Research Report

KSTS/RR-492/000
Sept, 30, 1942

On the Existence of a Global Solution for the
Yang-Mills Graident Flow on 4-Hanifolds

by

. Kozono, Y, Maeda and H, Naito

H. Kozono !
Department of Mathematics
Kvushu University

Y. Maeda
Department of Mathematics
Keio liniversity

H. Naito
Department of Mathematics
Nagoya University

Department of Mathematics
Faculty of Science and Technology
Keio University

©1992 KSTS
Hivoshi 3-14-1, Kohoku-ku, Yokohama, 223 Japan



KSTS/RR-92/005
September 30, 1992

August 1992

On the Existence of a Global Solution
for the Yang-Mills Gradient Flow on 4-Manifolds
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1. Introduction.

Let M be a closed Riemannian 4-manifold and P a G-bundle over M, where G is
a compact Lie group embedded as a subgroup of SO(I) (or SU(l)). We denote by g
the Lie algebra of G. Let gp and ®p be the adjoint and automorphism bundles of P,
respectively. Using the metric on G induced by the Killing form, we fix a metric on P
compatible with the action of G. Let Q*(gp) be the space of smooth g-valued k-forms,
ie. QF(gp) = C®(M;gp ® A*T*M).

Let 4 be the affine space of smooth connections on P compatible with the metric on
P. Picking a base connection Dy € i, we have

U={D=Dy+A:AcQ(gp)}.
Define the W™ ?-Sobolev space {{"™? of connections as follows:
U™P = (D =Do+ A: Aec W™P(Q(ap))},

where W™?(Q¥(gp)) is the Sobolev space of g-valued k-forms with m derivatives in
LP. Since { is an affine space, we can identify i (resp. 4™P) with Q(gp) (resp.
Wm™P(Q(gp))). For a connection D = Dy + A, we denote by d4 and d}; the covariant
exterior derivative and its formal adjoint, respectively. Moreover, we write the covariant
derivatives on tensors as V 4 and V for the connections D and Dy. If D = Dy + A € 4,
then its curvature is given by R4 = da? € Q%(gp).

The Yang-Mills gradient flow is the steepest descent flow of the Yang-Mills functional

1
E(4) =3 /M |RAI?dV:

(1) {@A =—-d4Rs on M x[0,00),

A(0) = Ap on M x {0}.

In this paper, we will construct a global solution of (1.1) and show that its singularities
consist of only finitely many points in space-time. Indeed, we shall solve (1.1) in the class

tPartially supported by The Ishida Foundation.
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V (M, [0, 0]);
V(M, [0, 00]) := {A € QUM x [0, 0], gp);

sup | (IRal* +|VaRal® + [VARAP + 4] + VAP + 8. A?) dV < oo}.
0<t<oco /M
Theorem. Let M be a closed 4-manifold. For any initial value Ag € WH2(Q!(gp)),
there exists a global weak solution of the Yang-Mills gradient flow equation (1.1) in the
class V(M,[0,00]). Moreover there exists a finite set S in M x (0, 00| such that the
solution is regular and unique on (M % (0,00))\S.

The gauge transformation s € & = C*°(&p) acts on connections by conjugation: A —
s*A = s 1ds+ s 1As. The curvature is actually a section of the bundle PQT*M AT*M,
and so a gauge transformation s € ® also acts on curvature tensors by Ry +— s*Ry =
Ry a4 = s~ 1Rys. The fact that gauge transformations leave the Yang-Mills functional
invariant, i.e. E(s*A) = E(A), creates a major difficulty for treating the regularity of the

solution.
If a connection D = Dy 4+ A transforms to s*D = D = Dy + A under a gauge transfor-
mation s, then the Yang-Mills gradient flow (1.1) transforms to

{@A =—d3Ra+dga on M x[0,00),

(12) A(0) = Ao on M x {0},

where o = s719;s € Q%gp) (cf. Jost [6]). We call (1.2) a modified Yang-Mills gradient
flow. Conversely, a solution A, a or s of (1.2) yields a solution (s™!)*A of (1.1).

For the proof of the Theorem, we first construct a solution of (1.2) in a finite time
interval (0,7]. Then, we return to (1.1) and show that the energy functional E(A(%)) is
monotone non-increasing with respect to t, which enables us to extend the life span of
the above solution beyond the time T. The singular set S can be characterized in terms
of the local concentration of the L?-norm of the curvature R4.

2. Fundamental inequalities.
Let M be a closed 4-manifold. As preparation, we prove some fundamental inequalities.

Proposition 2.1. Let T > 0. There exist constants C, Ry > 0 such that for any u,
v € L2(0,T; WY2(M)), and any r € (0, Rq], we have

T 1/2
/ / lu|[v|? dVdt <C  sup (/ Jul? dV)
0 JM (z,t)eM x[0,T] \Y/Br(z)

: (/OT/M |Vo[? dVdt + r~2 /OT/M Jof? dth) :

This proposition depends on the following local result:

2.
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Lemma 2.2. There exist constants C, Ry > 0 such that for any u, v €
L*0,T; WY2(M)), r € (0,Ro], ¢ € M and a monotone decreasing radial function
¢ = p(d(z,-)) € L°(B:(z)), the following inequality holds:

r 1/2
2, dVdt <C 2d
i el dvis < o;3gT(A,<z>'“' V)

. ([)T/M |Volp dVdt +r~2 /(;T/M lv]2p dth) .

Proof. First we assume ¢ = 1 and let 3, = vol(B,(z))™" /B ( )v(-,t) dV be the mean
- (z

value of v. By Holder’s inequality, we have
(2.1)

T T 1/2 1/2
2 < 2 4
fy Jy v avae <c | (/B wav) " ([ ottav) e
1/2 (T 1/2
< 5 ) . ( et ) .
_cozltlgT(/rw wfav) - [ /B,|” wolt + |oatdV) | dt

By the Sobolev embedding theorem, we have

(2.2) ]B lo— ot dV < c(/B |Vv|2dV)2.

On the other hand, by Hélder’s inequality,

/Brw,ﬁdvgc*/& ;ﬁr—)/rvdV

4
< Cvol(B,)~ /B vdV|
1 ! 2 2
. _
< Cvol(By) (/B ol dv)
2
< —2< 2 ) _
<Cr /Br jv|* dV

By (2.1), (2.2) and (2.3), we have Lemma 2.2 for ¢ = 1.
By linearity, Lemma 2.2 holds also for step functions. For general ¢, we can show the
assertion by approximating ¢ by step functions. 1

4
av

(2.3)

Proposition 2.1 is derived from Lemma 2.2 via the following argument. For the proof,
see Struwe [15].

Lemma 2.3. There exist constants K, Ry > 0 depending only on M such that for any
r € (0, R there exists a covering of M by balls B, j5(z;) with the property that at any
point x € M at most K of the balls B;(x;) meet.

-3-
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We next give some identities for the curvature form R4. For the connection D = Do+ A,
we note that R4 has the following expression.

R4 = Rp, + dA + [A, A].

In what follows, we shall abbreviate dp, by d.

Lemma 2.4. If A is a smooth solution of (1.1), then

(2.4) &Ry =—-AHRy,,
(2.5) 8R4 = —AYR4+ [Ra, Ryl
(2.6) O|Ra| < A|Ra|+ C|R4J?,
2.1
VPR, < AV R+ cfj WORANVE DRy,  for n=1,2,--

1=0

where Ag and A", are the Hodge and the rough Laplacian, respectively, i.e., Af{ =
*da +dadly and A = D*D.

Proof. Note that d40;4 = 8;R4. Applying d4 to (1.1), we have
O Rp = —dad4Ra = —AYR,.
The Bochner-Weitzenbock formula gives
(A4 — AQ)R4 = [Ra, Ral,

hence we obtain (2.4) and (2.5).
Moreover, for 3 € Q%(gp) we have

[l Al = (¥, Aje),

which implies (2.6).
For the inequality (2.7), we will establish first that the derivatives of R4 evolve accord-
ing to the equation

(2.8) 8 Ry = VAV RA + 3 VDR + VO R,,
=0

4
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where A * B denotes some linear combination of tensor products of components of A and
B. Indeed, the case n = 0 is just (2.5). Assuming (2.8) for n and using (1.1), we have

BﬁA,ﬁX‘)RA = V~7Akaﬁf:)1‘3A + [d4Ra,, %PRA]

=Va, (63,65;”& + 3 VYR, + 65;“‘)1%,,) + [d4Ra,, VIR
=0

e ) Hep | otz
— VAT TPR) + S VIR« VG IR,
1=0

where A = 3" Apdz, this implies that (2.8) is true for n + 1. The inequality (2.7) follow
from (2.8). 1

3. Construction of the local strong solution.

In this section, we show the existence of a time-local smooth solution for (1.2). First
we rewrite (1.2) as an equation for the connection A. To make (1.2) a parabolic system
for A, we take @ = —d%A, (cf. Kono-Nagasawa [8]). Then, (1.2) is equivalent to the
following for V = Dy a connection on gp,

—“agt) = V/V;4; ~ [R], 4)]
+[A7, VA + [A), Ail] + [ViA? — VIA; + [A;, A7, Aj]
+ VI[4;, Al + [47,[4;, Al

Ai(®)yeo = AY,

(3.1)

where A(t) = A;(t)dz’ € Q!(gp) is the unknown function, A0 = Ago)dw‘ € Q(gp) is the
given initial data, and R = R,‘jdaci A dz? is the curvature 2-form of V.

Since we construct only the local solution for (3.1), we do not have to restrict the
dimension of M. Making use of fractional powers of the Laplacian, we shall prove the
existence of a strong solution A(#) of (3.1) on a finite time interval (0,T"). To this end,
let us introduce some notation. The space L7(Q!(gp)) denotes the usual L"-space with
the norm denoted by || - ||;. We define an operator £, on L"(Q(gp)) by

L.Ai = —VIV;A; — [R!, 4;], for A€ D(L,)

with domain D(L,;) = W2?"(Q}(gp)). Then (3.1) may be rewritten as the following
equation on L™(2(gp)):

dA
62) {E+£,A+Q(A) =0,
A(0) = A

-5



KSTS/RR-92/005
September 30, 1992

where Q(A) = Q1(4) + Q2(4);

Qi(A)i = 2[47, V; Al + [Vidl, 4;] + V[4;, A4,
Q2(A); = 3[4, [4;, Ai]).

Our result now reads:
Theorem 3.1. Let dim M = n and let A®) € L*(Q(gp)). Then there exist T > 0 and
a function A(t) on [0,T) with the following properties:

(1) A € C([0,T); L™(Q'(gp))) N C*((0, T); L*(2'(gp)));

(2) A(t) € D(L,) for t > 0, L, A € C((0,T); L*((gp)));

(3) A is a solution of (3.2).

To prove the Theorem, we need some preliminaries. Since we are interested only in the
local solution, we may assume that £, has a bounded inverse £;! on L™(Q!(gp)). Hence
by the wellknown theory of elliptic differential equations,

(3.3) Al g2r < CellCrAlls, for A€ D(Ly) (1<r<oo)

with a constant C, independent of A. Moreover, —L, generates a contractive holomorphic
semi-group {e_w’ }i>0 of class C%in L’(Ql(g p)). Therefore we can define the fractional
power L% (0 < @ < 1) of £, and get a continuous embedding

(3.4) D(LY) — H*™"(QY(gp)), 0<a <1,

where H™" denotes the space of the Bessel potentials. (see, e.g., Fujiwara {3]).
In the following, we shall work mainly with r = n and write £, = £ for simplicity.

Lemma 3.2. If A € D(L®) for 1 < a <1, then Q1(4), Q2(A4) € L*(Q(gp)). In fact,

1Q:(Alln < CIL>Allall LY All,

(3.5) .
1Q2(A)ln < ClILAll|lLY/*AlI2.

If A, B € D(L*) for } <a <1, then

1Q1(A) — Q1(B)la < C(IL*(A ~ B)||n 1L /2 Al
(3.6) + 1LY AlnILY*(A — B)|la),
1Q2(4) — Q2(B)ln < C(ILY*AJ2 + |14 Bl)I£*(A = B)|ln,

where the constant C' depends only on a.

-6-
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Proof. By (3.4) and the Sobolev embedding theorem, we have D(L%) — L*(QY(gp)),
D(£Y?) — HY™(QY(gp)), D(LY*) — L**(Q(gp)), where — means a continuous inclu-
sion. Hence it follows from Holder’s inequality that

1Q1(A)lln <Cll Aol VAl < CIL*Allall LAl
1Q2(A)lln <ClIAI3.lIAllo < ClIL*AllalIL* AR,

which shows (3.5). The inequality (3.6) is an immediate consequence of (3.5). ]

Lemma 3.3.

(1) FA e D(L*) for  <a <1, then

(3.7) 1L AQuAlln < MLV ALl Al
I|L_1/4Q2(A)”n < M||£1/4A||i

(2) If A, B € D(L*) for <o <1, then

I£=Y4(Q1(4) — Q1(B))lln M(IL* (A~ B)||alI£ Bl
(3.8) + LA ALY (A = B)lln)
1£74(Qa(A) — Qa(B))lla <M(IL*All% + L/ BIZICY (A ~ B)ln,

where the constant M is independent of A and B.

Proof. It is easy to see that £¥, the adjoint operator of £, in L"(Q!(gp)), satisfies

Ly =Ly,
where 1/r +1/r' = 1.

Take r € (1,00) so that 1/r =1/n+1/2n. Then by (3.4) we have ||Al|,s < C[|£:‘{4A”n/
for all A € D(Ci{‘i) with C independent of A (n' = ;21). Hence Hoélder’s inequality
yields

(1 71Qu(4), )] = [(@1(), £7)

< @Al e el

< CllAlaal VAl L L7 ol

< MLV AL Al ol
for all ¢ € Q!(gp). By duality we obtain

1E4Qu(A)ll < MILY*AllullCM Al
-7-
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Similarly, we have for r = QT"’

[(£14Q5(4), ¢)| < 1Q2(A)llrllplla
< CllAI el = Cll ANl
< M| A el

for all ¢ € Q!(gp), from which it follows that
L= Qa(A)lln < ML AL

Using (3.7), we easily get (3.8). 1
Lemma 3.4. Let A® ¢ L*(Q'(gp)). Then there exist T > 0 and a function A(t) on
[0,T) such that

(1) 4 € O(0,T); L*(@(gp))) 0 C((0,T); D(LY)) with

(3.9) sup t*||[L¥A(t)|ln <00 for 0<a< §;
0<t<T 4
(2) A is a solution of the integral equation
t
(3.10) A(t) = e 4© /0 e=(t=9LQ(A)(s)ds, 0<t<T.

Proof. We solve (3.10) by the following successive approximation:

{ Ay(t) = e A0,
(3.11)

1
Aj+1(t) = Al(t) _A e"(t—s)CQ(Aj)(s) d‘s, .7 = 13 23 et
Let us first show that

(3.12) sup t7||LYA;(t)|ln £ Ka,j, 0L a< E, i=12,---.
0<t<T 4

Indeed for j = 1, we have
L2 Ay ()| = 12| L% A, < |AD)|, forallt>0

and hence we may set Ko 1 := supgcser t®]|[L%e £ A0,

-8-
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Suppose that (3.12) is true for j. Then it follows from Lemma 3.3 that

12 A a ()l UL A Dlln + [ €24 IELQUA ) (S)]n ds
<Kot + [ (¢ = 5y AL QUAy ()l s
<Ko 1t™®
£ M [ (= sy L AL A (3o + I A5 s
Kt + M(Eyja Koo + Kdpag) [ (= 9)7 A4 ds
<Ko1t™ + MB(3/4 — o, 1/4) (K174 j K12, + Kig j)t

for 0 < @ < 3/4 and 0 < t < T, where B(-,-) denotes the beta function. Hence (3.12) is
satisfied with j replaced by j + 1 and

(313) Ka,j+1 = Ka’l + MB(3/4 -, 1/4)([{1/4’]‘}{1/2’]‘ + I{f/4’])

(3.13) shows that {Ka,;}52; is a closed recurrence for a = 1 and @ = 1. Now let

ki := max{Kysj, K12,;} ( =1,2,---). Then by (3.13), we have

(3.14) kjv1 < k1 +2MB(K? + k%), B =B(1/4,1/4).

for j = 1,2,---. By (3.14), we see that there exist positive constants m, and k such that
if

(3.15) ky < my,

then

(3.16) ki <k forallj=1,2,---.

In fact, m, is determined by the local maximum of the function f(z) = z —2M B(z% +z%)
and k is the positive root of the equation f(z) = ki.

Assume (3.15) for a moment and set

Bj(t) = Aj(t) — Aja(t), 7=1,2,---, (4o(t)=0).
_9-
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Then it follows from Lemma 3.3, (3.7) and (3.15) that
(3.17)

IE Byl < [ €71 CIELQ(A,)(5) = Q(Aj-1)(o))ln ds
< [ N £ QUAL () — QA1) (o))l
< M [ (¢ =) {IE Bl Ay ()l
+ €245 1 (3)lIa €14 Bj(5)
FIET A () + 1EV 45 IIEA By ()l } ds
< M [ (¢ = ) LB (5 ™+ IE By ()2 ds

1
+ 2MK? /0 (t — 8)" V4 CYAB;(s)||lns 22 ds

for0<a< %.
Taking a = 1/4 and a = 1/2 in the above estimate, we get by induction

(3.18) { ICY4B(t)]ln < K{2MB(k + k2)}F~1¢~1/4

|CY2B5(0)]a < (2MB(k + ROV, =120
By (3.17) and (3.18),
(319)  I£°Bi(®)ls < HEMB(k + )Y 2MB( - a, )k + K},

0<t<D).

Since k satisfies k = k; —2MB(k*+ k3), under the assumption (3.15) we have 2M B(k +
k%) =1 — k1/k € (0,1) and hence by (3.19) the sequence A;(t) = E{___l B,(t) converges
absolutely and uniformly in L*(Q'(gp)) with respect to ¢t € [0,T]: A;(t) — A(t), where
4 € BC(0,T); I"(Q(9p))).

Moreover, again by (3.19), for each 0 < a <  there exists A e C((0,T); L9 (gp)))
with t*A@)(¢) € BC([0,T); L*(2'(gp))) such that supge;qt®||L*4;j(t) — A@(#)|[n — 0
as j — oo. Since L is a closed operator on L"(Q!(gp)), we can conclude that A €
C((0, T); D(L>)) with L¥A(t) = A®)(t) for all 0 < ¢t < T, and hence

(3.20) sup t¥||L¥(A4;(t) —A{@))|ln =0 (0L a< §) as j — oo.
0<t<T 4

-10-
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Now again by Lemma 3.3, (3.8), (3.16) and (3.20),

¢
I [ e95QUA)(s) — Q(AX(s)) dslla
¢
< [ 18I 1L (QCA ) — QAN s
¢
<M [t = oA {IILV2(A4(5) = ALY As(5)ln
+ LA ln L 4(Aj(5) = A(s))ln
FAEYAGS)IE + IE A (RNEY*(As(s) — AWl } ds
<MEB sup s'*(|L2(Aj(s) = A(s)lln
O<s<t
+ (MK +2MK*B) sup s'4|IL/4(4;(s) = A())lln
O<s<t
—0 asj— oo
Hence under the assumption (3.15), we see by (3.11) and the above convergence that A
is the desired solution of (3.10).
Tt remains to show that we can take T so small that (3.15) is satisfied. Since D(LY/?) is

dense in L™(02!(gp)), there exists a function A(®) € D(£1/?) such that |A@—-A©), < e
Hence it follows that

ta”Lae—tﬂA(O)”n < t““L‘.”e_“:(A(O) _ A(O))”n + ta”l:ae—t.c‘:l([))“n
< JA® — AOY, + #2124,
< G+ A0, >0,

4
for @ = 1/4 and @ = 1/2. Now T may be taken to be T = ('L’IIC—I/TAW) . This completes
the proof of Lemma 3.4. 1
To show that A in Lemma 3.4 also satisfies (1), (2) and (3) in Theorem 3.1, we need:

Lemma 3.5. Let A be the solution of (3.10) given by Lemma 3.4. Then for 0 < a <
38, L*A(t) is a Hélder continuous function on (0,T) with values in L*(QY(gp)). More
precisely, for 0 < a < % there exists 0 < n < % — « such that

(3.21) IL2A®t + k) — LEA()||n < C(RT=7 4 R3/4=a3=3/1)

holds for all h > 0 and 0 < t < T, where C = C(a,n, M, k) is independent of h and t.

Proof. An elementary calculation shows

(e = 1)A|l. < AY||LYAlln, A€ D(LY), 0<y<]1,
-11-
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for all & > 0. Hence by Lemma 3.3 (2), (3.12) and (3.16),

IL*A(t + h) — LXA®D)]la
<l - 1)ee A,

t+h
+ [ e e AL LA QUAY 8 ds

t+h
+ / ”(e—h[, _ 1)La+1/4e—(t—s)5£~—1/4Q(A)(S)”n ds
13
<RI Lo A,
t+h
o [T+ = e LY AN EA A + IET AR ds
t+h
+ h"/t (t — )@ VA L2 AGs) | | LA AGs) I + IC1 /2 A(S)]I3) ds
t+h
<K AO |, + M(k? + £*) /t (t+h— )~ 1/4s3/4 gs
t+h
t

+ MK + kP)RT / (t — s)—a1/4=ng=3/4 g

_ M2+ k) 34
<prp—a—n| 4(0) 3/4—ay—3/4
<h"t 1A% ln + 3/i—a h t

+ M4+ E)B(3/4 —a -9, 1/, 0<a< %,

for all t > 0, h > 0, where 0 < 7 < a — 3, from which (3.21) follows.

Proof of Theorem 3.1. Let A(%) be the solution of (3.11) given in Lemma 3.4. Then
by Lemmas 3.2 and 3.5, we see that the function Q(A)(¢) is Holder continuous on (0, T')
with values in L®(Q!(gp)). By the general theory of holomorphic semi-groups (see e.g.
Tanabe [16, Theorem 3.3.2], A is also a solution of (3.2) in the class of (1) and (2) in

Theorem 3.1. This completes the proof.

4. Estimates.

Now we return to the case when M is a closed 4-manifold. In this section, we give

various estimates for the curvature tensor, which will be used to characterize the singular

set S. Recall that, for 0 < ¢ < {1,

VM, lto, 1)) = {A € QUM  [to 1], 37

to<t<ty

-192-
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Lemma 4.1. Let A be a solution of (1.1) in the class of V(M, [0,T]). Then the function

B() =3 [ IRaC,HP 4V,

is non-increasing.

Proof. Taking the L2?-inner product of R4 in (2.4), we have

d1
=3 /M |RA?dV = — /M |d4R a2 dV <0,
for any ¢ € [0,T], which gives Lemma 4.1. 1

By Lemma 4.1, if A is a solution of (1.1), then for any t € [0, T},
B(t)= [ |RaC,8) 0V,
()= [, IRaC0)

is bounded from above. For the solution A € V(M,[0,T]), put

1/2
(4.1) e(r)=e(r, A, T)=  sup (/ |RA(-,t)|2dV> .
(z,t)eM x[0,T] \YBr(z)

In the sequel we give a priori bounds for the norm of A in terms of the initial energy
E(Ao) = Eo, T and &;. Here g1 > 0 is a parameter depending only on M and P which will
be determined in Lemmas 4.2-4.4. To obtain these, we use Sobolev embedding theorem
for 4-dimensional case, which plays an important role for our purpose. We will set £; to
be the smallest of the numbers £; occurring in these Lemmas.

Lemma 4.2. There exist constants € > 0 and C > 0 such that for any solution A €
V(M;[0,T)) and any number r € (0, Ry, the following inequalities hold:

(4.2) sup / |V 4R42dV < C,
0<t<To /M

(4.3) sup / IV4AR4|2dV < C,
0<t<Tp v M

provided e(r) < e1.

Proof. Multiplying (2.7) by [V 4Ry| for n = 1, we have

dl1 (T = T,
—= VaR4|? dVdt V|V ARA||? dV dt
" = [ [ 1VaRrat avit+ [ [ VIV aRAIPdV

T .
< 2 )
<C /0 /M [V AR4?|Ra| dV dt

-13-
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The right hand side of (4.4) is estimated by
(4.5)

T .
[ 19 aRAPIRAl dVat
0 JM

12 ; o -
< d I aRA|[2 AV dt + 772 2 gVt
<o ([, 1malav) " ([ f w9amaipava e [T [ imaavar),

with the help of Lemma 2.1. If e(r) < €1, by (4.4) and (4.5), for the function u(t) =
./M [V aR4|%(t) dV, we have

-}tu(t) < C’Eor_2u(t), Ey = E(0) = E(Ao),

which implies the result (4.2) by Gronwall’s inequality.
On the other hand, (4.4) and (4.5) yield

T -
(4.6) /0 /M |VIVaR4|[?dVdt < C,

where the constant C' depends on Eg, M, P and T'.
For the statement (4.3) multiplying (2.7) by |V4Ra4| for n = 2, we obtain

d1l (T =9 2 T 52 2
225/0 /M V3R dth+/0 /M IVIVARA||" dV dt

(4.7) et ~2 i ’ ' .
< .
_C/o fM IVaRal 'RAldth'*'C/O /M IVaRA|*|V4RA| dV dt

Using Lemma 2.1 and (4.6), we obtain
(4.8)

T . T . ~
[ [ VI94RaIPIRA 4Vt + [ [ 1V aRAPIVARAl dVat

1/2 T T
< 2 v 2 -2 2
_Cozttng(/Br(m)lRM dV) (/O/MW[VARAII dVdt +r /0/M|RA| dth)

T T T
&2 p 12 ~ 5 y . )
+ C/O /M V% Ral? dV dt + c/0 /M VIV aRA|[ dV dt + /0 /M ¥ ARAJ? dV dt.
If &(r) < €1, by (4.4) and (4.5), for the function v(t) = ./M ¥4 Ra|%(t) dV, we have

9 0(t) < CBwr0() + C(1),

which implies the result (4.3), by Gronwall’s inequality. 1
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Lemma 4.3. There exist constants e > 0 and C > 0 such that for any solution A €
V(M;[0,T)) and any number r € (0, Ro], the following inequality holds:

(4.9) sup ] |A[2dV < C,

o<t<Ty /M

provided &(r) < €1.

Proof. Multiplying (1.1) by A and then integrating, we have

dt2// |A|2dth<// (d4Ra, A) dVdt

(4.10) T
gcfo /M[VARA|2dth+/0 /M|A;2dvczt.

For the function u(t) = /M |A|%(t) dV, we obtain

%u(t) < Cu(t) + C(t),

by using (4.10). The claim follows from Gronwall’s inequality. 1

Lemma 4.4. There exist constants €; > 0 and C > 0 such that for any solution A €
V(M;[0,T)) and any number r € (0, Ro), the following inequality holds:

(4.11) sup / IVA2dV < C,
o<t<Ty /M

provided ¢(r) < €;.
Proof. Applying V4 to (1.1), multiplying by [V 44| and then integrating, we have
7 2/ J 19441 Ve < / [, ~(VadaRa, ¥ 44) vt

(4.12) )
50/0 /M|v?4RA|2dth+/0 /M|VAA|2dth.

For the function u(t) = /M |V 4A]2(t) dV, using (4.12) we obtain

d
%u(t) < Cu(t) + C(2).
By Gronwall’s inequality, we obtain
S A2
. <cC.
(4.13) sup /M IV 4A[2dVdt < C

o<t<T
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On the other hand, since R4 = dqA — }[A, A], we have
4.14 / A A 2dv</ Ral2dV / VAP dV < C.
(4.14) AT AV < | IRAPAV + | [VaA[dV <

Using V4A = VA + [4, A], (4.13) and (4.14), we get (4.11). ]
Lemma 4.5. For any solution A € V(M,[0,T]) of (1.1), we have

[ |o.AP avdt < Ey = E(0
[, ava < =500
Proof. Multiplying (1.1) by 8;4 and integrating over M x [0, T], we have

/OT/M |8, A2 dVdt = %/OT/M ORAI Vit < %/M IR4[%(0) dV.

As the consequence of Lemmas 4.2-4.4, we obtain:

Proposition 4.6. There exist constants €1 > 0 and C' > 0 such that for any solution
A € V(M;[0,T)) and any number r € (0, Ry, the following inequality holds:

sup [ (IRa*+ [VARAI? + [VARA + A + VAP +|8,A) dV < C,
o<t<To /M
provided &(r) < ;.
As a corollary of Proposition 4.6, we have:

Proposition 4.7. Let Ty > 0 be the maximal existence time for the local smooth solution
constructed in Theorem 3.1, with the initial value Ay € W12(Q%(gp)). Then there exists
a weak limit A; of the solution A(t) in W12(Q%(gp)) as t — Tp.

5. Proof of Theorem.

Let T = T(Ap) be the maximal existence time for the smooth solution of (1.1).

Theorem 5.1. Let Ag € U2, and let A € V(M,[0,T)) be a solution of (1.1). The

existence time T(Ao) is characterized by the condition

1/2
li Ry|*d > for all Ry).
1;1111_3}11? (jBr(z) |R 4| V) >¢e for r € (0, Ro]
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The solution A is regular on M x (0, T)] except for finitely many points {(z',#!):1 <1<
L}, characterized by

1/2
li 4y > for all )
o (sl ) zen i reom

Moreover, the energy E(A(:,t)) is non-increasing.

Proof. Let Ag € 412. By Theorem 3.1, there exist a local regular solutions A(t) of (1.1).
By Proposition 4.6, we see that the maximal existence time T(Ay) is characterized by

1/2
5.1 lim su R 2dV) > ey,
(5-1) T’—»T(AI(:) (/Br(z)l Al !

for some r > 0 and all € M. Theorem 5.1 follows immediately from:

Lemma 5.2. Put

Spe = {w eEM: /B “ |RA(, T*)?dV > &y forall re (O,RO]} .

Then St+ consists of finitely many points.

The lower semi-continuity of the energy yields

/ |R4?dV < limint |Ral? dV
'xT* T—-T*T<T* JM'xT

(5.2) < liminf |R4|>dV — i/ |Ral*aV
= r=re1<r Juxr A = B @yxr A
< Ep — Liey,

for any r € (0,Ro] and any M' C M\ U{:=11 B,(z"). Passing to the limit r — 0 and
M' — M, we have
E('aT*) S EO - L1€l7
which means that L; is finite by (5.2). This gives Lemma 5.2. 1
To obtain the main Theorem in the introduction, it is enough to show:
Theorem 5.3. For any initial value Ay € V2, there exists a weak solution A €

V(M,[0,00)) of (1.1). The solution A is regular on M x (0,00) with the exception
of finitely many points {(z',#') : 1 <1 < L} characterized by

lim sup |Ral?’dV > €1, forall re (0, Ry].
T'—=T JBr(z)
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Moreover, the energy E(A(:,t)) is non-increasing.

Proof. It is sufficient to prove that the solution can be extended to the time co.
Assume the solution is at most extendable to time 77 > 0. Since the singular set S is
finite, A(-, T}) is regular on M\S N {t = T}'}. Moreover, since the solution A belongs to
c([0,T); W3(Q'(gp))), Proposition 4.6 yields A(-,T}) € 4%, By Theorem 5.1, there
exists a number Tj > 0 such that the solution A may be extended to [0, T} + T3] and T3
is characterized by the property in Theorem 5.1. Iterating this procedure, we see that
the solution A can be extended to time infinity. 1

As an easy consequence of Theorem 5.3, we have:
Corollary 5.4. If E(Ap) < €1, then there exists a smooth global solution for (1.1).
Finally, we characterize of the singular points for A(t).

Theorem 5.5. Let A be a solution of (1.1) constructed in Theorem 5.2, and suppose
that (z0,T), T < oo, is a singular point. Then there exist sequences Tm — zo, tm T T,
rm € (0, Ry, ro — 0 and a regular Yang-Mills connection Ao on R* such that

ATmy(Imytm)(x’ t) = A(T’m T+ $0,7'12n “tm + T)

tends to Ag locally in 432, Moreover the Yang-Mills connection Ay extends to a regular
Yang-Mills connection on S*.

Proof. Let z° be a singular point of A at time T characterized by the condition

lim sup |RA|2dV > €.
T'=T JBr(z0)

Therefore there exist sequences T, — &', tm T T, 7m € (0, Ro) with r — 0 such that

€1 = |RA|2 dav.

By (5m ) Xtm

For any t € [ty — €,tm], we have

tm
2qy > &L 2 gV < CE.
/Bz,,,,(zm)xt'Ré' av>3, [7 [ VRV <CB

Hence the sequence Ap := A;,, (z,,,1,,) Satisfies the estimates on D, := {(z,t) :rm -z +

Tm € By(20),72, -t +tm > 0}:
/ |Ra,|?dVdt < C,
D x[—¢,0]
01 Ap|? dVdt — 0 .
~/7.)m><[—s,0]| Al — (m — o0)
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Therefore there exists a subsequence {A,,} such that A,,(-,0) converges to Ag weakly in
#>%(R*) and strongly in Llll(;z(R4). Passing to the limit m — oo, it follows that Ag is a
Yang-Mills connection with finite energy on R%. By Uhlenbeck’s result [17], Ao extends
to a Yang-Mills connection on a bundle P’ over S*. ]
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