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Abstract

We discuss the formal analogue of the trace of the second fundamental form
for gauge orbits within the space of connections, endowed with its L? metric,
for a principal G-bundle over a compact Riemannian manifold M. We compute
the singularity of the formal analogue, and show that the formal analogue is
finite for gauge orbits of flat connections. There is an alternative zeta function
regularization for the trace, which is finite for Yang-Mills connections. This
leads to an infinite dimensional version of Hsiang’s theorem. For an SU(2)
bundle over a simply connected 4-manifold with positive definite intersection
form, the gauge orbits of reducible selfdual connections are minimal submani-
folds of the space of all selfdual connections in this regularized sense. Minimal

*Partially supported by the NSF and the JSPS.
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gauge orbits of flat SU(2) connections over certain Seifert fibered homology
spheres are also shown to exist by this version of Hsiang’s theorem.

1 Introduction

Let M be a Riemannian manifold with an isometric action of a compact Lie group
G. It is natural to suspect that minimal submanifolds of M occur among the orbits
of G. In fact, it is a theorem of W.-Y. Hsiang that if an orbit O is an extremal
for volume among all nearby diffeomorphic orbits, then O is a minimal submani-
fold. In particular, orbits of isolated diffeomorphism type are automatically minimal
submanifolds. '

Gauge theory provides an infinite dimensional analogue of this setup. The man-
ifold M is replaced by .A, the space of connections on a fixed principal G-bundle P
over a compact Riemannian manifold, with its L? metric, and G is replaced by G, the
gauge group of the bundle. However, the gauge orbits have both infinite dimension
and codimension, so it is problematic to define minimal submanifolds in this context.

In this paper, we attempt to rigorously define the formal analogue in gauge theory
of T'r 11, the trace of the second fundamental form, in order to define when a gauge
orbit is minimal. For gauge orbits, the component of T'r I in the direction of a vector
N normal to the orbit is formally the trace of a linear operator Hy on Q°(Ad P),
the space of zero-forms with values in the associated bundle Ad P. However, we
cannot expect Hy to be trace class in general, as its definition involves Green’s
operators which are well known not to be trace class. Indeed, our main technical
result (Theorem 3.7) is the calculation of the asymptotics of the kernel hy of Hy
near the diagonal. We show that the highest order pole of hy(z,z) has residue
tr(N(z) A #d’, Fa(z)). Here N € Q'(Ad P) is a normal vector at the connection A
to the orbit of A, Fj4 is the curvature of A, and d} is the adjoint of the exterior
derivative d4 associated to A. Since the variation of the Yang-Mills functional in the
direction of N satisfies SyY M(A) = [j, tr(N(z) Axdy F4(z)) dz, we certainly will not
be able to integrate the kernel over the diagonal if A is not Yang-Mills. However, we
are able to show that T'r I] exists for gauge orbits of flat connections, in the sense
that tr An(z,z) < oo (Theorem 3.19).

Since the direct approach to generalizing Tr 11 does not work very well except
at flat connections, we turn to a zeta function regularization of Tr I1. This has the
effect of replacing the many pointwise obstructions to the existence of hy(z,z) by
one global obstruction to defining T'r Hy, namely the nonvanishing of [y, W, where
W is a certain asymptotic coefficient for the kernel of a heat type operator associated
to Hy. It turns out that this regularization is finite if the dimension of the base
manifold is two or is odd, and in dimension four the regularization is finite iff the
connection is Yang-Mills (Theorem 5.10).
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Although the zeta function method does not always succeed, it seems to be the
correct approach in that it is compatible with the Faddeev-Popov ghost determinant.
More specifically, the Faddeev-Popov ghost determinant gives a regularization of the
volume element of a gauge orbit, so we can define what it means for a gauge orbit
to have extremal volume among nearby orbits in terms of the infinitesimal variation
of the ghost determinant. This allows us to prove an infinite dimensional analogue
of Hsiang’s theorem (Theorem 5.14), stating that an irreducible gauge orbit with ex-
tremal volume among nearby orbits has Tr Hy = 0 for all normal vectors N, and
hence is minimal in our regularized sense. Our proof involves neither the exponential
map, used in Hsiang’s finite dimensional proof, nor the first variation formula, which
in finite dimensions relates the variation of the volume element with T'r 11, as these
techniques are unavailable in our case. Without these basic techniques, it is not im-
mediate that Hsiang’s theorem carries over to gauge theory. Applying these methods
to the setup of Donaldson’s theorem, we show that the orbits of reducible selfdual
connections for an SU(2) bundle over a simply connected 4-manifold with positive
definite intersection form are minimal submanifolds within the space of all selfdual
connections (Theorem 5.24). This is again compatible with Hsiang’s theorem, as the
reducible orbits are of isolated type. Moreover, it is a trivial corollary of our ver-
sion of Hsiang’s theorem that at least two minimal gauge orbits exist over any closed
manifold component within a moduli space of irreducible connections. By work of
Fintushel and Stern, this produces examples in dimension 3 of minimal gauge orbits
of flat SU(2) connections over certain Seifert homology spheres (Corollary 5.15).

The paper is organized as follows. In §2, the geometry of the space of connections
is reviewed, and the second fundamental form operator Hy is defined. §3 states the
main local theorem on the asymptotics of Ay, the kernel of Hy. The proof of this
theorem is given in §4. The proof, which follows standard techniques, is unavoidably
long; while it is easy to write down which curvature terms from the base manifold
and the bundle connection may appear in the highest order pole of the pointwise
obstruction, we must explicitly show that the terms from the base manifold vanish
in the adjoint representation. In contrast, it is much simpler to check that no base
curvature terms appear in the global obstruction. In any case, many of the details
of the proof of Theorem 3.7 are collected in two appendices. The zeta function
regularization of T'r Hy is given in §5.

We would like to thank Tom Parker very much for pointing out an error in an
earlier version of this paper and for providing us with a simpler proof of Proposition
A.36.

It was a very pleasant surprise to learn from Dick Palais that Hsiang’s theorem
can be derived from the symmetric criticality principle. As such, we hope that this
paper will be viewed as an outgrowth of Palais’ important work on transformation
groups.
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2 Geometric Preliminaries

2.1 The Riemannian structure on M

Let (M, g) be a closed Riemannian n-manifold and let P be a principal G-bundle over
M, where G is a compact Lie group. Let A be the affine space of smooth connections
on P, G the gauge group of automorphisms of P covering the identity, and Q*(Ad P)
the space of k-forms with values in the vector bundle Ad P = P X 44 g, where g is
the Lie algebra of G. Fix a bi-invariant metric on G; this metric together with g
determines an inner product on 2%(Ad P). This inner product in turn induces the
L? Riemannian metric on A from the canonical identification of Q!(Ad P) with T4 A
for each A € A: given 7,1 € T4 A, we set

(rn) = [ (1(2),1(@) dy (2.1)

where (,), is the pointwise inner product on Q!'(Ad P). The L? inner product is
invariant under the action of G on A, so the L? Riemannian metric descends to a
metric on the moduli space A/G, which has been studied in several papers [1], [2]; in
particular, [2] is a good reference for §2.1, §2.2. In this paper, we are more interested
in the geometry of A, considered as a Riemannian manifold with an isometric action
of the Lie group G.

Let d4 : N°(Ad P) — Q'(Ad P) be the covariant derivative associated to the
connection A. Up to a Z, factor, the action of G is free on the open subset of
irreducible non-flat connections, i.e. connections with Ker d4 = 0. Let Q4 be the
G-orbit of A. A standard argument in elliptic theory gives:

Proposition 2.2 (i) For A € A, we have the splitting
TaA~Ker &, ®Im da (2.3)

where d% is the adjoint of dq with respect to the inner product (2.1).
(i) Let Of be the normal space to O4 in Ty A. Then TyOys ~ Im dy and Of ~
Ker d3.

2.2 The Riemannian connection on A

Let X(.A) be the set of smooth vector fields on 4. By Proposition 2.2, X € X(A)
has a decomposition

, X(A) = XT(A) + X1(4) (2.4)
with XT(A) € T4O4 and X*(A) € OF.
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Lemma 2.5 For X € X(A) and A € A, we have
XT(A) daGady X(A) (2.6)
XH(A) = X(A)—daGadyX(A) (2.7)
where G is the Green’s operator for dyd : Q°(ad P) — Q°(Ad P).

PROOF. Note that G4 is well defined on Im d}. It is immediate that. X(A) —
dsGady X(A) € Ker d. The Lemma then follows from the uniqueness of the decom-
position (2.4).

We now define a connection D on A by
d
DxY(4) = =Y(A+tX(A))_, (2.8)
for X,Y € X(A), A € A. It is elementary to verify that D is the Levi-Civita connec-
tion for the L? metric-i.e. we have

X(Y,Z) +Y(X,Z) - Z(X,Y)
+H(X,Y],2) + (2, X],Y) - ([, 2}, X)
DxY —DyX = [X,Y]

2DxY, Z)

2.3 The second fundamental form on Q4

Let M be a submanifold of a finite dimensional Riemannian manifold M with Levi-
Civita connection V. The second fundamental form on M is II : TM @ TM — v (v
is the normal bundle of M in M) given by II1(X,Y) = (VxY)*, where L denotes
projection into the normal bundle [3, Ch. I]. M is a minimal submanifold in M if

. Tr II =0. Let {e;} be an orthonormal frame of TM near a point p. Pick a normal
vector N, at p and extend it to a normal vector field, also denoted N, near p. Then
Tr II, = 0 iff for all choices of N,

0= (3 (Vee) ", N)p = (3 Veiei, N)p = 3 (i, Ve, N) (2.9)

t

1

since d{e;, N) = 0. If YT denotes the M-tangential component of ¥ € T, M, the last
term in (2.9) equals Y(e;, (V,N)T) = Tr(X — (VxN)T). This shows that the last

expression is independent of the extension N. In particular:

Lemma 2.10 Let M be a submanifold of the finite dimensional Riemannian man-
ifold M. M is a minimal submanifold iff for every p € M and N € v,, Tr(X —
(VxN)T) =0 for X € T,M.
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We now carry this computation formally over to O4 C A. Take a normal vector
field N(A) to O4 with N( ) = N € v404. As in (2. 9), the trace of the second
fundamental form will be independent of the extension N of N, so we may put
N(A)= N - d; 4G 4 N, The tangential part of DxN at A, for X € TyO,, is given
by

- d
(DxN)T(A) = [2(N = dayGada N, )" (2.11)
where A(t) = A + tX. Putting (Dx N)T(A) = Hy, we have
Hyn(X) = —daGaPxN (2.12)

where Px N = %dj“,)NIt:o and we have used d4N = 0.

Lemma 2.13 P3N = — % [X,*N] = - P} X.

PROOF. Let éx indicate a variation in the direction X. Then Py N =éxdyN =
6x(—*dax)N, where * is the Hodge star operator on M extended to Q°(Ad P). This
last expression locally equals

6)((—*(d+[A,'])*)NI‘—*éx{A,*N]= ‘;lt',o[A'i'tX *N] _*[X’*N]'

Moreover,

[X,#N] = X AN —xNAX = (1) (+* X A+N — +N A % + X)
= (=" '+ X AN = N A*X) = (=1)*'[+X, N] = —[N, +X]

which shows that Py N = — P} X.
Since TyOy ~ Im dg,
Hy:Imdy C Q(Ad P) — Im ds C Q'(Ad P) (2.14)

is a linear operator which we call the second fundamental form in the direction N for
O4 at A. When N is understood, we just call Hy the second fundamental form. If
A is irreducible, Im d4 ~ Q°(Ad P), so (2.14) is conjugate to the linear operator

Hy = G4Pydy: Q°(Ad P) - Q°(Ad P). (2.15)

where we have used Lemma 2.13.
We now check that formally the trace of the second fundamental form Hy equals
the trace of Hy, even if A is reducible. Let {ei} be an orthonormal basis of Q°(Ad P)
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consisting of eigensections of djd, with eigenvalues {};}. For X; # 0, {dae:/V X}
forms an orthonormal basis of Im d4 C Q'(Ad P), and

1 1
TrHy = 3 (Hw(dse),daei) - 5= = =3 (GaPj, N, dydyes) - =
= - E(GAP;Ae;Nv e;) = Z(GA P;,d,gve.-, e;)
= Tr fIN

From now on, we will always work with the operator Hy on Q°(Ad P), and denote
it just by Hy. We will call a gauge orbit a minimal submanifold of A if Tr Hy = 0
for all N € Ker d.

For future reference, we rewrite Lemma 2.13 in local coordinates. We may assume
that the group G is contained in U(N). Choose local coordinates (z1,...,25) on a
neighborhood U such that Ad Ply =~ U x u(N), where u(N) is the Lie algebra of
U(N). For a fixed basis of u(N), an element Y € u(N) may be written as ¥ =
(Y{), ¢;d=1,...,N. Thus X € Q'(Ad P) has the local expression X = X;$dz', with
summation convention, and there are similar expressions for elements of 2*(Ad P).
We leave the following corollary to the reader.

Corollary 2.16 In local coordinates,

(P)‘(N)fi = _gij(Xirc j:; - erc i )-

3 Asymptotics of the trace of the second funda-
mental form and flat connections

Although we want to take the trace of the operator Hy: 2°(Ad P) — N°(Ad P) to
obtain the mean curvature, it is not clear that the trace converges. To determine if
the trace exists, we must study the asymptotic behavior of the kernel function of Hy
near the diagonal. We first show:

Proposition 3.1 Hy:Q%Ad P) — Q°Ad P) in (2.12) has a distribution kernel
hn(z,y) € Q°(Ad P ® (Ad P)*); i.e. for any ¢ € Q°(Ad P), we have

Hy(8)(@) = [ h(z,9)9(4)dey (5.2)

PROOF: Denote by G2 (z,y) = G(z,y) = G4(z,y) the kernel function of the Green’s
operator G4 of d3ds: Q°(Ad P) — Q°(Ad P); i.e. G4 satisfies dydsGa = Id — Py,

7
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where Py is the projection onto Ker dg, and the differentiation is in the z variable.
Here the indices c,d (resp. b,a) give the coordinates of the fiber at x (resp. of y),
thought of as a subspace of the matrix group u(N), with respect to a fixed basis.
Assuming without loss of generality that ¢ has support in a coordinate chart over
which P is trivial, we have

[Hn(¢)]i(z) = /M Ga (2, 9P ViBe(W)N;5 () —*Vii N2 (g (v) doy  (3.3)

where V = V4 = d4 and ¥V denotes the covariant derivative in y induced by A.
Using integration by parts and d, N = 0, we have

(Hy(@)l5(2) = [ =g"@)PViGs (@, p)N;¢ = *ViGh(a, v)NS()leh dyy  (34)
So, putting
(hw)h(2,9) = ~g" WP V:Ga (2, 0)N2 (W) - ViGN (35)
we have (3.2).

Of course, there is a coordinate free proof of the Proposition, which yields
hn(z,y) = *4[*,daG(z,y), N(y)], where d4 acts in the y variable. We leave the
details to the reader.

By standard properties of G(z,y), hAn(z,y) is smooth outside the diagonal of
M x M. The following result gives the asymptotic properties for An(z,y) near the
diagonal. To be precise, the expansion (3.8) below is obtained by substituting a
formal solution for the Green’s operator into (3.5); as recalled in Appendix B, it is
an asymptotic solution in the usual sense only for the singular terms.

To set the notation, let r = r(z,y) = dist(z,y), ' = r?> and 7 = (n — 2)/2. We
denote the pointwise Yang-Mills Lagrangian by ym(z) = tr(Fa(z) A *Fa(z)), where
F4 is the curvature of the connection A and * is the Hodge star. The Yang-Mills
action is of course Y M(A) = [, ym(z) dyz, and the formula F4 = dA + [A, A] and
integration by parts easily leads to the formula

v YM(A) = /M tr(N A *d Fy) dyz (3.6)
We set §(N,ym)(z) = tr(N(z) A *d; Fa(z)). Note that §(N,ym)(x) does not equal

the variation 6y ym(z), but we do have that A is a Yang-Mills connection iff
§(N,ym)(z) =0 for all z and N.

Theorem 3.7 hy(z,y) in (3.2) has the following asymptotic ezpansion near the di-
agonal in M x M:
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(i) dim M odd:

hw(z,9) ~ T sz, y) + T Vj(,) (3.8)
j=0 i=1
and _ 3 5
tr Up(z,2) =0, tr Ui(z,2)=0, tr Vi(z,2)=0 (3.9)
~ n
tr Ug(:l),.’l,‘) = —m&(]v, ym)(:c) (310)
(i) dim M =2;
hn(z,y) ~ Y T Uj(z,y) + Y T logT - Vi(z,y) (8.11)
=0 3=0
with
tr Us(z,z) =0, tr Uy(z,z)=0 (8.12)
tr Vo(z, ) = -%5(1\/, ym)(z) (3.13)
(iii) dim M even, dim M > 4:
hw(z,y) ~ 3T 05(z,y) + T log T - Vi(z,y) (3.14)
3=0 3=0
If n=4
tr 00(:5,2:) =0, tr 01(:3,:1:) =0 (8.15)
tr Vo(z,z) = —gs(zv, ym)(z) (3.16)
and ifn > 6, 5 3
tr Up(z,z) =0, tr Uy(z,2)=0 (8.17)
~ n
tr UQ(I,.’L‘) = —mﬁ(N,ym)(z) (318)

The proof will be given in §4.
We now consider the space F of flat connections on P. If nonempty, the corre-
sponding moduli space satisfies

F|G ~ Hom(m(M),G)/G

where G acts by conjugation on the right hand side. The correspondence is given by
sending a flat connection to its holonomy around loops in M; the inverse map sends
a representation to the associated flat bundle P.
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Theorem 3.19 For any flat connection and any normal direction N, tr hy(z,z) is
finite for allz € M. Thus Tr Hy ezists for all flat connections.

The proof of Theorem 3.19 will be given in §4.4.

4 The Green’s operator for dd,

4.1 Asymptotics of the Green’s operator

Let G(z,y) = Ga(z,y) be the Green’s operator for A = Ay = dyd4. Set w(z,y) =
Yx 62(2) @ #a(y), where {#,} is a finite orthonormal basis of Ker A. For z close to y,
set 0(z,y) = det(dexp,(exp;’ z)), where exp, : TyM — M is the exponential map.
The following asymptotic expansion for G(z,y) near the diagonal is more or less
standard (cf. [4]). For the sake of completeness, we give a proof in Appendix B.

Proposition 4.1 For (z,y) near the diagonal in M x M, G(z,y) has the following
asymptotics:
(i) dim M odd:

Glay) ~ ST " us(a9) + 3o Pos(a0) 4.2
where
uo(2,4) = 05 (2, ) P(z,y)
uj(z,y) = <—‘—%f w5 (2(s), p)Auja(z(s),y) ds 521
) vo(z,y) = (4.3)
vi(e,y) = —“t::f *uo’u),y) (2(s), ) ds
vi(z,y) = —%’—Jlf’ iS5 (2(s), y)Avja(2(5),9) ds G 2 2
(ii) dim M = 2:
(z,y) ~ ngwy+gwmrwmm (44)
where

'&O(zvy) =0- %( ,y)P(x,y)
{ax £y) = E 7 5155 (o), y) Adya (2(s), y) ds (4-3)

4577

10
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and

uo(z,y) =0 .
ui(z,y) = 28 7571457 (2(s), y)[—w(z(s),y) — 4iu(z(s), )
) ‘—A&o(z(s),y)] ds
u(z,y) = _M.;%gl o sJ—lﬁal(x(s)a y)-47t;(z(s),y) - %Aﬁj-l(z(s)’ y)] ds

(4.6)
(iii) dim M even, dim M > 4:
Glz,9) ~ Yo T "u(z,5) + 3 logT - (. 1) (4.7
J=0 =0
where
( uo(z,y) = 07%(z,y) P(z,y)
wi(z,y) = —ri—)Lf #7105 (2(5),9) By 2 (2(s),v) ds, 1S5S 1
u (z,y) =
\ uri(z ,y) —2l) 7 s lug (2(s), y)[—rin(z(s), y) + Ado(a(s), y)

—w(z(s),y)] ds
uj(z,y) = 2ED [ 05! (2(s), y) [ Ao (2(5), y) — 40 — 7)ii-r(2(5),y)
~ + AL (a(s)y)] ds, G2

I~

) (4.8)
{Uo z,y) = =250 7 5" lug (2(s), y) Aur-a(2(s), ) ds (4.9)
dj(z,y) = PEH 7 77" a‘( (s),9)A8;_1(z(s), y) ds :

4.2 The covariant derivative of G(z,y)

We now directly compute the covariant derivative of G(z,y) near the diagonal of
M x M. We first note that

YWViGa(z,y) = .G (z,y) + AL(y)G5(z,y) . (4.10)

— A (y)Gac(z,y)
where we consider (4.10) at z # y. With the same notation as in §4.1, we have

Proposition 4.11 Nearz = y,YVG(z,y) = YdaG(z,y) has the following asymptotic

erpansion:
(i) dim M odd:

YWG(z,y) ~ ZF"T—IU (z,y +ZF’ -t (4-12)

Jj=0 j=1

11
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with
Us(z,2) =0, Uj(z,z)="Vu,_ 1(1' z) 721 (4.13)
Vi(z,z) =¥V (z,z), Vj(z,2)=(G -1Vl .v; +¥VV,, 722 (4.14)
(it) dim M = 2:
YVG(z,y) ~ Y TV logT - Vj(z,y) + 3_TV"'Uj(z,y) (4.15)
=0 1=0
with
Uj(z,2) = 0 i20
Vi(z,7) = "Vi(z,2) 720 (4.16)

(iii) dim M even, dim M > 4:

YWG(z,y) ZF’_T‘IU z,y) +21"J logT - V(z,y) (4-17)
3=0 3=0
with
forn=4: Uj(z,z)=0 j >0, Vo(z,z)="Vi (4.18)
and
forn>6: Uyz,z)=0, Uj(z,z) =YVij_1(z,z) j =1 (4.19)
Vi(z,z) = ¥Vij(z,z) 720 (4.20)

Here U;,V; are in T(T*M,Ad P ® (Ad P)*).
PROOF. Taking the covariant derivative in y, we have the following:

(i) dim M odd:

B YWG(z,y) E;oooyv(FJ—TuJ) Z;‘?_lyv(r‘jl ~v;)
=32 (( =7+ 1)V - u; + ¥Vu;T9T) (4.21)
+E °,((j = DIV=29VT - v; + [V71¥Vy;)

Thus we set

Uo(z,y) = —7'VT - uo(2,y)

Us(e,y) = (G~ 7+ 1PV w5 + 9V, § 21 (422)
Vi(z,y) = *Vu(z,y) '
Vi(z,9) = (3 = 1)*VT - v5(2,9) +*Vvja(z,y), j 22

since ¥VT = 0 at z = y. Note that using YVI' = 2dr - I''/? gives another asymptotic
expansion of G involving fractional powers of I', but with coefficients that are not
smooth on the diagonal.

(ii) dim M = 2:

12
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VWG(z,y) ~ 2o VWil logT - 4;(z,y)] '
= Zf__o[”Vﬂj + (7 + 1)d;41¥VIT log I (4.23)
+X720 [9=1(vWT - ;)
Thus we set

Ui(z,y) =¥VI -4;, Vi(z,y)="Vi;+(j+1)*Vl (4.24)
(iii) dim M even, dim M > 4:

YG(a,y) ~ TV ) + T2 V(I log T - i)
= T — VD Ty ST DT Y,
+ T26[i¥VT - T og T - 44 + T771¥VT - it 4 7' log T’ - ¥V ]
(4.25)

-~ Then we have
YWG(z,y) ~ Y T Wj(z,y) + Y T’ 1ogT - Vj(z,y)
=0 j=0
where for dim M = 4

Uo __!IVF * Ug, U] = yV‘U,o + ”VF . ’&0, Uz = ”VF . ﬁ]
Ui =%l j>3 (4.26)
V;

and for dim M > 6

Wi+ (G + 1)Vl djp, 720
U =—-71%VT -y, Uj=(j -7Vl u; +¥Vuy;y, j=1,...,7-1
= "Vu,_l +VVI’110
=Vl -d,, j27+1
=G+ 1PVl 4,4, +¥Va;, 720

&S

4.3 Proof of Theorem 3.7
PROOF. We first show that

tr Up(z,z) = tr Uy(z,z) =0 for dim M =2
tr Up(z,z) = tr Uy(z,2) = tr Vi(z,2) =0  for dim M odd
tr (70(1,3:) =tr Ul(x,m) =0 for dim M even, dim M > 4
(4.28)
The vanishing of the left hand column and of tr U, (z, z) for dim M = 2 in (4.28) follows
from Proposition 4.11 and (3.5). For the vanishing of the remaining coefficients, for
z close to y put

u(z,y) = 07"/*(z,y)P(z,y) (4.29)
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where P(z,y) is parallel translation from y to z along the unique minimal geodesic

and @ is defined in §4.1. Then
Vi =Vi07V2 . Pz,y) + 0712 . VY, P(z, y) (4.30)

By [5, C.II1.2], 6(z,y) can be expressed in normal coordinates (z1,...,2,) around z
as 0(z,y) = vdet gri(y). Using YV;gx = 0, we have

YWi07 2 (z,z) = 0 (4.31)

and so by (4.30) and (A.14) we obtain ¥V,u = 0. This together with Propositions 4.1
and 4.11 proves the vanishing of the remaining tr U, terms. The vanishing of tr ¥
is similar, since V¢, = 0.

Thus it suffices to show (3.10), (3.13), (3.16), (3.18). Set

wiz,s) = 120 10010, ) “Au(a(e), ) ds (4.32)

with *A denoting differentiation with respect to z. According to Proposition 4.11,
we must compute ¥V;w(z, z). Note that

w(z,y) = 0"1/2(:1:, y)P(z,y) fol u_l(expy(T expy‘l(z), v))
x*Aug(exp, (T exp;(z)),y) dr (4.33)

Using (4.31), (A.14) and 8(z,z) = 1, we have

Viw(z,z) = [FrViluT (exp, (7 exp;(),))] - “Au(exp, (r exp, (7)), y)

+¥VifAu(exp, (7 exp,(z)),y) dr (4.34)

=y

Lemma 4.35 yV,—G‘”(expy(T exp;(z)),y)| = YV P(exp, (7 exp;!(z)),y)|,_,= 0.

=y~
r=y

PROOF. Putting y(r,z,y) = exp,(7 exp;'(z)), we have

Wi 2 (y(r,2,y),y)

= 0,:0"*(y(r,2,y),y)
e=y (4.36)

+ Ej 81'101/2(:”(7—) Zz, y)v y) . g_;::

T=y

r=y

Note that y(r,z,y)| =y. Using (4.31) gives the first half of Lemma 4.35. With
z=y
the aid of (A.14), the vanishing of YV P(exp, (7 exp;l(a:)),y)]r:y is similar.

14



KSTS/RR-92/007
November 12, 1992

Thus
1
[) YVi[u™(exp,( exp; (), ¥)))*Auo(exp, (7 exp;'(z),y)) dr| =0 (4.37)
z=y
so to compute (4.34), we must study YV; *Au(exp,(r exp;'(z)),y)| . Using the
r=y

notation y(r,z,y) as above, we have

Vi *Aug(y(r,2,¥), )], =
[0y " Augi(y (T, 2,9), )] + A5 (y)* Auis (y(7, 2, ), y) (4.38)
—A )y A (y(r,2,9),9),o,

where A} are the components of the connection A. Since u(z,y) = 6'/%(z,y) P (z,y),
we have

Af(y) *A[6'*(y(r,2,y), ) P (y(7,2,9),¥)]
r=y
= Aj@)FA0 - Pl (z,y) +2(°V0 X (2,y),"V P (y,7, 2,u),)
+ AP (y(1,2,9),9)]
T=y

A0 A () P (z,2) + A ()" AP (z,2)

(4.39)

Similarly, we have

Ad TAuG(y(r,2,y),y)

=*A0"2 - Al (z) Pt (2, 2) + A (z)° AP (z,z) (4.40)

=y

On the other hand, we have

Oy ["Aug(y(r,2,9),v)] -

8, 780" (y(r, 2,y),y) Pis (u(7, ,v), y)
+2(°V6"*(y(r,z,y),v),"V P (y(7, 2,y),v))
+0'%(y(7, 2,9), y)" AP (y(7,2,9), )] -

047 A6 (y(7, 2, y), y) Pl (2, 2) + A0 (y(7, 2,), y) By Ps (y(7, 7, 9), ¥)
+0,: " AP (y(7,z,9),y)] (4.41)

z=y
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where we have used Lemma 4.35. Combining (4.38), (4.39), (4.40) and (4.41) gives

FVEAuG(y(T, 7, y),y)] = A0V P + 8, AP (y(r,z,y),y)

=y

z=y
+A;§(2)" AP (z,2) — A (z)* AP (=, 2)
+ay.~=A0‘/2(y(T,z,y),y)l Pg(z,z)
r=y
= ay'.zAP;g‘(y(T, z, y), y)
r=y

+6,,;’A0‘/’(y(7,x,y),y)' Py (z,z)

rT=y

(4.42)
where we have used (A.14) and (A.20). We also have
Oy *AFPE (y(1,2,9),y)
z=y .
r ca az] z ca
= 81" Ade (y(Tazvy)a y) : a_y, + 61/‘ Ade (y(‘r,z,y), y) o=y (443)

0" AP (z,2)(1 = 7) + 8," AP (z, x)

So applying Corollary A.44 to (4.43) and plugging the result into (4.42), we finally
get

Yoz, z) = B, A62(z, 2)8567 + %a AP (2,2) (4.44)

since Py (z,z) = 6367 Thus by (3.5), tr Uy(z,z) is given by

da’Vje

Tr [—g*'i FViwgENE - vviw;’;Nj;]]
(4.45)
1 ..
- 5:rr[_gv[ay, *APg(2,2)N,2(z,7) — 8, xAij(z,z)Nj:(m,z)]]

Notice that the terms involving ZA8'/2 in (4.44), which contain curvature information
of the Riemannian metric, do not appear in (4.45), because Pi(z,z) is a diagonal
matrix. By Proposition A.30, the right hand side of (4.45) is the local expression for
8(N,ym)(z), so Theorem 3.7 is proved.

4.4 Proof of Theorem 3.19

Denote the right hand side of (4.2), with the infinite sum replaced by a sum to
N >> 0, by G5. 1t is well known that VdaGa(z,y) and Yd,G5¥(z,y) differ by
a term which is bounded as y — z; cf. the remark after Theorem 5.10. There-
fore, by (3.5) and the following invariant reformulation, tr hn(z,z) will be finite if
[*y YdaGy* (2,y), N(y)]|z=y is finite. :
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We show the stronger result that the terms IV-""10;(z,y), I¥='V(z,y) in (3.8),
and the similar terms in (3.11), (3.14), all vanish as y — z; note that it does not suffice
to just prove the vanishing of U;(z,z), V;(z, ). The expressions for the asymptotic
coefficients u;, #;, v; for G4 in Appendix B involve 8-1/2(z,y), P(z,y), w(z,y)
and their derivatives in , and the asymptotic coeficients for d4G4 involve further
derivatives in y by Proposition 4.11. By a straightforward induction argument similar
to the computations in §A.3, there exist smooth functions ki(z,y),li(z,y), mj(z,y)
defined near the diagonal in M x M such that

"Vuii(z,y) = ki(z,y)6:8;+O(T")

Vikz(z,y) = Ii(z,y)8585 + O(TV)

"Vojslz,y) = my(z,y)858;+ O(TY)

for any N. In this expression, we have calculated the coefficients in a synchronous
frame as in Appendix A, so that all derivatives of the components of the flat connec-
tion vanish at y, by virtue of [6, Prop. 3.7]. Thus, d4G%" is a diagonal matrix to
arbitrary order, as is *d4G%", and so [*d4G4Y, N =0 at z = y.

5 Regularization of the second fundamental form

In this section we propose a zeta function regularization for the trace of the operator
Hp of Section 2 and discuss cases in which this regularization is finite. We show that
the regularization scheme is consistent with the Faddeev-Popov formulation of the
volume element for a gauge orbit in the sense that an infinite dimensional version
of Hsiang’s theorem holds. Combining Hsiang’s theorem with Theorem 3.19, we
show that there exist minimal gauge orbits of flat connections on certain 3-manifolds.
Finally, we prove that the gauge orbits of reducible connections are minimal in the
regularized sense for the class of 4-manifolds covered by Donaldson’s theorem,

Before defining the regularization, we make a few remarks about the case when
the structure group G is abelian. This gives a trivial gauge theory in the sense that
all relevant equations reduce to linear Hodge theory. In fact, the operator dj is
independent of A. For if V is a base point connection on P then dy = V + [A,-]=V,
where A in the bracket denotes the connection form for A. Thus ond} = 0, and
Hn(X) vanishes for all N € Ker d%. Thus no matter how we regularize the trace of
Hpy, in the abelian case all gauge orbits are totally geodesic.

Lemma 5.1 Let P be a principal bundle with abelian structure group. Then every
gauge orbit is a totally geodesic submanifold of A.
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This observation holds in particular for G = U(1), the gauge theory of electromag-
netism. A more interesting case from our point of view occurs in quantum mechanics,
for which G = GL*(1, R) ~ R, where the plus sign indicates positively oriented ma-
trices, and P is the frame bundle of the trivial line bundle R over M. (The reader
can check that the following discussion does not require G to be compact.) Here
G ~ {ef: f € C=(M)} is the space of positive functions on M and A is the space
of derivations on M. Note that the infinitesimal gauge action of T14G is the linear
action f +— e/ - A = A+ df, so it is not surprising that the orbits of G, which are
affine subspaces of A, are totally geodesic.

In particular, for A = d, the exterior derivative on functions, the action of G is
d + d; = e~{de!, the classical gauge transformation extended to forms by Witten
in [7]. Recall that the Witten Laplacian on functions is Ay = d}d;. More generally,
for A € A we have a Bochner Laplacian A*A and Witten-Bochner Laplacians A4, =
AjAy with Ay = e fAel.

Lemma 5.2 The set of Witten-Bochner Laplacians {A4,: f € C®°(M)} associated
to a connection A is in 1-1 correspondence with the orbit O4 of A in A.

ProoF. We must show that the stabilizer of G on A equals the stabilizer of the
action f — Ay,. For fixed A, the stabilizer of the action (f, A) — A +df is clearly
{f = constant} ~ R. For the action on Witten-Bochner Laplacians, we first for
simplicity assume A = d. If A equals A = d*d, then Ker Aj consist of constants c.
But Ker A; = Ker dy, and dsc = 0 implies e/c is constant, so f is constant.

For general A, we first recall that a local slice for the gauge group action at A =d
is isomorphic to Ker d4 = Ker § = Ker A' @ Im 602 C Q'. In fact this is a
global slice: given A € A, we have A = d + w for some w € Q. w has the Hodge
decomposition w = df + w', with w’ € Ker é,s0 f- A = d+ ', which says that the
slice Ker é hits O4 at —f - A.

For an arbitrary gauge orbit, we may now choose a representative connection
A =d+ w with w € Ker §. Note that Ay = A + éw + w*d + w*w, where w* is the
adjoint of the map wA: 2° — Q. Under the action of f, Ag > As, = Aj+e~fw*de
+w*w + ef§efw. On functions, the Witten Laplacian Ay equals A+ |V f|2— Af, so
Ag=Ayuyif and only if éw +w*d = [Vf|2— Af + e fw*de! + e/6e~/w as operators
taking Q° to Q'. Applying both sides to the function 1 yields éw = |Vf|> = Af +
wdf + efde~Iw, so

0=/M5w

/M |Vf|2+/Mw’df+/Me!5e_fw (as /MAf=0)

/ |Vf|2+/ w'df/\*l+/ efbefw A *1
M M M

/M Vi + /M df A*w + /M e fw A xde’
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Il

/M|Vf|2+2/Mdf/\*w

/M|Vf12+2/MfA*5w

= [ v

which implies that f is constant.

Therefore the map A — A, from derivations on M to second-order elliptic oper-
ators (with leading term the Laplacian on M) is injective on each gauge orbit in A.
Thus this family of operators F is parametrized by A and can be given the structure
of an infinite dimensional Riemannian manifold.

Corollary 5.3 The set of Witten Laplacians Aj is a totally geodesic submanifold in
the set of Witten-Bochner Laplacians F.

For the nonabelian case, we now give a regularization for Tr Hy. Let A=Ay,

Definition : Tr Hy = Tr(G4(6nd})dy) = / T UTr (et (S )da)dt
0 =0
(5.4)

If d4 were a finite-dimensional linear transformation, this definition would be an
identity by directly setting s = 0 and using G4 = [°(e™*® — P) dt, where P is
projection onto Ker ds. Moreover, if tr hn(z,z) exists for all z € M, this identity
for G4 shows that the right hand side of (5.4) equals [y, tr hy(z,z), and so (5.4)
equals Tr Hy in the ordinary sense. In general, the right hand side of (5.4) is to
be understood as an analytic function of s € C for Re(s) >> 0 which admits a
meromorphic continuation to all of C. The meromorphic continuation is standard
but it is not clear at this point that the right hand side of (5.4) is finite at s = 0.

Before we discuss (5.4) for general structure groups, we consider a smooth family
of positive self-adjoint elliptic differential operators {A} = {A4}4ca, where A is now
just a smooth manifold, acting on sections of a bundle over a compact manifold. We
assume that dim Ker A4 is independent of A. As the proof of Lemma 5.5 will show,
for each N € T4A the zeta function

(n(s) = %S) /0 ” £ Tr((6nA4)e™24) dt

converges for Re(s) >> 0 and has a meromorphic continuation to C having at worst
simple poles occurring at a finite set of integers (resp. half integers) for dim M even
(resp. odd).

Let P be the projection onto Ker A, and denote the standard zeta function
¢(s) = ﬁj};’" t*~1Tr (e7*44 — P) dt by Ca(s).
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Lemma 5.5 Forall s € C, (s — 1{n(s) = —énCa(s —1).

At poles of (4(s), this equation is to be interpreted as saying that the poles of (n(s)
coincide with the poles of Ca(s) shifted by one.

PROOF. By the uniqueness of the meromorphic continuation of §x(s) and Ca(s), it
suffices to prove the equation for Re(s) >> 0. Then

(s =1)(n(s) = £5 5> t* Tr((SnAa)et84) dt

= —I‘(_,l__l) f(;’o t‘—zTr(—t(JNAA)e—tAA) dt

= _F(a;—l) fooo t’_26NTT(€—tAA - P) dt
= —JNCA(S - 1)

Note that the proof shows that (n(s) exists for Re(s) >> 0. The functional equa-
tion (5.5) and the standard mermorphic continuation of {4(s) now give the meromor-
phic continuation of (y(s).

Now consider A = Ay = dydy. The assumption that dim Ker A is constant
means that we consider variations only through orbits of the same orbit type as Oy.

Then
(n(s) = ﬁ Jo? t"‘lTr((6NA)e“A) dt

= ﬁfooo ts—lTr((d;@vdA + (6Nd,'4)d,1)e‘m) dt

Let {#:} be an orthonormal basis of Q°(Ad P) consisting of eigensections for A, and
let ¢r denote the pointwise trace in Ad P. Then

Tr((dydnda + (Srd)da)e—)
= E/M tr((dySnda + (6ad)dg)e™2 4; A *¢;] (5.6)

=Y e /M tri(ddnds + (Sndy)da)ds A+

For w € Q'(Ad P), n € 0°(4d P), we have
((Buda)eo,n) = Sw{dieo,n) = Swlw, dan) = (w, (Swda)n)
s0 6ndy = (§nd4)”, and (5.6) equals

Ze—m/M tr{(6nda)di A *dadi + dad A xSndad;]
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=23 e /Mtr[(éNdA)'dA¢,~ A %] (5.7)

=2 TT((ﬁndA)*dAe_tA)
By [8, p. 152], (5.7) equals 2 Tr(e **(6nda)*d4), so

@(N(s) = /0 T T (et (Snda) dy) dt (5.8)

Setting s = 1 in (5.8) gives:

Proposition 5.9 Let (n(s) = {7 fo* t*7'Tr((6nA)e™*) dt with A = dyda. Then
Tr Hy = 3(n(1) provided (n(1) is finite.

We can now give several cases in which the regularized definition of Tr Hy makes
sense.

Theorem 5.10 Assume A is an irreducible connection. Then the regularization (5.4)
for Tr Hy is finite if dim M is odd or dim M = 2. If dim M = 4, then the
regularization is finite if and only if A is a Yang-Mills connection. In all dimensions,
the regularization is finite within the space of flat connections.

PROOF. By Lemma 5.5 and Proposition 5.9, T'r Hy is finite if and only if §5(4(0) = 0.
In odd dimensions, it is well known that (4(0) = —dim Ker Ay, so (4(0) = 0 on the
set of irreducible connections, which form an open set in A. (In fact, if P admits no
flat connections, then the set of irreducible connections is dense [9].)

In even dimensions n, (4(0) = ¢, [y tr a,/; — dim Ker Ay, where ¢, is a di-
mension constant and the heat kernel e(t,z,y) for e™** has asymptotics e(t, z,z) ~
5o ak(z)t* /2. By [10, Ch. 4.8), [}, tr ay(z) = ¢ S s(q)+ (dim Ad P)(vol M), for
¢y a constant and s(g) the scalar curvature of the metric g on M. Thus in dimension 2,
8nCa(0) = 0 at irreducible connections. Moreover, f3, tr az(z) = c2(g)+cs Jutr |Fal?,

-where ¢;(g) depends only on the metric g, c3 is a nonzero constant, and [, tr |Fal?
is the Yang-Mills functional. Thus for irreducible connections, én(4(0) = 0 precisely
at Yang-Mills connections.

Finally, in even dimensions, a,/; is an expression in the curvatures of g and A and
their covariant derivatives. For flat connections, this expression depends only on g,
and hence is independent of the flat connection.

REMARK. Notice that Theorem 5.10 provides examples where the zeta function
regularization of Tr Hy is finite but the kernel Ay does not exist on the diagonal.
More specifically, the direct method of trying to compute Tr Hy by integrating
the kernel over the diagonal has many obstructions, namely the nonvanishing of the
coeflicients Uj(z, z), f/_,»(:c,a:), at each r € M, for a number of values of j (e.g. j =
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(n+1)/2 if dim M is odd.) In contrast, the regularization given by (5.4) has only
one global obstruction, the nonvanishing of [, Wu_l, where W;, are the coefficients
in the asymptotic expansion of the kernel of e“AA(6Nd" Yda, as (1/2) [y, W!._l is
the residue at s = 1 of (n(s) (cf. (5.8)). This can be better understood in the
simpler case of G 4, whose trace does not exist due to the many pointwise obstructions
u;(z, ), 4;(z,z) of Proposmon 4.1. If we instead attempt to regularize the trace by
setting Tr G4 = Tr(AZ*AL")|s=0, then formally Tr G4 = (4(1). However, Ca(l)is a
simple pole with residue [y, @to(z, z) in the case dim M even; there are similar formulas
for the other cases. Thus there is only one global obstruction to the regularization of
the trace.

To complete this analogy, we will show (1/2)Wa_1 (z,z) is precisely one of the
asymptotic coeflicients in Theorem 3.7 in each case. We have

Hyd(a) = Galondy)dad(e) = [ =*4(bndy)dad(z) dt

= /Ooo /M e(t,2,y) *(6ndy) Ydad(y) dy dt

[ [, @éndaett, z,0)6() dy d

where e(t, z,y) is the heat kernel for A 4, so the kernel of Hy has the expression

hn(a,) = [ (déndae(t,z,y) di (5.11)
0
We now assume that dim M > 4 is even and leave the other cases to the reader. For
L > (n/2) 42, e(t, z,y) has the parametrix

] 22 L-2

Pt 0) = e E (I ittt + X o)t
[11, §2], so

1/4 oo
hna,y) = [ Hdidnda)elt,z,) ~ Pu) di + [, dnda)et,z,) de

+ / Y(dSnda) Py dt (5.12)

The first two terms on the right hand side of (5.12) are bounded; the role of 1/4 is
unessential, as replacing it by another positive real changes the right hand side by a
bounded amount. Thus the last term must give the asymptotics of hn(z,y), at least

up to bounded terms. On the other hand, a similar argument shows that the kernel
of e7"44(6ndy)dy is ¥(dybnda)e(t, z,y), Wthh equals ¥(d%6nds) P plus a bounded
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remainder. We can now explicitly differentiate Pp as in [12], plug the results into
(5.12), and do the t integration. As in [11], the terms with exponent ¢~! integrate
to give the first nonzero log term in Proposition 4.1, while the other terms give the
coefficients of I'V~". In particular, we see that (1/2)W%_1 (z,z) equals V;(z,y).

Thus Theorem 5.10 gives a relatively easy proof that certain integrals of asymp-
totic coeflicients of Ay vanish. However, this approach does not yield the more refined
pointwise results of Theorem 3.7.

It is tempting to regularize Tr Hy so that orbits of Yang-Mills connections are
minimal. By Theorem 5.10, this could be done by setting Tr Hy equal to one-half
the residue of {n(s) at s = 1, as this residue equals §§(4(0) by Lemma 5.5. This in
turn could be accomplished by defining T'r Hy to be

ﬁ /0 £ Tr(e™* (Enda)da) dt|
-note the extra factor of I'(s)~'. However, only the regularization given in (5.4) is
compatible with the Faddeev-Popov approach to quantizing Yang-Mills theory, as we
shall now explain.

In finite dimensions, a submanifold is minimal if the variation of the volume
element at each point vanishes under deformations of the submanifold. For gauge
orbits, the volume element is associated to T4O4 ~ Im d4 C Q'(Ad P). Given an
orthonormal basis {¢;} of °(Ad P) consisting of eigensections of A 4 with eigenvalues
{\:}, the volume element is formally given by ¢; A ¢3 A ... times the “Jacobian” of
da, the Faddeev-Popov ghost determinant:

(det'((dadi,dad;)))/? = (det'((Aadi, 6;)))/? = ([]'M)'2

where the prime indicates exclusion of the \; equal to zero; for irreducible connections,
we may drop the prime. Thus the volume element is formally (det'/? Ag)d; Aga A ...
(strictly speaking, the volume element should involve the wedge product of cotangent
vectors ¢} dual to ¢).

Here det A, is defined by the Ray-Singer regularization det A, =

exp(—%’ €a(s)), as this formula generalizes a standard identity for finite dimen-
=0

sional transformations. Therefore an irreducible orbit O4 will be minimal among all
nearby orbits of the same type if 6y det Ay = 0 for all N € Ker d&}. Note that by
the gauge invariance of det A4, we need only check the variation of the determinant

at one point of the gauge orbit.
Recall the following theorem of W.-Y. Hsiang [13]:

Theorem 5.13 Let G be a compact connected Lie group acting via isometries on
a Riemannian manifold M. Then any orbit of G whose volume is extremal among
nearby orbits of the same type is a minimal submanifold of M.
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For noncompact manifolds, we say a possibly noncompact submanifold W has
extremal volume if the variation of the volume element in normal directions vanishes
at every point of W. The compatibility of our regularization of Tr Hy with the
Faddeev-Popov approach is given by the following infinite dimensional analogue of
Hsiang’s Theorem:

Theorem 5.14 A gauge orbit of irreducible connections whose volume is ertremal
among nearby orbits is a minimal submanifold of the space of connections.

PROOF. Here a gauge orbit has extremal volume if §y det Ay = 0 in the notation
above. We must show that at A, Tr Hy = 0 iff 6y det A4, = 0. This follows by

taking %I -of the equation in Lemma 5.5 and using Proposition 5.9.
s=1

In summary, by the first variation formula, we measure minimality in finite di-
mensions either by the infinitesimal variation of the volume element or by T'r 1. In
Yang-Mills theory, we cannot define minimality via the volume element, as we only
have volume elements along gauge orbits, and the first variation formula cannot be
shown directly. Nevertheless, for the gauge orbits given in Theorem 5.10, we have
a regularized notion of T'r II which we can use to define minimality, and only this
regularization is compatible with the Faddeev-Popov volume element to the extent
that a version of Hsiang’s theorem holds.

Hsiang’s theorem implies the existence of minimal gauge orbits for a class of 3-
manifolds.

Corollary 5.15 Let ¥ be a Seifert fibered homology sphere with at least four excep-
tional orbits. Then the space of flat SU(2) connections over X contains at least two
minimal gauge orbits.

ProoF. By [14, Prop. 2.7], the moduli space of irreducible flat SU(2) connections
over such a ¥ has at least one component which is a closed manifold of dimension
2m—6, where M is the number of exceptional orbits. On this component, the function
det A, has at least two critical points. By Theorem 5.14, the gauge orbit over any
critical point is a minimal submanifold of the space of all connections lying over this
component. (Note that this space is a manifold, as dim Ker d4 = 0 on this space.)

Of course, this proof applies to any manifold and gauge group such that the moduli
space of connections contains a closed manifold.

The proof of our version of Hsiang’s theorem easily carries over to any family of
connections with dim Ker A4 constant. However, the case where the dimension of the
kernel is nonconstant is also important. For in finite dimensions, Hsiang’s theorem
immediately implies that orbits of isolated type are minimal submanifolds, which
indicates that we should look for minimal submanifolds among the orbits of reducible
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connections. This involves a reworking of the argument leading up to Theorem 5.10,
since the Ray-Singer regularization is not continuous near a reducible connection.

To begin, note that the right hand side of Definition 5.4 remains well defined for
Re(s) >> 0, since the trace still dies exponentially as ¢ — co. The argument in
(5.6)-(5.8) remains valid, so we still have

Tr Hy = -;—CN(I) (5.16)

provided {n(1) is finite.

On the other hand, the proof of Lemma 5.5 no longer holds, since dim Ker du is
not constant near a reducible connection. To modify this argument, we : pick X not in
the spectrum of A 4; by the minimax characterization of the spectrum, X is not in the
spectrum of Ap for all B in some neighborhood of A. Let P = P, be the projection
of the L? zero-forms into the eigenspaces lying below A. Finally, set

é(s) = Ca(s) = %S) /0 "1 Tr(e8) gt 4 F(lzj /1 T Py @t (5.17)

Notice that both terms on the right hand side of (5.17) are smooth in A. Since
6nTr(e™*®) dies exponentially as ¢ — oo as in (5.6)-(5.8), we have

(s —1)(n(s) = / =265 Tr(e~*) dt

Fs—l

as in the proof of Lemma 5.5. Thus

Snvé(s—1) = —(s—1)Cn(s) - / 1268 Tr(e™2) dt

r( 1)
1 -2 ~t(A-P)
+”—"r(s-1)/1 265 Tr(e ) dt

which yields:

Lemma 5.18

wCals = 1) = ~(s = DO (s) = )/ T ey Tr(etP) dt

I'(s—1) 4

We need to know that the ihtegral in the lemma has uniform exponential decay
for Re(s) less than a constant. For a curve of connections A(g) with A(0) = A,
A(0) = N, we may write

Tr(e tFr) = § ™ (")/ ) A *w;i(q)
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for some smoothly varying orthonormal bases {w;(g)} of Im P,. Since 1 = [y, w; A*wy;,
we have 0 = [, w; A *w;, and so

6NTr(e’"5") =) e~ ) (q)

Since the minimum of the ); is zero, we must have Y Xi(0) = 0. Thus
2i(0)=0

SnTr(e™P) = O(e™™)

where ), is the first nonzero eigenvalue of A 4. In particular,

F_(EITT) /1°° t°-2Tr(e~tF) d =0 (5.19)

=1

Just as for the ordinary zeta function, 6(0) is computed by plugging the heat
kernel asymptotics into the first integral in (5.17) and integrating, since the second
term vanishes at s = 0. The result is

2oy _ ) Janj2 dim M even
(0 = { 0 dim M odd (5:20)
in the notation of Theorem 5.10. Note that we have adjusted {(s) so that dim Ker d,
does not appear in ((0). Thus én((0) = 0 at reducible connections for all the cases
considered in Theorem 5.10. Setting s = 1 in Lemma 5.18 and using (5.19), we see
that {n(1) is finite. By (5.16), we obtain:

Proposition 5.21 Theorem 5.10 is valid for reducible connections.

We now specialize to the setup of Donaldson’s theorem. Assume that the base
manifold is a simply connected 4-manifold with positive definite intersection form
and that P is an SU(2) bundle with topological charge one. For a generic metric on
M, the moduli space M of selfdual connections SD is a smooth 5-manifold in the
quotient topology except at the finite number of reducible connections [15, 16]. The
proofs of [16, Thms. 4.9, 4.11] show that at a reducible connection A, we can take a
six dimensional orthonormal basis {/N;} of the normal bundle of 7404 in TSD. By
the last Lemma, we may set

Tr Il =Tr IIA = Z(TT HN')N; (5.22)

1

This vector field along T4O,4 is well defined, as the linearity of Hy in N shows that
there is a unique vector in the normal bundle at A given by the right hand side of
(5.22) for any orthonormal basis.
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We now claim that T'r 11 is gauge invariant:
g-Trily=Tr1l,4 (5.23)

The left hand side of this equation is 3°(T'r Hn,)g.V;, while the right hand side equals
Y (Tr Hg,n,)g.N;, since the gauge group acts via isometries. Thus it suffices to show
that Tr Hy, = Tr H, n,. Dropping the asterisk, we note that e~*4¢s4 = ge~tA4g-1
and

(6ond;4)don = gNdag™ gdag™ = g(6ndy)dag™"

Using Definition 5.4, we get (5.23). .

In finite dimensions, an orbit of isolated type for an isometric action of a compact
Lie group on a manifold admits no nonzero invariant vector field, as the exponential
map applied to this vector field would give a family of nearby orbits of the same
type. The exponential map has difficulties in infinite dimensions, but we can reach
the same conclusion in our case by appealing to the structure of M. By [16, Thm.
4.4], Ker d} gives a local slice for the action of G on A near A, so the normal space
at A within SD is Ker d% N Ker P_, where P_N is the projection of d4 N into the
anti-selfdual 2-forms 2 (Ad P). Thus the normal space is the first cohomology group
H}, of the elliptic complex

Q°(Ad P) %4 Q'(Ad P) 55 02 (4d P)

The stabilizer G4 of A is isomorphic to U(1), and by [16, Prop. 4.9], G4 acts on
H} ~ C® by the usual action of U(1) on C3. Thus there are no nonzero G invariant
vectors in the normal space, which proves

Theorem 5.24 Let M be a simply connected 4-manifold with positive definite inter-
section form and let P be an SU(2) bundle over M of topological charge one. For
generic metrics on M, the reducible selfdual connections form minimal gauge orbits
within the space of all selfdual connections.

Thus examples of minimal nonabelian gauge orbits exist over e.g. C P? and S? x S2.
It seems difficult to find minimal gauge orbits in the interior of SD. According
to Theorem 5.14, we must calculate é5(/,(0) for an irreducible selfdual connection A.

We have
a0 = 2 L [T e a
4 dS 3=0F(S) 0
1 00

= Bl To kb A)e™t2) dt

dsls=0 F(S) 0 tTr((JN )6 )

- 2 2 ~ * —tA
- Zzzmo’p(s)/o Tr(dy(énda)e™?) dt
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4
ds
4
ds

_2
=0 I'(s)

_ 4
e=0 T'(s)

where in the last line we use Tr(A(BC)!) = —Tr(A(CB)!) for A, B,C € U(N). How-
ever, we know of no nonflat case where the last line vanishes; proceeding directly by
differentiating in s, we see that the last line is still nonlocal and hence not computable
(cf. [2], where the ratio of the Faddeev-Popov determinant and the determinant of
Pz P_ is shown to be locally computable for M = $*).

Note that én5(,(0) would vanish if 6y A had terms d%(6nd4) and (—énd%)da. In
other words, if we introduce a Z, grading on én by replacing éy by (—1)¥éx whenever
n acts on an operator with domain Q*(Ad P), then §NyA = d%6,.d4 — (6,d%)d, and
we would have dn(}4(0) = 0. Is there a supersymmetric theory that justifies this
ad hoc grading? In other words, are gauge orbits minimal in some supersymmetric
sense?

/ ZOTr(d [N, et4)) dt
0

J “ e Tr(d, Ne™2) dt
(4]

A Properties of parallel translation

In this Appendix we prove some fundamental properties of parallel translation which
are used in the computation of the kernel hn(z,y) in §3. We use the notation of that
section.

A.1 Parallel translation

Let x,y € M be contained in a neighborhood V whose diameter is less than the
injectivity radius. Let P(z,y) denote parallel translation from y to z along the
unique minimal geodesic z(t) = (z'(t)), parametrized so that z = z(1). Let p be the
origin of normal coordinates on V. Then

4 I“;k(:z(t)):kj:i:k =0, '(0)=y (A.1)

where I}, are the Christroffel symbols and #* = %zi(t). Note that 2*(0) = z* if y = p,
as I'y, (p) = 0, while in general by (A.1)

#(0) =7 — g7 + 213, (2* — y*)(&" — y") + O(Jz — ) (A2)

Let A be a fixed connection on Ad P with connection one-form A;? taking values
in u(N); the manifold indices will be denoted by i, j, k, ... and the Lie algebra indices
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by a,b,c,.... Parallel translation of a vector £(y) = (£5(y)) € Q9 (Ad P) satisfies the
following differential equation:

05+ A (2())FE - Aju(z() 2 = 0
(A.3)
£a(0) = &a(y)
and {j(z) = Pi(z,y)& (v)-
The Taylor expansion of £5(t) is given by:
£3(t) = €3(0) + £5,1)(0)t + 3:€5 5)(0)8® + 5653 (0)E3 + ...
A4
+ﬁ§§,(k)tk 4. (A4)
where &
G(0) = 736(0)  (1=12,..) (A.5)
By (A.3) we have
€,0)(0) = £4(0) = —A;7(v)#(0)£5(0) + A,5(y)d (0)€(0) (A-6)
We put
Pio =OP, + OPL + OPZ+ OPZ+ OPZ 40|z - yI) (A7)
where 4
1
OPae(y) = 360 (1=0,1,2,...) (A.8)
I'de ‘
It is easily seen that (VP = 0(|z — y|).
Lemma A.9
© peb — gegb (A.10)
and N '
WPE = —A;2(y)#(0)8; + A;5(y)¢" (0)6; (A.11)

PROOF. (A.10) and (A.11) follow from the initial condition in (A.3) and from (A.6).
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A.2 First and second derivatives of P(z,y)
We first show:

Lemma A.12
P(p,p)=1d (A.13)

*VP(p,p) =*VP(p,p) =0 (A.14)

where *V, YV denote covariant derivatives with respect to z, y.

PROOF. Lemma A.9 implies (A.13). Note that
*ViPis = 8, P + A(2) Pl — Ajy() P (A.15)
Substituting (A.10) and (A.11) into (A.15), we obtain “V P(p,p) = 0. Using
P(z,y)P(y,z) = Id, (A.16)
we get YVP(p,p) = 0.

From now on, we work in a synchronous frame for Ad P over V, which by
definition is given by parallel translating a chosen orthonormal frame at p out the
radial geodesics. In such a frame, we have

A,‘f(P) =0, Vi, jk (Al7)

[6, Prop. 3.7]. (In some formulas below, we keep terms involving A,;5(p) as we will
need to differentiate them later.) For example, from Lemma A.12 we have

0. P(p,p) = 0, P(p,p) =0 (A.18)

Lemma A.19
*AP(p,p) =*AP(p,p) =0 (A.20)

where A = —g' TV V.
PROOF. Since
"AP = —g7{0,"V,; Pt =TT ()" Vi Piy + Aif(2)°V Pl — Ajy()*V; P2}, (A.21)

by (A.14) we have -
IAP;2|z=y=p = _guax"rvjpﬁlz=y=p (A.22)

This gives
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zAszglx=v=P = - 6‘j[az‘azi Pdcg + ax"Ajﬁ ' Pdcg + Ajrc-az‘" PJ:
(A.23)
_ax‘Aj; : Prc: - Aj:!az"P:ﬂIz:Fp
To obtain (A.20), we compute £5(0). Differentiating (A.3) in t gives
£5(0) = —0iA;E(y)d'+€5(0) — A£(¥)FE5(0) — A(y)&7 (0)€3(0)
+01A;3(y)3'37€:(0) + A2 (y)F€:(0) + A3 (y)(0)€2(0)
= —8iA(y)E'#7€5(0) + A2 (y)Th, (y)E™£"€5(0)
(A.24)

—A; (W) (= A (y)2'65(0) + A3 (y)2'€;(0))
+01A;7(y)2'E€:(0) — A3l (y)E™2"E2(0)
+A;3(9)2 (= A (y)E'€(0) + A2 (y)£'€5(0))
This implies
@PZ = 3[-0A(y)3'478) + Ao (y)Th, (y)E ™36 + A(y) Al (v)d' 6"
~Aj (W AG(Y)E'E + QA (y)E'H 8 — Af(y)Tha(y)E™a"8)  (A.25)
AR Ase's + A (y) Al (y)&' a6
Thus,
P =638+ (—A;(y)(S7 4 Tha(y)S™5™)8%) + Ak(y)(S7 + §Th, (y)S™S™)6¢
HA=0A L)' + AT (1) 757}
— A () (= A (v)8; + Aid(y)8;)S'S? + 1A 5(y)S'S76¢
— AT (y)S™S"6; + Aju(y)(—As(y)éE + AL (y)6;)S' 5] + 0(51)
where S7 = 27 — yi. Applying. 0,:0,, to (A.26), taking z = y = p, using ((A1276)),

and substituting into (A.23), we get “AP(p,p) = 0. Differentiating (A.16) and using
Lemma A.12 gives YAP(p,p) = 0.

31



KSTS/RR-92/007
November 12, 1992

A.3 Third derivatives of P(z,y)
A computation similar to (A.24) gives

c

- x"[ D DALE, + 2NASTE £ + O ASTHE, — 20iA(— ASES + ASED)

— A (—OTE; + 2053 )6, 4+ 2A5Th(— A58 + Aj360) — Ajf[-0iA 6L

+AGTRE — AlL(—AGES + ASE) + BASE — AGTHE

FAG(—AGES + ALED) + 0,01A367 — 201 AGTS,E7 — OeAjaT s

+201A5(—AZE: + AZES) + Ag(—OTE; + 2Tk T )¢¢

—2A0TE (= AL + AZE) + AjT[—DIA 6 + ASTRE:

A AZEE + AKED) + OLAE — ASTHE + AZ(-ASE} + AKED)|
(A.27)

This yields

Gpg = liis :1:"[ B, A6 + 20 ASTS 8 + O ASTH S, + 20,45 AL 64

"'26[/4]5/4(13 - Aki(_a(rsj + QF‘I:[F;q)&d 2A F A_,;&Z
+2Ak‘.':1A]ZF§I + AJ:B[quég - AJ::‘ s;FZléb A rA séd + A Al;qu

ca[Aqd + A CAS + A cAl Aq; - Angleqg + azanin&:

—26,Ak’,’,l"° ¢ — 8kA 5° 26{/4 Aqﬁ + 26{/4 Aq‘;ég

197a
+Akd( a[Fk + 2F )6C + 2A F AJ; - 2Akf1A]Tr\k 66 Ajga[qu

ql

+AJZAk‘;r‘ + AJZAICA + A t:,:Aqr + AJdal qr a AJZAk[:'qu
—ALALASL + ALASALS

gs”a

(A.28)

We now state the first of our two main third derivative calculations. Recall that
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the curvature two-form F of the connection A is given in local coordinates by

ija e/ ja

Fjl = 0iA; - AL+ ALAL — ALAL
and that

ViF-~ b _ gik[akF‘.

ija

>~ F;ciFlljab - PijF‘lab + ARF,f— ASF;e

ja [ ija jc

Thus at the origin p in a normal coordinate system and with respect to a synchronous
frame, we have

F.'jab = &Aj‘,i - 6:'14.':
z=p
(A.29)
ViF.‘j.f = E(aiaiAjg - 8,-6,-A,~:)
z=p T
Proposition A.30
UV, FAPL(0,0) = 3(ViFi:6; - ViFi b6:)
(A.81)
= —*V, YAP$(0,0)
PROOF. As before, differentiating (A.16) gives
YW, “AP2(0,0) = =V, YAP(0,0)
As in Lemma A.19, we have
yvs zAPcb — ija svz_vz Pcb
da T=y=p g Y ' ’ da T=Yy=p (A.32)
where we use A;*(p) = 0,9;P(p,p) = 0 and ¢"(p) = 6. Set
2
(Pi)ce =3 VPR (A-33)
=0

Using (A.26), we have

Y 0y 0us0s (P2 <2

T=Yy=p

a 1 it a

1
Z[—ch By TH67 + A 50, T8 + §{(,«g;«?,,.r?,. + A0, Th + A0, T8,
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~(AgadyTh + A0y Th + AdyTh)6} + {000, Ajo85 + A0, %6,

‘+’a"s AJSA.V6: + A;,ay: AI;I&S - 2ayuAJ§A,: - 2A,§ayﬁA’3 + 61,-6”.‘14'»362

a

it a

—ALOTLE + 8, AJALS + AJ0, AS)]

y=p
= B8, 0, AL + —8,0, A6 (A.34)

d3 c
Now we compute ¥; 8,+0,:8,:® Pgt . Note that Ti‘i = 31®¥ P2 Differentiating

(A.27) in z and y, we obtain

T=Y=p

r=y=p

l Ci
i Z ays aziazi (3)Pdab

l c c c r c T
= 20 AL+ 0,0, AL — 20, ALALE, ~ 20, A LA,

20, A LA LG — A0, TL6h — 2A 50, T48% — AL0, ALl — A0, ALSY
— A0 Ay + ATATALS + ASALALS + ASALALS,
—20,i0ys A 365 — 8,50, A 565 — 20, AT ALEE — 20, A ALEE
—20, AGA LS + A0, TLES + 24 50, T%6 — A0, ALSE — AJ0, ALSS
—Ai;ay‘A.st‘S: - As;AifAiS‘SZ - Au s:Ai:‘SZ - Ag ":A.s:&: (A.35)
+30y0 A Aig + 30, A A + 30, ASA Y +3AS0, AL +3A,50,.A
+3A,50, A0 — 3AAG A — BASALAL - BASATAL +3AAGAL

ia’tsd

FBAZALAL +3AAIA]

1
= '3' Z(“ay‘ay’Ai:ég + ay‘ ay‘Asfn&Z + By‘ 6y’A536§ - 6y‘ ay'AaZ‘s;)
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Combining (A.32), (A.34) and (A.35), we have

v, AP

r=y=0

1 . .
= ;X [B0As: - 20,496, - 004, - 00,45]

isb

= S YIViRE - ViF, ]

which by (A.29) gives Proposition A.30.

We finish with one more third derivative calculation.

Proposition A.36

Vi tAPE| = o[V + Vi (A.87)

z=y=p

PROOF. Since the result only involves = derivatives, we may assume that the geodesic
coordinates are centered at y. The distance function satisfies r? = 3" g;;z'z’, where

gi; = 6ij — %Rikjlxkzl +:-, 80
Vr? = O(r) and V;Vir? = 26! + O(r?). (A.38)
For any bundle, parallel translation is characterized by
P(z,z) =1Id and Vj,5,P = 0.
Rewriting this last equation as V'r? - V;P = 0 and differentiating gives
V;Vir? . V;P 4+ Vr? . V,V,P =0, (A.39)
V*V;Vir? . VP 4 2V*Vir? .V, VP + Vir? . V¥V, VP = 0. (A.40)
Evaluating (A.39) at r = 0 and using (A.38) gives (A.14):
(VP)(z,z) =0 (A.41)
and after setting k = j, (A.40) gives (A.20):
(AP)(z,z) = 0. (A.42)

We now differentiate (A.40) again by applying Vi and evaluating at r = 0. Using
(A.38), (A.41), we get
ViV*V,P +2VFV, VP = 0.
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Using V*¥V; = V,;V¥+ F¥ this becomes
Vi(FFP)+3V;ViV*P 4+ 3F;V*P =0
which by (A.41) reduces to
1
Vi(AP) = ——g(V,,F}‘)P _ (A.43)

(intrinsically, this is V(AP) = 1d*F - P). For the adjoint bundle, the curvature acts
by the adjoint representation F - § = [F €], so in coordinates (A.43) becomes

Vi(AP) = —3 ~ [ViFest — 69, F].

Corollary A.44
YV *AP(p,p) = =*V *AP(p,p)

This follows immediately from Propositions A.30 and A.36.

B The proof of Proposition 4.1

Fix y and a neighborhood V having geodesic polar coordinates centered at y. Put
r = dist(z,y) and ' = r? Let exp,:TyM — M be the exponential map at y, and
set O(z,y) = det(d expy(exp z)) for z € V. The following lemma can be found in [5,
G.V.3]:

Lemma B.1 For any smooth function f = f(r), we have

0 n-1
A1) =~ r) - 2y (5 4+ 221)
where ' denotes the derivative in r.

The projection P4 onto Ker Ay = Ker dids = Ker ds has a smooth kernel
w(z,y) = Lxdar(z) ® éx(y), where {¢,} is a finite dimensional orthonormal basis of
Ker d4. To obtain the coefficients u;, @; in Proposition 4.1, we formally solve the
equation

xAAGA(:c’ y) = —UJ(:L', y)- (BQ)
for £ # y in V to iteratively determine u;,4;. Note that the infinite sum obtained
differs from G 4(z,y) by a bounded term, as in the proof in §4.4, so it is an asymptotic
expansion in the usual sense only up to bounded terms.
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From now on we just write A for A4 and G for Ga. Let d&im M = n.

(i) Case n odd.
We assume that G has the asymptotic expansion

G(z,y) ~ ZF’ Tuj(z, y)+ZF vi(,y) (B.3)

with 7 = (n — 2)/2. By Lemma B.1, we have
A(TY) = —j(45 — 4+ 2n + 2r%)ri-1 (B.4)

and so
AT ""y;) = Auj-T7-7 — 4(j = 7)""r . "Vu; + u; ATI-T

=-I""7(j - 1) [4T TVu; 4 (45 + 27‘%’)14]-] + 77 A, (B.5)

where "V is the covariant derivative in the direction 0/0r. Plugging in the right hand
side of (B.3) for G gives

AG(z,y) = E ~( — 1) 1[47' "Vu; + (45 + 27' )uJ ! TAuj_lJ
3=0 -
+3 (=)t [(4]' ton—4+4 27)1;]» —4r "V, + Au,-_,J
7=0
= —w(z, y) (BG)

where we put u_; = v_; = 0. Setting the right hand side of (B.6) equal to zero gives

"Vuo + 2%’uo =0

"V(rugtyy) = St A, i>1

v =0 (B.7)
V(g = D w(z,y)

U ty) = ~ I A

This has a solution given by

uo(2,y) = 673 (z,y) P(z,y)
ui(e,9) = 2% 7 1 g (2(s), y)Auya(2(s), y) ds G > 1

'Uo(.’l,',y) =0 (BS)
vi(2,y) = —elze) fr n-t -‘(z(s),y)wu(s) y) ds
vs(z,y) = =225 [T 005 (2(s), y) Avya(2(s),y) ds G > 2
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In particular, we have

w(zp) = 2B (745 a(o), 1) Auala(o),0) ds (B.9)

(ii) Case n even, n > 4.
Here we assume the asymptotic expansion

G(z,y) ~ Y TV "u; 4 Y Tlogl -4 (B.10)

3=0 3=0

By Lemma B.1 we have

A( logT) = _j%(rf logT) — "V(I¥ log r)(% T 1) (B.11)

and

r j = ] 7-1 -1
{ V(IVlogT) = 2jrT"'logT + 2rT (B.12)

£ (T logT) = j(4j — 2)T5" log T + (85 — 2)[¥~1
By a direct calculation, we get for j > 1,

A(#;T71ogT) = Aiij-TlogT — 2(ddi;, VIV log I) + ;AT logT)
= At -T9log T — 4T ogT - r - "Va; — 419~ 1r . 7V,
+i;A(I7 logT)
= Ai;-Tlogl' — 45T logD - r - "V, — 4T9-1r .7V,  (B.13)
+i;[~j (45 — 2)T g ' — (85 — 2)I¥-1

—(2jrrj—l lOgF + 2Fj_1r) (%_’ + n:l)]

(where the connection V acts in the z variable), and for j =0 -

A(tlglogT) = Adg-logl — 4T 'r - "Viy + @A logT

= Adg - logT = T7'[4r - "Viig + (2n — 4 + 2r % )iy (B.14)

Computing as in Case (i), we get

/

T7—1 - T—1 1. . 0 1
Z A(F] Uj) = — E IR 1(] - T)[T’ . "'Vuj + (4] - 2T6)Uj - 3—~—TAuj_]]
1=0 j=0

where we put u_; = 0. Plugging in (B.10) gives
AG(z,y) =—-2, T Y4r - "Vi; + (8 — 4 4+ M)ii;)
“111[47‘ . 'V_fto + (M - 4)'&0 - AUT_]]
= 25217 ogTldr - "Vii; + (45 — 4 4+ M)it; — }Aﬂj_l]
= X520(f =)D dr - TVu; + (45 — 20 + M)y, — j—l;AuJ-_l]

= —w(x,y)
(B.15)
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where M = 2n + 2r(6'/6). To make each term in (B.15) vanish, we set

( (e0) =072z ) P(z,)
ui(z,y) = 4'(‘;’_’?;’” Jo 87 ugt (2(s), y) Aujoa(2(s),y) ds, 1<j<r—1
u"’(x,y) =0
) urni(@9) = =28 57 Mug (2 (s), y)[—rin(z(s),y) + Ado(2(s), y)
“w(z(S) y)] ds
uj(z,y) = 2E4 [ 9 lug (x(S),y)[ 7 Aus-1(2(8),¥) — 407 = 7)ilj—r(2(s), p)
+ AU’J—T 1(z(s),y)l ds, j 2> T'+l

(B.16)
and
{ '&O(zay) = —u‘;‘%ﬂ f(;"s-r—lual(z(s), y)AuT—l(x(s)? y) ds (B 17)
ai(‘r’ y) = %%)_ fl)r SJ+T_IU(;1($(3)’ y)Aﬁj—l(z(s)’y) ds
(iii) Case n = 2.
We assume the asymptotic expansion
G(z,y) ~ El"’logr‘ ui(z,y +EF uj(z,y) (B.18)

=0

As before, we apply A to both sides of (B.18). By a computation similar to Case (i1),
we must solve
AG ~ -T2, T 4r - "Vi; + (8§ — 4 + M)ii;] — I4r - "Vio + (M — 4)i)
“pim log'[4r - "Vi; + (47 — 4 + M)u_7 — 3A4;,4]
=R, T 4r - TV, + (45 + 2r % u; — —AuJ 1]
= —w(z,y)
(B.19)

with M =4 + 2r(6’/6). To make each term in (B.19) vanish, we set

to(z,y) = oi_%(x,y)P(x,y)
{ ﬁj(z, y) = “_‘;g%lilf(')" Sj-lﬁal(x(s),y)A’l:t]'_l(.’E(S),y) ds (BQO)

and

uo(x,y) =0 )
u(z,y) = =22 15145 (2(s), y)[—w(z(s), y) — 4ity (z(s),y)
) —Atug(z(s),y)] ds
ui(e,y) = —2EU T 97105 (2(s), y)[~4785(2(s), y) — 1 Ad, 1 (2(s),y) ds
(B.21)

In particular, we have

in(2,9) = 22U (7500 a0), ) Afa(s), 1) ds (B.22)
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