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Introduction
In [23], we studied some properties of standard L-functions attached to sym!(V)-valued

Siegel modular forms of weight det* ®@sym'. More precisely, let det* ®sym! be an irre-
ducible rational representation of GL(n, C) with the representation space sym'(V), where
V is isomorphic to C* and sym!(V) is the I-th symmetric tensor product of V. Let f
be a sym!(V)-valued holomorphic cusp form of weight det* @sym! for Sp(n, Z) (size 2n).
Suppose f is an eigenform, i.e., a non-zero common eigenfunction of the Hecke algebra.
Then we define the standard L-function attached to f by

0 L £89 =] {(1 ~r ) [[a - a7 p) - aj(p)p")} ,

P

where p runs over all prime numbers and a;(p) (1 < j < n) are the Satake p-parameters
of f. The right-hand side of (0.1) converges absolutely and locally uniformly for Re(s) >
n+ 1. We put

A(s, f,St) :==Tr(s+e)lc(s +k+1-1) ﬁ Te(s+k—5)L(s, f,5t)

i=2

with
Ta(s) = 73T (g) , Tels) == 2(2n)"°I(s) ,

and

[0 forn even,
£= 1 for n odd.

Then we have the following (23, Theorem 2, 3|:

Theorem. For k,1 € 2Z, k > 0 and |l > 0, A(s, f,St) has a meromorphic continuation
to the whole s-plane and satisfies the functional equation

A('S,fa.S_t) = A(l _S’fa&) .
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Suppose k > n. Then A(s, f,St) is holomorphic except for possible simple poles at s =0
and s = 1 ; it has a pole at s = 0 ( or equivalently, s = 1 ) if and only if f belongs to
the C-vector space spanned by certain theta series in [24] which is invariant under the
action of the Hecke algebra.

If we note that the signature of det* @sym’ is (k+4Lk,--- k) € Z™, we speculate the
following {23, §3.1 Remark] :
(C). Let p be an irreducible rational representation of GL(n, C) with the representation
space V whose signature is (A1, A2, -+ ,Ap) € Z™ with Ay > Ay > -+ 2 Ay 2 0. Let

f be a V-valued holomorphic cusp form of weight p for Sp(n,Z). Suppose that f is an
eigenform. Then, it is expected that the completed Dirichlet series

A(s, f,8t) :=Ta(s +¢) [ Te(s + A = ) L(s, £,88)

i=1
should satisfy a functional equation.

Unfortunately, within our knowledge it is not verified so far whether (C) holds or not
except det® and det® ®@sym' cases. We will give another example satisfying (C).

Forl € Z,0 << n,let det* ®alt' be an irreducible rational representation of GL(n, C)
with the representation space altl(V), where V is isomorphic to C* and altl(V) is the I-th
alternating tensor product of V. Let M,’:(altl(V)) (resp. S,'C‘(aItI(V)) ) be the C-vector
space consisting of alt'(V)-valued holomorphic modular (resp. cusp) forms of weight
det® alt' for Sp(n, Z).

Suppose that f € Sp(alt '(V)) is an eigenform. We note that the signature of
det* @alt™ ' is (k +1,--- ,k + 1,k). We put

n—1
A(s, £,8t) = Ta(s + 1) ] Te(s + &+ 1 = /)Cc(s + k = n)L(s, £,5t)

J=1

Then the main result of this paper is:

Theorem 1. Let k be an even integer, n an odd integer and k > n > 2. Then A(s, f,St)
is continued analytically as an entire function and satisfies the functional equation

A(57f7.s.£) = A(l —S,f,&) .

(cf. Piatetski-Shapiro, Rallis [21], Weissauer [24])

Notations
1°. As usual, Z is the ring of rational integers, Q the field of rational numbers, R the
field of real numbers, C the field of complex numbers.

2°. Let m,n € Z, m,n > 0. If A is an m X n-matrix, then we write it also as Almm)
and as A(™) if m = n. The identity matrix of size n is denoted by 1.
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3°. For m,n € Z, m,n > 0, and a commutative ring R containing 1, let R(™™) (resp.
R(™) be the R-module of all m x n (resp. n X n) matrices with entries in R.

4°. For a real symmetric positive definite matrix S, S 1/2 is the unique real symmetric
positive definite matrix such that (S*/ 2)2 =S.

5°. For matrices A(m) B(mn) e define A[B] := *BAB, where 'B is the transpose of
B and B is the complex conjugate of B.

6°. For a matrix A(™ = (ajn)1<j,n<m, @jn is the cofactor of a;, and A= (ajn)-
7°. For n € Z, n > 0, we put
11 O

t
™ .= T= b €ZM|t;>0(1<j<n), til--|ta

0 b
8°. For n € Z, n > 0, let I'™ := Sp(n, Z) be the Siegel modular group of degree n and
let $, be the Siegel upper half space of degree n, that is,
Hni={Z=X+i¥ eCM|'Z=2,Y > 0}.

For each r € Z with 0 < r < n, we put
* * n 0 0 * 0
Pn,r = { (C(n) D(n)> e F C = (0 04(,.)) ) D = <* D4(r)) } .

All these are subgroups of I'".
9°. For n € Z, n > 0, we put

T (s) ;:jljlr (s - J%l) ,

and

r. (s-|2—n)

_— for n even
) )

T (3)

W)=y (s+n)

n—1

N2 for n odd,
s—1

F"*( > )

where I'(s) is the gamma function. We note
1) =(1—s).
Moreover we put
£(s) :=Tr(s)¢(s) =€(1 —5) ,
where ((s) is the Riemann zeta function.

Throughout the paper we understand that a product (resp. a sum) over an empty set
is equal to 1 (resp. 0).
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§1 Preliminary

Let p be a finite-dimensional representation of GL(n,C) with the representation space
V. By definition, V-valued C*°-Siegel modular forms of weight p are C'°°-functions from
Hn to V satisfying

(1.1) (fleM)(2) = £(2)

An)  pBn)

for all Z € ), and M = ( c™  pm

) € I'*, where

(floM)(Z) := p((CZ + D)™")f(M(Z)) and M(Z) := (AZ + B)(CZ + D)™

The space of all such functions is denoted by M (V)™.

We write | for p = det* and we omit subscripts p, k when there is no fear of confusion.

A holomorphic function f from §, to V is called a V-valued Siegel modular form of
weight p if it satisfies (1.1) and if it is holomorphic at the cusps when n = 1. The space
of V-valued Siegel modular forms of weight p is denoted by M (V).

We define the Siegel operator ¢ on M}(V) by

(2£)(2) = lim f ((g 3))

for Z € $),—1. Let V' be the subspace of V generated by the values of &f for all
f € M}(V). Then V' is invariant under the transformations

p<(g (1’)) g€ GL(n—1,C).

If we assume V' # {0}, we get the representation p’ of GL(n — 1,C) with the represen-
tation space V'. Thus the operator & defines the map

& : MIV) — MITY(V')
Suppose f € M}(V). Then it is called a cusp form if it satisfies #f = 0, and we put
Sp(V):={f €M} (V)| f is a cuspform }.

If p is an irreducible rational representation, p is equivalent to an irreducible rational
representation p satisfying the following condition: Let V be the representation space of
p. Then, there exists a unique one-dimensional vector subspace C% of Y such that for
any upper triangular matrix of GL(n, C),

g11 * n
F; 9= ngjA; 5,
0 Inn =1
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where (A1, A2, - ,Ap) €Z" and Ay 2 A2 2 -+ 2 An.
Then we call (A1, A2, -, Ay) the signature of p.

Remark. Suppose the signature of p is (A1, A2, -, An). We note that M(V) = {0} if
An < 0 and that MJ(V)™ = {0} if Ay +-++ 4+ A, #0 mod 2.

Now, we put

G*Sp(n,Q)

= {MGGL(2n,Q) tM(_(;n 16‘)M=,u(M)(_(in 10"> ,,L(M)>o} .

For g € GtSp(n,Q) , let g™ = U;=1 I'g; be a decomposition of the double coset

I'mgI'™ into left cosets. For f € M}(V) (resp. SH(V), M}(V)), we define the Hecke
operator (I'"gI') by

FITmgT™) =" flg; -

Jj=1

Let f € S3(V) be an eigenform. We define the standard L-function attached to f by
(0.1). We also define the following series:

(1.2) D(s,f)= Y Af,T)det(T)™*,

TEeT()

where A(f,T) is the eigenvalue on f of the Hecke operator <F" (T 0 1) I‘"), T €
T(®). By Bécherer [6] , we have:

(1.3) ¢(s) [T ¢(2s = 2/)D(s, f) = L(s — n, £,8¢) .

i=1
For k € 2Z,k >0, s € Cand Z = (zj1) € $n, we define the Eisenstein series by
E}(Z,s):= > det(CZ + D) *det(Im(M(Z)))° .
M=\ c(m) pm) | €PN
Then E}(Z,s) € MP™, where M7 is the space of C*-Siegel modular forms of weight
k. The function E}(Z,s)det(Im(Z))™° converges absolutely and locally uniformly for

k 4+ 2Re(s) > n + 1. Moreover we have the following by Mizumoto [19], [20]. (see also
Andrianov-Kalinin [2], Kalinin [13], Langlands [18]):
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Theorem 2. Let n,k € Z, n,k > 0, k : even. Then for Z € §,,

st k (%]
57(7,5) = o B o0 [T etas 2005 (25 5 )

Jj=1
is invariant under s — 21 — s and it is an entire function in s.

Tt is also known that every partial derivative (in z;3’s) of the Eisenstein series E(Z, s)
is slowly increasing(locally uniformly in s). That is, by Mizumoto [20] we have:

Theorem 3. Let n,k € Z, n,k > 0, k : even. For each s € C, we can take d € Z,
d > 0 and a suitable neighborhood U of sy depending only on n, k and so such that
(s — $0)*EP(Z,s) is holomorphic in s on U. Then, for s € U, 1 € Z,1 > 0, Im(Z) =
el (¢ > 0), there exist positive constants a, 8 depending only onn, k, I, €, so, d and

U such that o
d
s§—3s EXNZ,s)| < a det(Im(Z))?
(s = 80 g rge BR(2,9)| S  det(m(2)
(1<ju, by £n).
§2 Differential operators
In what follows, we put
V'1=C61@"'@(C€n, $1=(61,"',6n),

Vz:CenHEB“'EB‘Cem, T2 =(6n+1,"' ,€2n) .

Let alt" !(V;) ( resp. alt" '(V2) ) be the (n — 1)-th alternating tensor product of V
( resp. V2 ). If we put

t]' = (_1)]'—161 A "'/\6]'_1 /\€j+1 A Nen s
tn+j = (—1)j_16n+1 Ao A 6n+j_1 /\6n+j+1 JACERWAN €a2n (1 S _] S n) 3

we can write
alt" ' (V}) =Ct; ®-- ®Ct, and alt" (V) = Ctny1 @ @ Clan .
Moreover, we put
y1:=(t1, - ,tn) and w2 :=(tnga, - st2m) -

If for each g € GL(n,C) , g acts on z; (j = 1,2) by z;g , then det* ®alt™ !(g) acts on
y; (1 =1,2) by

det ¥ @ alt"1(g)y; := det(g)¥y;7 = det(g)*y;'g7 .
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If we put a = (a1, ,a,) € C*, det* @alt™ !(g) acts on Yimaiti =y'a € alt™ ()
and yy'a € alt™ ' (V;) by
det * @ alt™ ! (g)(y; ') := det(g)*y;5'a = det(9)*'y;'¢™ 'a ( = 1,2) .
Thus we get the action of det® ®alt™™ on alt® "(V;) (j = 1,2) .
Let ¢ be the isomorphism from V; to V; defined by i(e;) = €nq; (1 < j < n) . It

induces the isomorphism (also denoted by ¢) from alt” *(V;) to alt® *(Vz) . For a
alt"_l(Vl)—valued function f on $, and for Z € £, , we define (f) by

(U (2) :==«f(2)) -

(n) (n)
For a function f on Ha,, (t?](n) VI{/(H)) € $9,, we define the pullback d* by

(& )12 #)

We consider I'* x I'* imbedded in I'?" by

A 0 B 0
A B A i) 0 A 0 B
cm pm | X\ g p@ )¢ o D 0o |
o ¢ 0 D

and when convenient will identify '™ x '™ with its image in ['2".
We summarize some facts on differential operators obtained from invariant pluri-

harmonic polynomials in Ibukiyama [12] .
Let po (resp. po’' ) be an irreducible rational representation of GL(n,C) with the

representation space V (resp. V' ), where po is equivalent to po' . For n,k € Z
n,k >0, let X = (z;,) be a variable on C(™2¥) . We put

2k 5
Ajp =Y —F— .
a 2::1 0,0z,

A polynomial P(X) on C(™2?¥ is called pluri-harmonic if Aj, P = 0 for each j,h with
1<j<h<n.

From now on, we assume that k£ > n .

Suppose that a polynomial map

P C(n,Zk) % C(n,2k) Y ® Vl

satisfies the following three conditions:

(2.1) P(X;,X>) is pluri-harmonic for each X; (j =1,2) ,
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(2.2) P(X,9,X29) = P(X1,X2) for each g € O(2k) ,

(2.3) P(a1X1,a2X2) = (po(a1) ® py(az))P(X1,Xs) for each aj € GL(n,C) (j =1,2) .
Then there exists a unique polynomial map @ on C(™ such that
P, =@ (P )
Let 3 = (zjn) be a variable on $2,. We put
0 (146, 0O
a3 ( 2 az_jh)]gj,hgzn ’

where, for z;n = ;n + tyjn ,

a_l(a_ia> a_l(aﬂ.a)
62]'],_2 8m,~h ay,-h ’ 62jh_2 6$jh 8yjh )

D:=d*Q (8_63-) ,

we have the following by Ibukiyama [12]:
Theorem 4. (i) Let F' be any C—valued C*°—function on $);, . If we put p = det® ®po

(n) (n)
and p' = det* ®p), , then for each (¢,¢') € ™ xT™ and 3 = (t?](n) V[{/'(")) € Hon , we

If we put

get the following commutation relation:

(DF)],(9)2], (6w )(3) = (D (Flu(,9))3) ,

where ( )z ( resp. ( )w ) denotes the action on Z ( resp. W ).
(ii) The operator D sends modular forms to modular forms:

D: MY — Mr(V)™ @ ME(V)™ .
Moreover, D is a holomorphic operator and it satisfies
D: M{" — M} (V)@ Mj(V') .
Now we apply it to det® ®alt™ ! cases.

Let pp = alt”™! (resp. ph = alt”™' ) be the representation of GL(n,C) with the
representation space alt"—l(Vl) (resp. altn—l(V2) ). For a variable 3 = (zj1) on $2q,
3] 0
we put ujp = 25 n 1<5,h<n), U™ = (u;z) and — := (—> . For
p ik i nth ( Jh < n) (ujn) U dujn L<ihgn

functions on $2,, we define the differential operator D by

N
D:=d (ylaU y2> .

Then we have:
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Proposition 1. Let k > n.
(i) Let F be any C—valued C*°—function on $)3, . Then for each (g,¢') € T™ x I'"

and 3 = ( t?] II/{/’) € 2, , we get the following commutation relation:

(@) (9)2],(6)w)3) = (P (Fl,(0:6) ) (3) -
(i1) The operator D sends modular forms to modular forms:
D: M — MPalt” (Vi)™ @ MP(alt™ (V2))™ .
Moreover, D is a holomorphic operator and it satisfies
D MP — MP(alt™™ (Vi) © MP(alt™(V3)) .

Proof. Let X; (j = 1,2) be a variable on C(™2¥), If we put
7]

au = X'

the polynomial y, mztyz satisfies the three conditions (2.1), (2.2), (2.3). Therefore we
get Proposition 1 by Theorem 4. []

83 Proof of Theorem 1

We prove Theorem 1 according to Béherer’s method in [5].
We first apply the differential operator D to the Eisenstein series EZ™(3,s) . For this,
we use the coset decomposition by Garrett [9] (cf. Mizumoto [19]):

Lemma 1. (i) The double coset Pa, o\I'*"/T™ x I'" has an irredundant set of coset

representatives
1, 0 0 0
[ o 1, o o
Tl 0 T™ 1, o]
T™ o 0 1,
hereT= (2 0 ), TeT (0<r<
where T={ o o |, T € (0<r<n).

it) The left coset Ppp o\ Pano 9+(I'™ x ') has an irredundant set of coset representa-
) nelet e ) 097
tives 97919291925
§1 € Gn,r y 92 € Pn,r\rn ] ’g\; € PT(T)\G,,,,- ’ g; € Pn,r\rn ’

where
Inor O 0 0
_JAam» BN [ o A® o  B® .l (A B .,
Gyr 1= (a(n) p®)={ o o 1... o || c p)€T
o ¢ o D0

and for T € T("),
r(T):= {g er”

(2 % )o(z ) er )

Now we prove the following (cf. Bocherer [4, Satz 9], [5, Satz 3]):
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Proposition 2. Let k be an even integer, n an odd integer and s a complex number

(n) (n)
such that k + 2Re(s) > 2n + 1. Suppose k > n > 2. For 3 = (,ZU(n) g/(n)> € Han,
z™ 0
30 = ( 0 W(")) € Han, we get

(DEF™)(3, )
_ T(2k+2s+1)
TT(2k+2s—n+2) 2

T(2k +2s + 1)
T(2k + 25 —n + 2)

(P(Z, W, s)

(r" (€ T(ll) r“) W) det(T)™*~2°

TET(?)

R(Z,W,s) ,

where
P(2,W,s)
=y {det(Im(Z))’ det(Im(W))* |det(W + Z)| 7> p (W + 2)™") (1 ’yz)}}(g)z ;
gern
and

REZW)i= 3 ) > X 2

TET("~1) g2€Pn,n-1\I'” §5€Pn,n-1\['" §1€Gpn,n-1 G €T 1(T)\Gn,n-1

—2s

det(1, — TWTZ)I

. {det(lm(Z))’ det(Im(W))*
o (- TwT2)™) (y% tyz) }l(aﬁ)w}(al)zt(gml(gz)z .

Proof. Tt follows from Proposition 1 and Lemma 1 that

CEMGO-Y Y Y Y Y X%

r=0 TET(r) g2€Pn,\I'" gLEP, +\I'"* §1EGn,» §; ELT(T)\Gn,»

{D(det(lm?))s kgf) }‘(?ﬂ)w

If for each T we put g5 = (@én) @(*;n)> , we get

(92)z -

(./q\l)Zl(g;)W

D(det(lmw kgT) = det (€30 + D) °D (det (€3 + D)5 det (Im(s))’) :

by the form of D and that of det(Im(3)) ,

= det (€3 + D)_a det (Im(30))°D (det (€3 + D)—k—s) .
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As an example, we compute
d* 9
0

unn

(det (€3 + 2))"‘") :

Let &,, be the symmetric group of degree m. We put

6 :=det(€3 + D), 8 :=det(€30 + D), Ojn := Bf (1<j,h<n)

and ,form, €2 ,0<mand0<g<m,

,L>20(1<v<m), zm:l,,=m—q, ivl,,:m} .

v=1 v=1

Li = {(11,-~- JAm) € Z™

For (I, ylm) € LY, , let A(ly,---,ln) be the set consisting of J € &,, such that , if
LA0(1<y<m),

~—1 71
1SJ(ZVZ,,+’)’/\+1> <---<J<Zul,,+'y/\+'y> <m (0<A<ly)

v=0 v=0
and
y—1 y—1 ¥—1
15J(Zu1,+1) <J<Zul,,+'y+1> <---<J(Zul,,+7(l7—1)+1> <m.
v=0 v=0 v=0
Then we get

d*é;; (5_k—s) =d* ( Z sgn(f)al,.(l) .. 'an—-lr(n—l)) (6—k—s)

T€G,_1

n—2 n—2—
_ Z{ ( I q(_k L #)) fokmr=(n1-0
n=0

q=0

x d* Z Z ngn(r) 0 (q;(ly,- - aln—l))(5)} ,

T€Gn-1 (11, ,ln—1)ELL_, JEA

where A = A(ly,--- ,lp—1) and

n—1

A (g; (1, ,In1))(8) = H{(aru(m+1)) ~ - Br(sar+)) (6)

y=1
X oeen

X (Or(sar41(ly=1)41) ** - Or(J(ar+1))) (5)}
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with a7 := Z__—_(l) vi, , a,.(J(.)) = BJ(.) r(J()) *
Foreachq (0<¢<n—2), (L, - ,lnc1)€L!_; ,7€ 6,1 and J € A, we define

(n—1—q)
J
(B5G) ~(ahy)) = (((Af)fn) * ) :

* ann

where , for SI21, +1< €< Y0 boand U5 L +1<n < X1l b, (47),, isa
~v X 4' matrix.
In the same way, we define

(n—1—g)
J
(ba) ray) = <((Bf)en) * ) ,

* brn

x B
where (€39 +D)71€ = <* . ) and B = (bjn).

Then we have

d Y sen(r) 8](g;(ly- -+ 5 1a-1))(6)

T€G-1

= Z {sgn(a) i—[ d* det ((Aj)“) (5)} )
&y

0€6n1/TI22} =1

by d*det ((47),) () = (y+1)! & det ((B)) (Db +1<e<yl, L),

n—1 n e
=877 [[{(r+ 11"~ > {Sgn(") IT et ((B)) }
r=1 0€6n_1/TI721 6;7 =1
n—1

=87 " b [[ A+ D™

=1

— 1)
Since the number of elements of A is (H"_l ! ) iy (Tz( 1)'1)')1 , we obtain
Tyr... n — Nen-1

=

(3.1) A B (6757%) = (=1)" 1 nz—: {an_l(q) ni’f (25 + 2k + Qu)} 675 b

q=0 p=0

where

m I‘Y
am(q) = (—1)q2_("‘_q)m! Z (H _(]_‘{%) (0<m, 0<g<m).

(I lm)€LE \7=1
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In the same way, we have

D (det (€3 + @)"‘")

= (=1)*? i {an_l(q) h_ (25 + 2k + zu)} det (€30 + D) ** (yIE yr)

q=0 pn=0

and

D((det(Im3)”

kgT) =(-1)""* Z_: {an—l(Q) i_[ (25 + 2k + 2;1)}

u=0

x det (€30 + D) " det (m(g7(30)))° (v18 'v:) -
On the other hand, we obtain

det (€30 + D)~ det (Im(g2(30)))" (ylﬁ tw)

— det(Im(2))* det(Im(W))* |det(1, — TWTZ)[_Z’ p((1n - Twiz)™) (yl% tyz) .

Therefore we have only to prove

i {an-l(Q) i—I_ (2s +2k+2/1)} = 1:[(25 + 2k —p)

g=0 p=0

To prove the formula above, we put z = 2s + 2k and m = n — 1 , that is, we have to

prove
(52) > {am(«n I @ +2u)} -Tle-w

We put a,,(¢)=0ifg>m ,0>qgor0>m.
We use induction on m.
If m = 1, the assertion is trivial.

We suppose
m'—1 m'—1—¢g m'—1
> {am'(q) II (Z+2u)} =[[@-w

q=0 p=0

for any m' < m. Then we have

l:[(w—ﬂ)={l:[(w—#)}(w—m+1)
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:{ : {am_l(q) i_[_ (m+2p)}}(:c+(2m—2—2q)—(3m—3—2q))

- Z{am_l(@ II (w+2u)}

-y {(3m—2q—1)am_1(q—1) it (w+2u)}
-y {(am_l(@—(3m—2q—1)am_1(q—1)) il (w+2u)}

If we note 3l; + -+ + (m + 1)lp—1 = 3m — 2¢ — 1in LI}, | we have
am-1(g) — (3m — 2¢ — Dam-1(g — 1)

__( 1)72- (M=) Z {(ll+1)(l e (H (7+1) )}

1
+ = (—1)i2-(m=0)py)
m

5 {(H CEE )(;(A,H)(,mnl;jfl ZT)}

L3
= corrrom S { ([ ) 2350
L, 7=1
= am(Q)
Thus we get (3.2). O

Remark. Under the notation above, we note that the formula
n—2
@0y (6747%) = (-1 T] (25 + 2k — 1)85 ¥~ *bji
p=0
which is obtained from (3.1) and (3.2), and the formula
9 —k—s n = —k—s-1 tal
dr (det (6U)) (67%) = (=1)" J] (2 + 2k — )5 det (T)

p=0

in [4, Satz 9] , [5, Satz 3] have the same meaning.
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For 377, ajtn+j, > j=1bitny; € alt"~*(V,), we define the inner product of them by

n n n
<Z ajtn_H- y ijtn+j> = Zajl;j .
Jj=1 Jj=1 J=1

Suppose f,g € M ,:‘(alt"_l(%))oo. The Petersson inner product of f and g is defined
by

(haye= [ (o (VEROI) %) , o' (VEm()) o) det(T(W)) ™~ ax d¥

if the right-hand side is convergent. Here W = X +4Y with real matrices X = (z;1) and
Y = (yjn);
dX = Hdl'jh , dY = dejh ;
Jj<h i<h

the integral is taken over a fundamental domain of I'"*\ §),,. We write dW = dXdY when
there is no fear of confusion.

Theorem 5. Let k be an even integer, n an odd integer and k > n > 2. If f €
Sp(alt® !(Vz)) is an eigenform,

(0o (7 9)5)

= gk (=D mkbn=1y (A (s, £,S6)( 7 (F))(Z) -

If Theorem 5 is proved, the functional equation of A(s, f,St) is obtained from that
of E3"*(3,s) . Since it follows from Theorem 3 that the location of poles of EZ"(3,s) is
invariant under the operation of D , its holomorphy is proved in the same way as that
by Mizumoto {19, Theorem 1] (cf. Weissauer [24]). Thus we get Theorem 1.

Proof of Theorem 5. .
It follows from Theorem 3 that ( f, (DE™) (( _OZ 2) ,5)) converges absolutely

and locally uniformly for k£ + 2Re(s) > 2n + 1 . We note that R(Z, W, s) is orthogonal
to SP(alt®'(V2)) in the variable W by the same reason as that in Klingen [15, Satz 2].
Since the Hecke operator is a Hermitian operator and f is an eigenform , we have

(a0 (F 2).)

_ T@@k+2s+1) _
—F(2k+25—n+2)D(k+2Saf)(fa P(—Z, ,s))
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by the definition (1.2) . If we compute the integral ( f, ’P(—i,*,.?)) according to
Klingen [14, § 1] (see also [5], [7], [23]) , we obtain

(f ’ 'P(—E,*,g)) — 2n(n—2s-—k)+2 ink+n—1 1/’ (L——l(f)) (Z)

)= det(1, — §S)kte-n-1 ((1n - SS) [tpn]) ds
Sn
where pszl’n) :=(0,---,0,1) and S™ := {S eC®|8=t5,1,-55>0 } . Moreover,
by Hua [10, § 2.3] (see also [5], [7], [14], [23]) , we get

b= 2 <2k+2s—n+1) r(k+s-n)"l:[‘r(zk+2s—2n+1+2j)

2 I'k+s+1) M2k +2s—n+1+3j)

=1

Thus, by (1.3) , we obtain

RGeS

n
= grmrzinken 1 S5 oo )7 T €25 + 20— 25)7

j=1
I(s+k) L T(s+k—n—2+2j) .
t
x D(s+k-n+1)41 T(s+k-1 7 L(s, f,8t)(« = (f))(2)
and Theorem 5 is proved. O
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