorphic continuation to the whole  $s$ -plane and satisfies the functional equation*

$$\Lambda(s, f, \underline{\text{St}}) = \Lambda(1 - s, f, \underline{\text{St}}) \quad .$$

Suppose  $k > n$ . Then  $\Lambda(s, f, \underline{\text{St}})$  is holomorphic except for possible simple poles at  $s = 0$  and  $s = 1$ ; it has a pole at  $s = 0$  (or equivalently,  $s = 1$ ) if and only if  $f$  belongs to the  $\mathbb{C}$ -vector space spanned by certain theta series in [24] which is invariant under the action of the Hecke algebra.

If we note that the signature of  $\det^k \otimes \text{sym}^l$  is  $(k + l, k, \dots, k) \in \mathbb{Z}^n$ , we speculate the following [23, §3.1 Remark] :

(C). Let  $\rho$  be an irreducible rational representation of  $GL(n, \mathbb{C})$  with the representation space  $\mathcal{V}$  whose signature is  $(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n$  with  $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n \geq 0$ . Let  $f$  be a  $\mathcal{V}$ -valued holomorphic cusp form of weight  $\rho$  for  $Sp(n, \mathbb{Z})$ . Suppose that  $f$  is an eigenform. Then, it is expected that the completed Dirichlet series

$$\Lambda(s, f, \underline{\text{St}}) := \Gamma_{\mathbb{R}}(s + \varepsilon) \prod_{j=1}^n \Gamma_{\mathbb{C}}(s + \lambda_j - j) L(s, f, \underline{\text{St}}) \quad ,$$

should satisfy a functional equation.

Unfortunately, within our knowledge it is not verified so far whether (C) holds or not except  $\det^k$  and  $\det^k \otimes \text{sym}^l$  cases. We will give another example satisfying (C).

For  $l \in \mathbb{Z}$ ,  $0 \leq l \leq n$ , let  $\det^k \otimes \text{alt}^l$  be an irreducible rational representation of  $GL(n, \mathbb{C})$  with the representation space  $\text{alt}^l(V)$ , where  $V$  is isomorphic to  $\mathbb{C}^n$  and  $\text{alt}^l(V)$  is the  $l$ -th alternating tensor product of  $V$ . Let  $M_k^n(\text{alt}^l(V))$  (resp.  $S_k^n(\text{alt}^l(V))$ ) be the  $\mathbb{C}$ -vector space consisting of  $\text{alt}^l(V)$ -valued holomorphic modular (resp. cusp) forms of weight  $\det^k \otimes \text{alt}^l$  for  $Sp(n, \mathbb{Z})$ .

Suppose that  $f \in S_k^n(\text{alt}^{n-1}(V))$  is an eigenform. We note that the signature of  $\det^k \otimes \text{alt}^{n-1}$  is  $(k + 1, \dots, k + 1, k)$ . We put

$$\Lambda(s, f, \underline{\text{St}}) := \Gamma_{\mathbb{R}}(s + 1) \prod_{j=1}^{n-1} \Gamma_{\mathbb{C}}(s + k + 1 - j) \Gamma_{\mathbb{C}}(s + k - n) L(s, f, \underline{\text{St}}) \quad .$$

Then the main result of this paper is:

**Theorem 1.** Let  $k$  be an even integer,  $n$  an odd integer and  $k > n > 2$ . Then  $\Lambda(s, f, \underline{\text{St}})$  is continued analytically as an entire function and satisfies the functional equation

$$\Lambda(s, f, \underline{\text{St}}) = \Lambda(1 - s, f, \underline{\text{St}}) \quad .$$

(cf. Piatetski-Shapiro, Rallis [21], Weissauer [24])

### Notations

1°. As usual,  $\mathbb{Z}$  is the ring of rational integers,  $\mathbb{Q}$  the field of rational numbers,  $\mathbb{R}$  the field of real numbers,  $\mathbb{C}$  the field of complex numbers.

2°. Let  $m, n \in \mathbb{Z}$ ,  $m, n > 0$ . If  $A$  is an  $m \times n$ -matrix, then we write it also as  $A^{(m, n)}$ , and as  $A^{(m)}$  if  $m = n$ . The identity matrix of size  $n$  is denoted by  $1_n$ .

3°. For  $m, n \in \mathbb{Z}$ ,  $m, n > 0$ , and a commutative ring  $R$  containing 1, let  $R^{(m,n)}$  (resp.  $R^{(n)}$ ) be the  $R$ -module of all  $m \times n$  (resp.  $n \times n$ ) matrices with entries in  $R$ .

4°. For a real symmetric positive definite matrix  $S$ ,  $S^{1/2}$  is the unique real symmetric positive definite matrix such that  $(S^{1/2})^2 = S$ .

5°. For matrices  $A^{(m)}$ ,  $B^{(m,n)}$ , we define  $A[B] := {}^t \bar{B} A B$ , where  ${}^t B$  is the transpose of  $B$  and  $\bar{B}$  is the complex conjugate of  $B$ .

6°. For a matrix  $A^{(m)} = (a_{jh})_{1 \leq j, h \leq m}$ ,  $\widetilde{a_{jh}}$  is the cofactor of  $a_{jh}$  and  $\widetilde{A} = (\widetilde{a_{jh}})$ .

7°. For  $n \in \mathbb{Z}$ ,  $n > 0$ , we put

$$\mathbb{T}^{(n)} := \left\{ T = \begin{pmatrix} t_1 & & 0 \\ & t_2 & \\ 0 & \ddots & t_n \end{pmatrix} \in \mathbb{Z}^{(n)} \mid t_j > 0 \ (1 \leq j \leq n), \ t_1 | \cdots | t_n \right\}.$$

8°. For  $n \in \mathbb{Z}$ ,  $n > 0$ , let  $\Gamma^n := Sp(n, \mathbb{Z})$  be the Siegel modular group of degree  $n$  and let  $\mathfrak{H}_n$  be the Siegel upper half space of degree  $n$ , that is,

$$\mathfrak{H}_n := \{Z = X + iY \in \mathbb{C}^{(n)} \mid {}^t Z = Z, \ Y > 0\}.$$

For each  $r \in \mathbb{Z}$  with  $0 \leq r \leq n$ , we put

$$P_{n,r} := \left\{ \begin{pmatrix} * & * \\ C^{(n)} & D^{(n)} \end{pmatrix} \in \Gamma^n \mid C = \begin{pmatrix} 0 & 0 \\ 0 & C_4^{(r)} \end{pmatrix}, \ D = \begin{pmatrix} * & 0 \\ * & D_4^{(r)} \end{pmatrix} \right\}.$$

All these are subgroups of  $\Gamma^n$ .

9°. For  $n \in \mathbb{Z}$ ,  $n \geq 0$ , we put

$$\Gamma_n(s) := \prod_{j=1}^n \Gamma\left(s - \frac{j-1}{2}\right),$$

and

$$\gamma(s) := \begin{cases} \frac{\Gamma_n\left(\frac{s+n}{2}\right)}{\Gamma_n\left(\frac{s}{2}\right)} & \text{for } n \text{ even,} \\ \frac{\Gamma_{n-1}\left(\frac{s+n}{2}\right)}{\Gamma_{n-1}\left(\frac{s-1}{2}\right)} & \text{for } n \text{ odd,} \end{cases}$$

where  $\Gamma(s)$  is the gamma function. We note

$$\gamma(s) = \gamma(1-s).$$

Moreover we put

$$\xi(s) := \Gamma_{\mathbb{R}}(s)\zeta(s) = \xi(1-s),$$

where  $\zeta(s)$  is the Riemann zeta function.

Throughout the paper we understand that a product (resp. a sum) over an empty set is equal to 1 (resp. 0).

§1 Preliminary

Let  $\rho$  be a finite-dimensional representation of  $GL(n, \mathbb{C})$  with the representation space  $\mathcal{V}$ . By definition,  $\mathcal{V}$ -valued  $C^\infty$ -Siegel modular forms of weight  $\rho$  are  $C^\infty$ -functions from  $\mathfrak{H}_n$  to  $\mathcal{V}$  satisfying

$$(1.1) \quad (f|_\rho M)(Z) = f(Z)$$

for all  $Z \in \mathfrak{H}_n$  and  $M = \begin{pmatrix} A^{(n)} & B^{(n)} \\ C^{(n)} & D^{(n)} \end{pmatrix} \in \Gamma^n$ , where

$$(f|_\rho M)(Z) := \rho((CZ + D)^{-1})f(M\langle Z \rangle) \text{ and } M\langle Z \rangle := (AZ + B)(CZ + D)^{-1}.$$

The space of all such functions is denoted by  $M_\rho^n(\mathcal{V})^\infty$ .

We write  $|_k$  for  $\rho = \det^k$  and we omit subscripts  $\rho$ ,  $k$  when there is no fear of confusion.

A holomorphic function  $f$  from  $\mathfrak{H}_n$  to  $\mathcal{V}$  is called a  $\mathcal{V}$ -valued Siegel modular form of weight  $\rho$  if it satisfies (1.1) and if it is holomorphic at the cusps when  $n = 1$ . The space of  $\mathcal{V}$ -valued Siegel modular forms of weight  $\rho$  is denoted by  $M_\rho^n(\mathcal{V})$ .

We define the Siegel operator  $\Phi$  on  $M_\rho^n(\mathcal{V})$  by

$$(\Phi f)(Z) := \lim_{t \rightarrow \infty} f\left(\begin{pmatrix} Z & 0 \\ 0 & it \end{pmatrix}\right)$$

for  $Z \in \mathfrak{H}_{n-1}$ . Let  $\mathcal{V}'$  be the subspace of  $\mathcal{V}$  generated by the values of  $\Phi f$  for all  $f \in M_\rho^n(\mathcal{V})$ . Then  $\mathcal{V}'$  is invariant under the transformations

$$\rho\left(\begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix}\right), \quad g \in GL(n-1, \mathbb{C}).$$

If we assume  $\mathcal{V}' \neq \{0\}$ , we get the representation  $\rho'$  of  $GL(n-1, \mathbb{C})$  with the representation space  $\mathcal{V}'$ . Thus the operator  $\Phi$  defines the map

$$\Phi : M_\rho^n(\mathcal{V}) \longrightarrow M_{\rho'}^{n-1}(\mathcal{V}').$$

Suppose  $f \in M_\rho^n(\mathcal{V})$ . Then it is called a cusp form if it satisfies  $\Phi f = 0$ , and we put

$$S_\rho^n(\mathcal{V}) := \{f \in M_\rho^n(\mathcal{V}) \mid f \text{ is a cuspform}\}.$$

If  $\rho$  is an irreducible rational representation,  $\rho$  is equivalent to an irreducible rational representation  $\tilde{\rho}$  satisfying the following condition: Let  $\tilde{\mathcal{V}}$  be the representation space of  $\tilde{\rho}$ . Then, there exists a unique one-dimensional vector subspace  $\mathbb{C}\tilde{v}$  of  $\tilde{\mathcal{V}}$  such that for any upper triangular matrix of  $GL(n, \mathbb{C})$ ,

$$\tilde{\rho}\left(\begin{pmatrix} g_{11} & & * \\ & \ddots & \\ 0 & & g_{nn} \end{pmatrix}\right)\tilde{v} = \left(\prod_{j=1}^n g_{jj}^{\lambda_j}\right)\tilde{v},$$

where  $(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n$  and  $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$ .

Then we call  $(\lambda_1, \lambda_2, \dots, \lambda_n)$  the signature of  $\rho$ .

*Remark.* Suppose the signature of  $\rho$  is  $(\lambda_1, \lambda_2, \dots, \lambda_n)$ . We note that  $M_\rho^n(\mathcal{V}) = \{0\}$  if  $\lambda_n < 0$  and that  $M_\rho^n(\mathcal{V})^\infty = \{0\}$  if  $\lambda_1 + \dots + \lambda_n \not\equiv 0 \pmod{2}$ .

Now, we put

$$G^+ Sp(n, \mathbb{Q}) \\ := \left\{ M \in GL(2n, \mathbb{Q}) \mid {}^t M \begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix} M = \mu(M) \begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix}, \mu(M) > 0 \right\}.$$

For  $g \in G^+ Sp(n, \mathbb{Q})$ , let  $\Gamma^n g \Gamma^n = \bigcup_{j=1}^r \Gamma^n g_j$  be a decomposition of the double coset  $\Gamma^n g \Gamma^n$  into left cosets. For  $f \in M_\rho^n(\mathcal{V})$  (resp.  $S_\rho^n(\mathcal{V})$ ,  $M_\rho^n(\mathcal{V})^\infty$ ), we define the Hecke operator  $(\Gamma^n g \Gamma^n)$  by

$$f|(\Gamma^n g \Gamma^n) := \sum_{j=1}^r f|g_j.$$

Let  $f \in S_\rho^n(\mathcal{V})$  be an eigenform. We define the standard  $L$ -function attached to  $f$  by (0.1). We also define the following series:

$$(1.2) \quad D(s, f) := \sum_{T \in \mathbb{T}^{(n)}} \lambda(f, T) \det(T)^{-s},$$

where  $\lambda(f, T)$  is the eigenvalue on  $f$  of the Hecke operator  $\left( \Gamma^n \begin{pmatrix} T & 0 \\ 0 & T^{-1} \end{pmatrix} \Gamma^n \right)$ ,  $T \in \mathbb{T}^{(n)}$ . By Böcherer [6], we have:

$$(1.3) \quad \zeta(s) \prod_{j=1}^n \zeta(2s - 2j) D(s, f) = L(s - n, f, \underline{\text{St}}).$$

For  $k \in 2\mathbb{Z}$ ,  $k > 0$ ,  $s \in \mathbb{C}$  and  $Z = (z_{jh}) \in \mathfrak{H}_n$ , we define the Eisenstein series by

$$E_k^n(Z, s) := \sum_{M=\begin{pmatrix} * & * \\ C^{(n)} & D^{(n)} \end{pmatrix} \in P_{n,0} \setminus \Gamma^n} \det(CZ + D)^{-k} \det(\text{Im}(M(Z)))^s.$$

Then  $E_k^n(Z, s) \in M_k^{n\infty}$ , where  $M_k^{n\infty}$  is the space of  $C^\infty$ -Siegel modular forms of weight  $k$ . The function  $E_k^n(Z, s) \det(\text{Im}(Z))^{-s}$  converges absolutely and locally uniformly for  $k + 2\text{Re}(s) > n + 1$ . Moreover we have the following by Mizumoto [19], [20]. (see also Andrianov-Kalinin [2], Kalinin [13], Langlands [18]):

**Theorem 2.** *Let  $n, k \in \mathbb{Z}$ ,  $n, k > 0$ ,  $k$  : even. Then for  $Z \in \mathfrak{H}_n$ ,*

$$\mathbb{E}_k^n(Z, s) := \frac{\Gamma_n(s + \frac{k}{2})}{\Gamma_n(s)} \xi(2s) \prod_{j=1}^{\lfloor \frac{n}{2} \rfloor} \xi(4s - 2j) E_k^n \left( Z, s - \frac{k}{2} \right)$$

is invariant under  $s \mapsto \frac{n+1}{2} - s$  and it is an entire function in  $s$ .

It is also known that every partial derivative (in  $z_{jh}$ 's) of the Eisenstein series  $E_k^n(Z, s)$  is slowly increasing (locally uniformly in  $s$ ). That is, by Mizumoto [20] we have:

**Theorem 3.** *Let  $n, k \in \mathbb{Z}$ ,  $n, k > 0$ ,  $k$  : even. For each  $s_0 \in \mathbb{C}$ , we can take  $d \in \mathbb{Z}$ ,  $d > 0$  and a suitable neighborhood  $\mathcal{U}$  of  $s_0$  depending only on  $n$ ,  $k$  and  $s_0$  such that  $(s - s_0)^d E_k^n(Z, s)$  is holomorphic in  $s$  on  $\mathcal{U}$ . Then, for  $s \in \mathcal{U}$ ,  $l \in \mathbb{Z}$ ,  $l \geq 0$ ,  $\text{Im}(Z) \geq \varepsilon 1_n$  ( $\varepsilon > 0$ ), there exist positive constants  $\alpha$ ,  $\beta$  depending only on  $n$ ,  $k$ ,  $l$ ,  $\varepsilon$ ,  $s_0$ ,  $d$  and  $\mathcal{U}$  such that*

$$\left| (s - s_0)^d \frac{\partial^l}{\partial z_{j_1 h_1} \cdots \partial z_{j_l h_l}} E_k^n(Z, s) \right| \leq \alpha \det(\text{Im}(Z))^\beta$$

$$(1 \leq j_\nu, h_\nu \leq n).$$

## §2 Differential operators

In what follows, we put

$$\begin{aligned} V_1 &= \mathbb{C}e_1 \oplus \cdots \oplus \mathbb{C}e_n, & x_1 &= (e_1, \dots, e_n), \\ V_2 &= \mathbb{C}e_{n+1} \oplus \cdots \oplus \mathbb{C}e_{2n}, & x_2 &= (e_{n+1}, \dots, e_{2n}). \end{aligned}$$

Let  $\text{alt}^{n-1}(V_1)$  ( resp.  $\text{alt}^{n-1}(V_2)$  ) be the  $(n-1)$ -th alternating tensor product of  $V_1$  ( resp.  $V_2$  ). If we put

$$\begin{aligned} t_j &:= (-1)^{j-1} e_1 \wedge \cdots \wedge e_{j-1} \wedge e_{j+1} \wedge \cdots \wedge e_n, \\ t_{n+j} &:= (-1)^{j-1} e_{n+1} \wedge \cdots \wedge e_{n+j-1} \wedge e_{n+j+1} \wedge \cdots \wedge e_{2n} \quad (1 \leq j \leq n), \end{aligned}$$

we can write

$$\text{alt}^{n-1}(V_1) = \mathbb{C}t_1 \oplus \cdots \oplus \mathbb{C}t_n \quad \text{and} \quad \text{alt}^{n-1}(V_2) = \mathbb{C}t_{n+1} \oplus \cdots \oplus \mathbb{C}t_{2n}.$$

Moreover, we put

$$y_1 := (t_1, \dots, t_n) \quad \text{and} \quad y_2 := (t_{n+1}, \dots, t_{2n}).$$

If for each  $g \in GL(n, \mathbb{C})$ ,  $g$  acts on  $x_j$  ( $j = 1, 2$ ) by  $x_j g$ , then  $\det^k \otimes \text{alt}^{n-1}(g)$  acts on  $y_j$  ( $j = 1, 2$ ) by

$$\det^k \otimes \text{alt}^{n-1}(g) y_j := \det(g)^k y_j \tilde{g} = \det(g)^{k+1} y_j^t g^{-1}.$$

ON STANDARD  $L$ -FUNCTIONS

If we put  $\alpha = (a_1, \dots, a_n) \in \mathbb{C}^n$ ,  $\det^k \otimes \text{alt}^{n-1}(g)$  acts on  $\sum_{j=1}^n a_j t_j = y_1 {}^t \alpha \in \text{alt}^{n-1}(V_1)$  and  $y_2 {}^t \alpha \in \text{alt}^{n-1}(V_2)$  by

$$\det^k \otimes \text{alt}^{n-1}(g)(y_j {}^t \alpha) := \det(g)^k y_j \tilde{g} {}^t \alpha = \det(g)^{k+1} y_j {}^t g^{-1} {}^t \alpha \quad (j = 1, 2).$$

Thus we get the action of  $\det^k \otimes \text{alt}^{n-1}$  on  $\text{alt}^{n-1}(V_j)$  ( $j = 1, 2$ ).

Let  $\iota$  be the isomorphism from  $V_1$  to  $V_2$  defined by  $\iota(e_j) = e_{n+j}$  ( $1 \leq j \leq n$ ). It induces the isomorphism (also denoted by  $\iota$ ) from  $\text{alt}^{n-1}(V_1)$  to  $\text{alt}^{n-1}(V_2)$ . For a  $\text{alt}^{n-1}(V_1)$ -valued function  $f$  on  $\mathfrak{H}_n$  and for  $Z \in \mathfrak{H}_n$ , we define  $\iota(f)$  by

$$(\iota(f))(Z) := \iota(f(Z)).$$

For a function  $f$  on  $\mathfrak{H}_{2n}$ ,  $\begin{pmatrix} Z^{(n)} & U^{(n)} \\ {}^t U^{(n)} & W^{(n)} \end{pmatrix} \in \mathfrak{H}_{2n}$ , we define the pullback  $d^*$  by

$$(d^* f) \left( \begin{pmatrix} Z & U \\ {}^t U & W \end{pmatrix} \right) := f \left( \begin{pmatrix} Z & 0 \\ 0 & W \end{pmatrix} \right).$$

We consider  $\Gamma^n \times \Gamma^n$  imbedded in  $\Gamma^{2n}$  by

$$\begin{pmatrix} A^{(n)} & B^{(n)} \\ C^{(n)} & D^{(n)} \end{pmatrix} \times \begin{pmatrix} A'^{(n)} & B'^{(n)} \\ C'^{(n)} & D'^{(n)} \end{pmatrix} \longmapsto \begin{pmatrix} A & 0 & B & 0 \\ 0 & A' & 0 & B' \\ C & 0 & D & 0 \\ 0 & C' & 0 & D' \end{pmatrix},$$

and when convenient will identify  $\Gamma^n \times \Gamma^n$  with its image in  $\Gamma^{2n}$ .

We summarize some facts on differential operators obtained from invariant pluri-harmonic polynomials in Ibukiyama [12].

Let  $\rho_0$  (resp.  $\rho_0'$ ) be an irreducible rational representation of  $GL(n, \mathbb{C})$  with the representation space  $\mathcal{V}$  (resp.  $\mathcal{V}'$ ), where  $\rho_0$  is equivalent to  $\rho_0'$ . For  $n, k \in \mathbb{Z}$ ,  $n, k > 0$ , let  $X = (x_{j\nu})$  be a variable on  $\mathbb{C}^{(n, 2k)}$ . We put

$$\Delta_{jh} := \sum_{\nu=1}^{2k} \frac{\partial^2}{\partial x_{j\nu} \partial x_{h\nu}}.$$

A polynomial  $P(X)$  on  $\mathbb{C}^{(n, 2k)}$  is called pluri-harmonic if  $\Delta_{jh} P = 0$  for each  $j, h$  with  $1 \leq j \leq h \leq n$ .

From now on, we assume that  $k \geq n$ .

Suppose that a polynomial map

$$P : \mathbb{C}^{(n, 2k)} \times \mathbb{C}^{(n, 2k)} \longrightarrow \mathcal{V} \otimes \mathcal{V}'$$

satisfies the following three conditions:

$$(2.1) \quad P(X_1, X_2) \text{ is pluri-harmonic for each } X_j \quad (j = 1, 2),$$

$$(2.2) \quad P(X_1 g, X_2 g) = P(X_1, X_2) \text{ for each } g \in O(2k) ,$$

$$(2.3) \quad P(a_1 X_1, a_2 X_2) = (\rho_0(a_1) \otimes \rho'_0(a_2)) P(X_1, X_2) \text{ for each } a_j \in GL(n, \mathbb{C}) \text{ (} j = 1, 2 \text{)} .$$

Then there exists a unique polynomial map  $Q$  on  $\mathbb{C}^{(2n)}$  such that

$$P(X_1, X_2) = Q \begin{pmatrix} X_1^t X_1 & X_1^t X_2 \\ X_2^t X_1 & X_2^t X_2 \end{pmatrix} .$$

Let  $\mathfrak{Z} = (z_{jh})$  be a variable on  $\mathfrak{H}_{2n}$ . We put

$$\frac{\partial}{\partial \mathfrak{Z}} := \left( \frac{1 + \delta_{jh}}{2} \frac{\partial}{\partial z_{jh}} \right)_{1 \leq j, h \leq 2n} ,$$

where, for  $z_{jh} = x_{jh} + iy_{jh}$ ,

$$\frac{\partial}{\partial z_{jh}} = \frac{1}{2} \left( \frac{\partial}{\partial x_{jh}} - i \frac{\partial}{\partial y_{jh}} \right) , \quad \frac{\partial}{\partial \bar{z}_{jh}} = \frac{1}{2} \left( \frac{\partial}{\partial x_{jh}} + i \frac{\partial}{\partial y_{jh}} \right) .$$

If we put

$$\mathbb{D} := d^* Q \left( \frac{\partial}{\partial \mathfrak{Z}} \right) ,$$

we have the following by Ibukiyama [12]:

**Theorem 4.** (i) Let  $F$  be any  $\mathbb{C}$ -valued  $C^\infty$ -function on  $\mathfrak{H}_{2n}$ . If we put  $\rho = \det^k \otimes \rho_0$  and  $\rho' = \det^k \otimes \rho'_0$ , then for each  $(g, g') \in \Gamma^n \times \Gamma^n$  and  $\mathfrak{Z} = \begin{pmatrix} Z^{(n)} & U^{(n)} \\ tU^{(n)} & W^{(n)} \end{pmatrix} \in \mathfrak{H}_{2n}$ , we get the following commutation relation:

$$\left( (\mathbb{D}F)|_\rho(g)_Z|_{\rho'}(g')_W \right) (\mathfrak{Z}) = \left( \mathbb{D}(F|_k(g, g')) \right) (\mathfrak{Z}) ,$$

where  $(\ )_Z$  ( resp.  $(\ )_W$  ) denotes the action on  $Z$  ( resp.  $W$  ).

(ii) The operator  $\mathbb{D}$  sends modular forms to modular forms:

$$\mathbb{D} : M_k^{2n, \infty} \longrightarrow M_\rho^n(\mathcal{V})^\infty \otimes M_{\rho'}^n(\mathcal{V}')^\infty .$$

Moreover,  $\mathbb{D}$  is a holomorphic operator and it satisfies

$$\mathbb{D} : M_k^{2n} \longrightarrow M_\rho^n(\mathcal{V}) \otimes M_{\rho'}^n(\mathcal{V}') .$$

Now we apply it to  $\det^k \otimes \text{alt}^{n-1}$  cases.

Let  $\rho_0 = \text{alt}^{n-1}$  ( resp.  $\rho'_0 = \text{alt}^{n-1}$  ) be the representation of  $GL(n, \mathbb{C})$  with the representation space  $\text{alt}^{n-1}(V_1)$  ( resp.  $\text{alt}^{n-1}(V_2)$  ). For a variable  $\mathfrak{Z} = (z_{jh})$  on  $\mathfrak{H}_{2n}$ , we put  $u_{jh} := z_{j+n+h}$  ( $1 \leq j, h \leq n$ ),  $U^{(n)} := (u_{jh})$  and  $\frac{\partial}{\partial U} := \left( \frac{\partial}{\partial u_{jh}} \right)_{1 \leq j, h \leq n}$ . For functions on  $\mathfrak{H}_{2n}$ , we define the differential operator  $\mathcal{D}$  by

$$\mathcal{D} := d^* \left( y_1 \frac{\widetilde{\partial}}{\partial U} {}^t y_2 \right) .$$

Then we have:

**Proposition 1.** *Let  $k \geq n$ .*

(i) *Let  $F$  be any  $\mathbb{C}$ -valued  $C^\infty$ -function on  $\mathfrak{H}_{2n}$ . Then for each  $(g, g') \in \Gamma^n \times \Gamma^n$  and  $\mathfrak{Z} = \begin{pmatrix} Z & U \\ {}^t U & W \end{pmatrix} \in \mathfrak{H}_{2n}$ , we get the following commutation relation:*

$$\left( (\mathcal{D}F)|_p(g)Z|_{p'}(g')W \right)(\mathfrak{Z}) = \left( \mathcal{D}(F|_k(g, g')) \right)(\mathfrak{Z}).$$

(ii) *The operator  $\mathcal{D}$  sends modular forms to modular forms:*

$$\mathcal{D} : M_k^{2n\infty} \longrightarrow M_k^n(\text{alt}^{n-1}(V_1))^\infty \otimes M_k^n(\text{alt}^{n-1}(V_2))^\infty.$$

Moreover,  $\mathcal{D}$  is a holomorphic operator and it satisfies

$$\mathcal{D} : M_k^{2n} \longrightarrow M_k^n(\text{alt}^{n-1}(V_1)) \otimes M_k^n(\text{alt}^{n-1}(V_2)).$$

*Proof.* Let  $X_j$  ( $j = 1, 2$ ) be a variable on  $\mathbb{C}^{(n, 2k)}$ . If we put

$$\frac{\partial}{\partial U} = X_1 {}^t X_2,$$

the polynomial  $y_1 \widetilde{X_1 {}^t X_2} {}^t y_2$  satisfies the three conditions (2.1), (2.2), (2.3). Therefore we get Proposition 1 by Theorem 4.  $\square$

### §3 Proof of Theorem 1

We prove Theorem 1 according to Böcherer's method in [5].

We first apply the differential operator  $\mathcal{D}$  to the Eisenstein series  $E_k^{2n}(\mathfrak{Z}, s)$ . For this, we use the coset decomposition by Garrett [9] (cf. Mizumoto [19]):

**Lemma 1.** (i) *The double coset  $P_{2n,0} \backslash \Gamma^{2n} / \Gamma^n \times \Gamma^n$  has an irredundant set of coset representatives*

$$g_{\widehat{T}} = \begin{pmatrix} 1_n & 0 & 0 & 0 \\ 0 & 1_n & 0 & 0 \\ 0 & \widehat{T}^{(n)} & 1_n & 0 \\ \widehat{T}^{(n)} & 0 & 0 & 1_n \end{pmatrix},$$

where  $\widehat{T} = \begin{pmatrix} 0 & 0 \\ 0 & T^{(r)} \end{pmatrix}$ ,  $T \in \mathbb{T}^{(r)}$  ( $0 \leq r \leq n$ ).

(ii) *The left coset  $P_{2n,0} \backslash P_{2n,0} g_{\widehat{T}} (\Gamma^n \times \Gamma^n)$  has an irredundant set of coset representatives  $g_{\widehat{T}} \widehat{g}_1 g_2 \widehat{g}_1' g_2'$ ,*

$$\widehat{g}_1 \in G_{n,r}, \quad g_2 \in P_{n,r} \backslash \Gamma^n, \quad \widehat{g}_1' \in \Gamma^r(T) \backslash G_{n,r}, \quad g_2' \in P_{n,r} \backslash \Gamma^n,$$

where

$$G_{n,r} := \left\{ \begin{pmatrix} \widehat{A}^{(n)} & \widehat{B}^{(n)} \\ \widehat{C}^{(n)} & \widehat{D}^{(n)} \end{pmatrix} = \begin{pmatrix} 1_{n-r} & 0 & 0 & 0 \\ 0 & A^{(r)} & 0 & B^{(r)} \\ 0 & 0 & 1_{n-r} & 0 \\ 0 & C^{(r)} & 0 & D^{(r)} \end{pmatrix} \in \Gamma^n \mid \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma^r \right\}$$

and for  $T \in \mathbb{T}^{(r)}$ ,

$$\Gamma^r(T) := \left\{ g \in \Gamma^r \mid \begin{pmatrix} 0 & T^{-1} \\ T & 0 \end{pmatrix} g \begin{pmatrix} 0 & T^{-1} \\ T & 0 \end{pmatrix} \in \Gamma^r \right\}.$$

Now we prove the following (cf. Böcherer [4, Satz 9], [5, Satz 3]):

**Proposition 2.** Let  $k$  be an even integer,  $n$  an odd integer and  $s$  a complex number such that  $k + 2\operatorname{Re}(s) > 2n + 1$ . Suppose  $k > n > 2$ . For  $\mathfrak{Z} = \begin{pmatrix} Z^{(n)} & U^{(n)} \\ {}^t U^{(n)} & W^{(n)} \end{pmatrix} \in \mathfrak{H}_{2n}$ ,  $\mathfrak{Z}_0 = \begin{pmatrix} Z^{(n)} & 0 \\ 0 & W^{(n)} \end{pmatrix} \in \mathfrak{H}_{2n}$ , we get

$$\begin{aligned} & (\mathcal{D}E_k^{2n})(\mathfrak{Z}, s) \\ &= \frac{\Gamma(2k + 2s + 1)}{\Gamma(2k + 2s - n + 2)} \sum_{T \in \mathbb{T}^{(n)}} \left( \mathcal{P}(Z, W, s) \left| \left( \Gamma^n \begin{pmatrix} T & 0 \\ 0 & T^{-1} \end{pmatrix} \Gamma^n \right)_W \right. \right) \det(T)^{-k-2s} \\ &+ \frac{\Gamma(2k + 2s + 1)}{\Gamma(2k + 2s - n + 2)} \mathcal{R}(Z, W, s), \end{aligned}$$

where

$$\begin{aligned} & \mathcal{P}(Z, W, s) \\ &:= \sum_{g \in \Gamma^n} \left\{ \det(\operatorname{Im}(Z))^s \det(\operatorname{Im}(W))^s |\det(W + Z)|^{-2s} \rho((W + Z)^{-1}) (y_1 {}^t y_2) \right\} \Big| (g)_Z, \end{aligned}$$

and

$$\begin{aligned} \mathcal{R}(Z, W, s) := & \sum_{T \in \mathbb{T}^{(n-1)}} \sum_{g_2 \in P_{n,n-1} \setminus \Gamma^n} \sum_{g'_2 \in P_{n,n-1} \setminus \Gamma^n} \sum_{\widehat{g}_1 \in G_{n,n-1}} \sum_{\widehat{g}'_1 \in \Gamma^{n-1}(T) \setminus G_{n,n-1}} \\ & \cdot \left\{ \det(\operatorname{Im}(Z))^s \det(\operatorname{Im}(W))^s \left| \det(1_n - \widehat{T}W\widehat{T}Z) \right|^{-2s} \right. \\ & \cdot \left. \rho((1_n - \widehat{T}W\widehat{T}Z)^{-1}) (y_1 \widehat{T} {}^t y_2) \right\} \Big| (\widehat{g}'_1)_W \Big| (\widehat{g}_1)_Z \Big| (g'_2)_W \Big| (g_2)_Z. \end{aligned}$$

*Proof.* It follows from Proposition 1 and Lemma 1 that

$$\begin{aligned} & (\mathcal{D}E_k^{2n})(\mathfrak{Z}, s) = \sum_{r=0}^n \sum_{T \in \mathbb{T}^{(r)}} \sum_{g_2 \in P_{n,r} \setminus \Gamma^n} \sum_{g'_2 \in P_{n,r} \setminus \Gamma^n} \sum_{\widehat{g}_1 \in G_{n,r}} \sum_{\widehat{g}'_1 \in \Gamma^r(T) \setminus G_{n,r}} \\ & \quad \left\{ \mathcal{D} \left( \det(\operatorname{Im}\mathfrak{Z})^s \Big| {}_k g_{\widehat{T}} \right) \right\} \Big| (\widehat{g}'_1)_W \Big| (\widehat{g}_1)_Z \Big| (g'_2)_W \Big| (g_2)_Z. \end{aligned}$$

If for each  $\widehat{T}$  we put  $g_{\widehat{T}} = \begin{pmatrix} * & * \\ \mathfrak{C}^{(2n)} & \mathfrak{D}^{(2n)} \end{pmatrix}$ , we get

$$\mathcal{D} \left( \det(\operatorname{Im}\mathfrak{Z})^s \Big| {}_k g_{\widehat{T}} \right) = \det(\mathfrak{C}\overline{\mathfrak{Z}_0} + \mathfrak{D})^{-s} \mathcal{D} \left( \det(\mathfrak{C}\mathfrak{Z} + \mathfrak{D})^{-k-s} \det(\operatorname{Im}(\mathfrak{Z}))^s \right),$$

by the form of  $\mathcal{D}$  and that of  $\det(\operatorname{Im}(\mathfrak{Z}))$ ,

$$= \det(\mathfrak{C}\overline{\mathfrak{Z}_0} + \mathfrak{D})^{-s} \det(\operatorname{Im}(\mathfrak{Z}_0))^s \mathcal{D} \left( \det(\mathfrak{C}\mathfrak{Z} + \mathfrak{D})^{-k-s} \right).$$

As an example, we compute

$$d^* \widetilde{\frac{\partial}{\partial u_{nn}}} \left( \det(\mathfrak{C}\mathfrak{Z} + \mathfrak{D})^{-k-s} \right) .$$

Let  $\mathfrak{S}_m$  be the symmetric group of degree  $m$ . We put

$$\delta := \det(\mathfrak{C}\mathfrak{Z} + \mathfrak{D}) , \quad \delta_0 := \det(\mathfrak{C}\mathfrak{Z}_0 + \mathfrak{D}) , \quad \partial_{jh} := \frac{\partial}{\partial u_{jh}} \quad (1 \leq j, h \leq n)$$

and, for  $m, q \in \mathbb{Z}$ ,  $0 < m$  and  $0 \leq q < m$ ,

$$L_m^q := \left\{ (l_1, \dots, l_m) \in \mathbb{Z}^m \mid l_\nu \geq 0 \ (1 \leq \nu \leq m) , \ \sum_{\nu=1}^m l_\nu = m - q , \ \sum_{\nu=1}^m \nu l_\nu = m \right\} .$$

For  $(l_1, \dots, l_m) \in L_m^q$ , let  $\Lambda(l_1, \dots, l_m)$  be the set consisting of  $J \in \mathfrak{S}_m$  such that, if  $l_\gamma \neq 0$  ( $1 \leq \gamma \leq m$ ),

$$1 \leq J \left( \sum_{\nu=0}^{\gamma-1} \nu l_\nu + \gamma \lambda + 1 \right) < \dots < J \left( \sum_{\nu=0}^{\gamma-1} \nu l_\nu + \gamma \lambda + \gamma \right) \leq m \quad (0 \leq \lambda < l_\gamma)$$

and

$$1 \leq J \left( \sum_{\nu=0}^{\gamma-1} \nu l_\nu + 1 \right) < J \left( \sum_{\nu=0}^{\gamma-1} \nu l_\nu + \gamma + 1 \right) < \dots < J \left( \sum_{\nu=0}^{\gamma-1} \nu l_\nu + \gamma(l_\gamma - 1) + 1 \right) \leq m .$$

Then we get

$$\begin{aligned} d^* \widetilde{\partial_{nn}} (\delta^{-k-s}) &= d^* \left( \sum_{\tau \in \mathfrak{S}_{n-1}} \text{sgn}(\tau) \partial_{1\tau(1)} \cdots \partial_{n-1\tau(n-1)} \right) (\delta^{-k-s}) \\ &= \sum_{q=0}^{n-2} \left\{ \left( \prod_{\mu=0}^{n-2-q} (-k-s-\mu) \right) \delta_0^{-k-s-(n-1-q)} \right. \\ &\quad \left. \times d^* \sum_{\tau \in \mathfrak{S}_{n-1}} \sum_{(l_1, \dots, l_{n-1}) \in L_{n-1}^q} \sum_{J \in \Lambda} \text{sgn}(\tau) \partial_\tau^J (q; (l_1, \dots, l_{n-1})) (\delta) \right\} , \end{aligned}$$

where  $\Lambda = \Lambda(l_1, \dots, l_{n-1})$  and

$$\begin{aligned} \partial_\tau^J (q; (l_1, \dots, l_{n-1})) (\delta) &= \prod_{\gamma=1}^{n-1} \left\{ \left( \partial_{\tau(J(\alpha^\gamma+1))} \cdots \partial_{\tau(J(\alpha^\gamma+\gamma))} \right) (\delta) \right. \\ &\quad \times \cdots \\ &\quad \left. \times \left( \partial_{\tau(J(\alpha^\gamma+\gamma(l_\gamma-1)+1))} \cdots \partial_{\tau(J(\alpha^\gamma+1))} \right) (\delta) \right\} \end{aligned}$$

with  $\alpha^\gamma := \sum_{\nu=0}^{\gamma-1} \nu l_\nu$ ,  $\partial_{\tau(J(\cdot))} := \partial_{J(\cdot)} \tau(J(\cdot))$ .

For each  $q$  ( $0 \leq q \leq n-2$ ),  $(l_1, \dots, l_{n-1}) \in L_{n-1}^q$ ,  $\tau \in \mathfrak{S}_{n-1}$  and  $J \in \Lambda$ , we define

$$(\partial_{J(j) \tau(J(h))}) := \begin{pmatrix} ((A_\tau^J)_{\xi\eta})^{(n-1-q)} & * \\ * & \partial_{nn} \end{pmatrix},$$

where, for  $\sum_{\nu=1}^{\gamma-1} l_\nu + 1 \leq \xi \leq \sum_{\nu=1}^{\gamma} l_\nu$  and  $\sum_{\nu=1}^{\gamma'-1} l_\nu + 1 \leq \eta \leq \sum_{\nu=1}^{\gamma'} l_\nu$ ,  $(A_\tau^J)_{\xi\eta}$  is a  $\gamma \times \gamma'$  matrix.

In the same way, we define

$$(b_{J(j) \tau(J(h))}) := \begin{pmatrix} ((B_\tau^J)_{\xi\eta})^{(n-1-q)} & * \\ * & b_{nn} \end{pmatrix},$$

where  $(\mathfrak{C}\mathfrak{J}_0 + \mathfrak{D})^{-1}\mathfrak{C} = \begin{pmatrix} * & \mathcal{B}^{(n)} \\ * & * \end{pmatrix}$  and  $\mathcal{B} = (b_{jh})$ .

Then we have

$$\begin{aligned} & d^* \sum_{\tau \in \mathfrak{S}_{n-1}} \operatorname{sgn}(\tau) \partial_\tau^J(q; (l_1, \dots, l_{n-1}))(\delta) \\ &= \sum_{\sigma \in \mathfrak{S}_{n-1} / \prod_{\gamma=1}^{n-1} \mathfrak{S}_\gamma^{l_\gamma}} \left\{ \operatorname{sgn}(\sigma) \prod_{\xi=1}^{n-1-q} d^* \det((A_\sigma^J)_{\xi\xi})(\delta) \right\}, \end{aligned}$$

by  $d^* \det((A_\sigma^J)_{\xi\xi})(\delta) = (\gamma + 1)! \delta_0 \det((B_\sigma^J)_{\xi\xi}) \quad \left( \sum_{\nu=1}^{\gamma-1} l_\nu + 1 \leq \xi \leq \sum_{\nu=1}^{\gamma} l_\nu \right),$

$$\begin{aligned} &= \delta_0^{n-1-q} \prod_{\gamma=1}^{n-1} \{(\gamma + 1)!\}^{l_\gamma} \sum_{\sigma \in \mathfrak{S}_{n-1} / \prod_{\gamma=1}^{n-1} \mathfrak{S}_\gamma^{l_\gamma}} \left\{ \operatorname{sgn}(\sigma) \prod_{\xi=1}^{n-1-q} \det((B_\sigma^J)_{\xi\xi}) \right\} \\ &= \delta_0^{n-1-q} \widetilde{b_{nn}} \prod_{\gamma=1}^{n-1} \{(\gamma + 1)!\}^{l_\gamma}. \end{aligned}$$

Since the number of elements of  $\Lambda$  is  $\left( \prod_{\gamma=1}^{n-1} \frac{1}{l_\gamma!} \right) \frac{(n-1)!}{(1!)^{l_1} \dots ((n-1)!)^{l_{n-1}}}$ , we obtain

$$(3.1) \quad d^* \widetilde{\partial_{nn}}(\delta^{-k-s}) = (-1)^{n-1} \sum_{q=0}^{n-2} \left\{ a_{n-1}(q) \prod_{\mu=0}^{n-2-q} (2s + 2k + 2\mu) \right\} \delta_0^{-k-s} \widetilde{b_{nn}},$$

where

$$a_m(q) = (-1)^q 2^{-(m-q)} m! \sum_{(l_1, \dots, l_m) \in L_m^q} \left( \prod_{\gamma=1}^m \frac{(\gamma + 1)^{l_\gamma}}{l_\gamma!} \right) \quad (0 < m, 0 \leq q < m).$$

In the same way, we have

$$\begin{aligned} \mathcal{D} \left( \det(\mathfrak{C}\mathfrak{Z} + \mathfrak{D})^{-k-s} \right) \\ = (-1)^{n-1} \sum_{q=0}^{n-2} \left\{ a_{n-1}(q) \prod_{\mu=0}^{n-2-q} (2s + 2k + 2\mu) \right\} \det(\mathfrak{C}\mathfrak{Z}_0 + \mathfrak{D})^{-k-s} (y_1 \tilde{\mathcal{B}}^t y_2) \end{aligned}$$

and

$$\begin{aligned} \mathcal{D} \left( \det(\text{Im}\mathfrak{Z})^s \Big|_k g_{\widehat{T}} \right) = & (-1)^{n-1} \sum_{q=0}^{n-2} \left\{ a_{n-1}(q) \prod_{\mu=0}^{n-2-q} (2s + 2k + 2\mu) \right\} \\ & \times \det(\mathfrak{C}\mathfrak{Z}_0 + \mathfrak{D})^{-k} \det(\text{Im}(g_{\widehat{T}}(\mathfrak{Z}_0)))^s (y_1 \tilde{\mathcal{B}}^t y_2) . \end{aligned}$$

On the other hand, we obtain

$$\begin{aligned} & \det(\mathfrak{C}\mathfrak{Z}_0 + \mathfrak{D})^{-k} \det(\text{Im}(g_{\widehat{T}}(\mathfrak{Z}_0)))^s (y_1 \tilde{\mathcal{B}}^t y_2) \\ & = \det(\text{Im}(Z))^s \det(\text{Im}(W))^s \left| \det(1_n - \widehat{T}W\widehat{T}Z) \right|^{-2s} \rho((1_n - \widehat{T}W\widehat{T}Z)^{-1}) (y_1 \tilde{\mathcal{T}}^t y_2) . \end{aligned}$$

Therefore we have only to prove

$$\sum_{q=0}^{n-2} \left\{ a_{n-1}(q) \prod_{\mu=0}^{n-2-q} (2s + 2k + 2\mu) \right\} = \prod_{\mu=0}^{n-2} (2s + 2k - \mu) .$$

To prove the formula above, we put  $x = 2s + 2k$  and  $m = n - 1$ , that is, we have to prove

$$(3.2) \quad \sum_{q=0}^{m-1} \left\{ a_m(q) \prod_{\mu=0}^{m-1-q} (x + 2\mu) \right\} = \prod_{\mu=0}^{m-1} (x - \mu) .$$

We put  $a_m(q) = 0$  if  $q \geq m$ ,  $0 > q$  or  $0 \geq m$ .

We use induction on  $m$ .

If  $m = 1$ , the assertion is trivial.

We suppose

$$\sum_{q=0}^{m'-1} \left\{ a_{m'}(q) \prod_{\mu=0}^{m'-1-q} (x + 2\mu) \right\} = \prod_{\mu=0}^{m'-1} (x - \mu)$$

for any  $m' < m$ . Then we have

$$\prod_{\mu=0}^{m-1} (x - \mu) = \left\{ \prod_{\mu=0}^{m-2} (x - \mu) \right\} (x - m + 1)$$

$$\begin{aligned}
 &= \left\{ \sum_{q=0}^{m-2} \left\{ a_{m-1}(q) \prod_{\mu=0}^{m-2-q} (x + 2\mu) \right\} \right\} (x + (2m - 2 - 2q) - (3m - 3 - 2q)) \\
 &= \sum_{q=0}^{m-2} \left\{ a_{m-1}(q) \prod_{\mu=0}^{m-1-q} (x + 2\mu) \right\} \\
 &\quad - \sum_{q=1}^{m-1} \left\{ (3m - 2q - 1) a_{m-1}(q-1) \prod_{\mu=0}^{m-1-q} (x + 2\mu) \right\} \\
 &= \sum_{q=0}^{m-1} \left\{ (a_{m-1}(q) - (3m - 2q - 1) a_{m-1}(q-1)) \prod_{\mu=0}^{m-1-q} (x + 2\mu) \right\} \quad .
 \end{aligned}$$

If we note  $3l_1 + \cdots + (m+1)l_{m-1} = 3m - 2q - 1$  in  $L_{m-1}^{q-1}$ , we have

$$\begin{aligned}
 &a_{m-1}(q) - (3m - 2q - 1) a_{m-1}(q-1) \\
 &= \frac{1}{m} (-1)^q 2^{-(m-q)} m! \sum_{L_{m-1}^q} \left\{ (l_1 + 1) \frac{2^{l_1+1}}{(l_1 + 1)!} \left( \prod_{\gamma=2}^{m-1} \frac{(\gamma + 1)^{l_\gamma}}{l_\gamma!} \right) \right\} \\
 &\quad + \frac{1}{m} (-1)^q 2^{-(m-q)} m! \\
 &\quad \times \sum_{L_{m-1}^{q-1}} \left\{ \left( \prod_{\gamma=1}^{m-1} \frac{(\gamma + 1)^{l_\gamma}}{l_\gamma!} \right) \left( \sum_{\gamma=1}^{m-1} (\gamma + 1)(l_{\gamma+1} + 1) \frac{\gamma + 2}{l_{\gamma+1} + 1} \frac{l_\gamma}{\gamma + 1} \right) \right\} \\
 &= (-1)^q 2^{-(m-q)} m! \sum_{L_m^q} \left\{ \left( \prod_{\gamma=1}^m \frac{(\gamma + 1)^{l_\gamma}}{l_\gamma!} \right) \frac{1}{m} \sum_{\gamma=1}^m \gamma l_\gamma \right\} \\
 &= a_m(q) \quad .
 \end{aligned}$$

Thus we get (3.2).  $\square$

*Remark.* Under the notation above, we note that the formula

$$d^* \widetilde{\partial_{jh}} (\delta^{-k-s}) = (-1)^{n-1} \prod_{\mu=0}^{n-2} (2s + 2k - \mu) \delta_0^{-k-s} \widetilde{b_{jh}}$$

which is obtained from (3.1) and (3.2), and the formula

$$d^* \left( \det \left( \frac{\partial}{\partial U} \right) \right) (\delta^{-k-s}) = (-1)^n \prod_{\mu=0}^{n-1} (2s + 2k - \mu) \delta_0^{-k-s-1} \det (\widehat{T})$$

in [4, Satz 9], [5, Satz 3] have the same meaning.

For  $\sum_{j=1}^n a_j t_{n+j}$ ,  $\sum_{j=1}^n b_j t_{n+j} \in \text{alt}^{n-1}(V_2)$ , we define the inner product of them by

$$\left\langle \sum_{j=1}^n a_j t_{n+j}, \sum_{j=1}^n b_j t_{n+j} \right\rangle := \sum_{j=1}^n a_j \bar{b}_j .$$

Suppose  $f, g \in M_k^n(\text{alt}^{n-1}(V_2))^\infty$ . The Petersson inner product of  $f$  and  $g$  is defined by

$$(f, g) := \int_{\Gamma^n \setminus \mathfrak{H}_n} \left\langle \rho' \left( \sqrt{\text{Im}(W)} \right) f(W), \rho' \left( \sqrt{\text{Im}(W)} \right) g(W) \right\rangle \det(\text{Im}(W))^{-n-1} dX dY$$

if the right-hand side is convergent. Here  $W = X + iY$  with real matrices  $X = (x_{jh})$  and  $Y = (y_{jh})$ ;

$$dX := \prod_{j \leq h} dx_{jh}, \quad dY := \prod_{j \leq h} dy_{jh} ;$$

the integral is taken over a fundamental domain of  $\Gamma^n \setminus \mathfrak{H}_n$ . We write  $dW = dXdY$  when there is no fear of confusion.

**Theorem 5.** *Let  $k$  be an even integer,  $n$  an odd integer and  $k > n > 2$ . If  $f \in S_k^n(\text{alt}^{n-1}(V_2))$  is an eigenform,*

$$\begin{aligned} & \left( f, (\mathcal{D}\mathbb{E}_k^{2n}) \left( \begin{pmatrix} -\bar{Z}^{(n)} & 0 \\ 0 & * \end{pmatrix}, \frac{\bar{s}+n}{2} \right) \right) \\ &= \pi^{nk - \frac{1}{2}(n-1)^2} i^{nk+n-1} \gamma(s) \Lambda(s, f, \underline{\text{St}})(\iota^{-1}(f))(Z) . \end{aligned}$$

If Theorem 5 is proved, the functional equation of  $\Lambda(s, f, \underline{\text{St}})$  is obtained from that of  $\mathbb{E}_k^{2n}(\mathfrak{Z}, s)$ . Since it follows from Theorem 3 that the location of poles of  $E_k^{2n}(\mathfrak{Z}, s)$  is invariant under the operation of  $\mathcal{D}$ , its holomorphy is proved in the same way as that by Mizumoto [19, Theorem 1] (cf. Weissauer [24]). Thus we get Theorem 1.

*Proof of Theorem 5.*

It follows from Theorem 3 that  $\left( f, (\mathcal{D}\mathbb{E}_k^{2n}) \left( \begin{pmatrix} -\bar{Z} & 0 \\ 0 & * \end{pmatrix}, \bar{s} \right) \right)$  converges absolutely and locally uniformly for  $k + 2\text{Re}(s) > 2n + 1$ . We note that  $\mathcal{R}(Z, W, s)$  is orthogonal to  $S_k^n(\text{alt}^{n-1}(V_2))$  in the variable  $W$  by the same reason as that in Klingen [15, Satz 2]. Since the Hecke operator is a Hermitian operator and  $f$  is an eigenform, we have

$$\begin{aligned} & \left( f, (\mathcal{D}\mathbb{E}_k^{2n}) \left( \begin{pmatrix} -\bar{Z} & 0 \\ 0 & * \end{pmatrix}, \bar{s} \right) \right) \\ &= \frac{\Gamma(2k+2s+1)}{\Gamma(2k+2s-n+2)} D(k+2s, f) \left( f, \mathcal{P}(-\bar{Z}, *, \bar{s}) \right) \end{aligned}$$

by the definition (1.2) . If we compute the integral  $\left( f, \mathcal{P}(-\bar{Z}, *, \bar{s}) \right)$  according to Klingen [14, § 1] (see also [5], [7], [23]) , we obtain

$$\left( f, \mathcal{P}(-\bar{Z}, *, \bar{s}) \right) = 2^{n(n-2s-k)+2} i^{nk+n-1} \psi(\iota^{-1}(f))(Z)$$

and

$$\psi = \int_{S^n} \det(1_n - S\bar{S})^{k+s-n-1} \left( \widetilde{(1_n - S\bar{S})} [{}^t p_n] \right) dS ,$$

where  $p_n^{(1,n)} := (0, \dots, 0, 1)$  and  $S^n := \{ S \in \mathbb{C}^{(n)} \mid S = {}^t S, 1_n - S\bar{S} > 0 \}$  . Moreover, by Hua [10, § 2.3] (see also [5], [7], [14], [23]) , we get

$$\psi = \pi^{\frac{n(n+1)}{2}} \left( \frac{2k+2s-n+1}{2} \right) \frac{\Gamma(k+s-n)}{\Gamma(k+s+1)} \prod_{j=1}^{n-1} \frac{\Gamma(2k+2s-2n+1+2j)}{\Gamma(2k+2s-n+1+j)} .$$

Thus, by (1.3) , we obtain

$$\begin{aligned} & \left( f, (\mathcal{D}E_k^{2n}) \left( \begin{pmatrix} -\bar{Z} & 0 \\ 0 & * \end{pmatrix}, \frac{\bar{s}+n-k}{2} \right) \right) \\ &= 2^{n(1-s)+2} i^{nk+n-1} \pi^{\frac{n(n+1)}{2}} \zeta(s+n)^{-1} \prod_{j=1}^n \zeta(2s+2n-2j)^{-1} \\ & \quad \times \frac{\Gamma(s+k)}{\Gamma(s+k-n+1)} \prod_{j=1}^n \frac{\Gamma(s+k-n-2+2j)}{\Gamma(s+k-1+j)} L(s, f, \text{St})(\iota^{-1}(f))(Z) \end{aligned}$$

and Theorem 5 is proved.  $\square$

#### REFERENCES

1. Andrianov, A. N., *The multiplicative arithmetic of Siegel modular forms*, Russian Math. Surveys **34** (1979), 75–148; English translation.
2. Andrianov, A. N., Kalinin, V. L., *On the analytic properties of standard zeta function of Siegel modular forms*, Math. USSR-Sb. **35** (1979), 1–17; English translation.
3. Böcherer, S., *Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen*, Math. Z. **183** (1983), 21–46.
4. Böcherer, S., *Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen II*, Math. Z. **189** (1985), 81–110.
5. Böcherer, S., *Über die Funktionalgleichung automorpher L-functionen zur Siegelschen Modulgruppe*, J. Reine Angew. Math. **362** (1985), 146–168.
6. Böcherer, S., *Ein Rationalitätssatz für formale Heckereihen zur Siegelschen Modulgruppe*, Abh. Math. Sem. Univ. Hamburg **56** (1986), 35–47.
7. Böcherer, S., Satoh, T., Yamazaki, T., *On the pullback of a Differential Operator and its Application to Vector Valued Eisenstein Series*, Commentarii Math. Univ. St. Pauli. **42** (1992), 1–22.
8. Feit, P., *Poles and residues of Eisenstein series for symplectic and unitary groups*, Mem. Amer. Math. Soc. **61** no. 346, Providence, Rhode Island, 1986.
9. Garrett, P. B., *Pullbacks of Eisenstein series ; applications*, Automorphic Forms of Several Variables, Progress in Math. **46**, 114–137, Birkhäuser, Boston-Basel-Stuttgart, 1984.

ON STANDARD  $L$ -FUNCTIONS

17

10. Hua, L. K., *Harmonic analysis of functions of several complex variables in the classical domains*, Trans. Amer. Math. Soc. **6**, Providence, Rhode Island, 1963.
11. Ibukiyama, T., *Invariant harmonic polynomials on polyspheres and some related differential equations*, preprint.
12. Ibukiyama, T., *On differential operators on automorphic forms and invariant pluri-harmonic polynomials*, preprint.
13. Kalinin, V. L., *Eisenstein series on the symplectic group*, Math. USSR-Sb. **32** (1977), 449–476; English translation.
14. Klingen, H., *Über Poincarésche Reihen zur Siegelschen Modulgruppe*, Math. Ann. **168** (1967), 157–170.
15. Klingen, H., *Zum Darstellungssatz für Siegelsche Modulformen*, Math. Z. **102** (1967), 30–43.
16. Langlands, R. P., *Problems in the theory of automorphic forms*, Lecture Notes in Math. **170**, 18–86, Springer, Berlin-Heidelberg-New York, 1970.
17. Langlands, R. P., *Euler products*, Yale Univ. Press, 1971.
18. Langlands, R. P., *On the functional equations satisfied by Eisenstein series*, Lecture Notes in Math. **544**, Springer, Berlin-Heidelberg-New York, 1976.
19. Mizumoto, S., *Poles and residues of standard  $L$ -functions attached to Siegel modular forms*, Math. Ann. **289** (1991), 589–612.
20. Mizumoto, S., *Eisenstein series for Siegel modular groups*, preprint.
21. Piatetski-Shapiro, I., Rallis, S.,  *$L$ -functions for the classical groups*, Lecture Notes in Math. **1254**, Springer, Berlin-Heidelberg-New York, 1987.
22. Shimura, G., *On Eisenstein series*, Duke Math. J. **50** (1983), 417–476.
23. Takayanagi, H., *Vector valued Siegel modular forms and their  $L$ -functions; Applications of a Differential operator*, Japan. J. Math. (to appear).
24. Weissauer, R., *Stabile Modulformen und Eisensteinreihen*, Lecture Notes in Math. **1219**, Springer, Berlin-Heidelberg-New York, 1986.

3-14-1 HIYOSHI KOHOKU-KU YOKOHAMA, 223, JAPAN