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A POINCARE-BIRKHOFF-WITT THEOREM
FOR INFINITE DIMENSIONAL LIE ALGEBRAS

HipEKI OMORI®, YosuiaAkl MAEDA**), AKIRA YOSHIOKA®

§0. INTRODUCTION

Let (1<) Ay £--- <A, <--- be a series of positive real numbers such that

—s . .
E A% < oo for some integer sq.
n>1

For each n € N, formally consider e, to be an eigenvector corresponding to the
cigenvalue A,,. Define for any s € Z

g’ ={p= Z an€n; an € C, Z lan]?A2* < co}.
nelN neN

g’ is a Hilbert space for every s € Z with the norm ||p||2= 3", . lan[?A%°. The
inclusion mapping ¢ : g* — g°~! is a compact operator for every s € Z. Set g = N, e’
{8,8° s € Z} will be called a Sobolev chain. Set g* = J, g*. As g* is the dual space
of g°, g* is the dual space of g.

We denote by C°°(g®) the commutative algebra of all C* functions on g®. Since
C>(g*~1) C C*(g*), we set C°(g*) =[], C>®(g*). Any u € g, regarded as a linear
function on g*, is an element of C*°(g*). Let (®g*)™ be the Banach space of all
continuous symmetric m-linear mappings of g=* x --- x g~? into C with the natural
operator norm, || |-, and set (®g)™ = (,(dbg*)™ with the projective limit topology.
Hence, any element of (®g)™ can be naturally viewed as an element of C*°(g*) as a
homogeneous polynomial of degree rn. Thus, we define a polynomial of degree m as
an element of 3 ;"  ®(®g)*, where we set (®g)° = C. Denote by P(g*) the space of
all polynomials on g*.

We define the C*°-topology on C°°(g*), i.e. the C° uniform topology on each
compact subset: a basis of neighborhoods of 0 is given by the family {N(K,m,s,€)}
for compact subsets I C g*, non-negative integers m, integers s and € > 0, where

N(I(7 7”’15)6) = {f € Coo(g*); ”(dkf)(p)”—a <e forVpe K ,0 <Vk <m, }a
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where (d* f)(p) is the k-differential of f regarded as an element of (®g)*.

In the following, we denote C°°(g*) with the C* topology by a for simplicity. a is
a topological algebra over C.

We are now interested in "deforming” a to a noncommutative but associative al-

gebra.
Introducing a formal parameter v, we consider the direct product

af[v]] = H v'a

with the direct product topology. We want to define a continuous product * on a[[/]]
with the following properties:

(A1) *: a[[v]] x a[[v]] — a[[v]] is an associative product.
(A.2) v commutes with any element of a[[v]] and 1% f = f*1 = f for any f € a[[v]].

For a product * on a[[v]] with (A.1~2), we set for any f,g € a,

f*_(]= Zymwm(f,g), Trm(f’g)ea’

m=0

By (A.1~2), we see for any f,g,h € qa,

(01) { (Dm) Zk-i—l:m Trk(ﬂ-l(.ﬂ g)v h) = Zk-}-l:m ﬂ-k(f’ 7”(97 ’7'))7 Vm Z 0)
mo(f,1) = mo(1, f) = f, ®m(f,1) = 7m(1,f) =0, Ym > 0.

A continuous m-linear mapping © : a X --- x a — a is called an m-differential
operator of order k, if at any p € g*, 7(fi1,- -, fin)(p) = 0 holds whenever (f1,--- , fin)

satisfies (d*t1(f1f2- - fm))(p) = 0.

Now suppose g is a topological Lie algebra with Lie bracket [, ]'. For any f,g € q,
df(p), dg(p) are elements of g** = g for any p € g*, and (df), : g* — g is a C
mapping, i.e. df : g7° — g'is C* for any s, t. Thus, we may define {f, g} € C*(g*)
by

{f,9}(p) = [df (p), dg(p)]'(p).

It is obvious that (a,{, }) is a Poisson algebra.

Definition 1. (a[[v]], %) is called a deformation quantization of a if * satisfies (A.1~2)
and the following (A.3~4):

(A.3) mo(f,g) = fg (the usual product) and m;(f,g) = —1{f, g} for any f,g€a.
(A.4) 7, is a bidifferential operator of order 2m and 7, (f,g) = (—1)™7.(g, f)-

Our main theorem of this paper is as follows:
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Theorem A. There exists a deformation quantization (a[[v]],*) of a such that
Tm(@,8) = 0 for any m > 2. Moreover, P(g*)[[]] is a subalgebra of (a[[V]], *).

Thus, the quantized algebra (a[[v]], *) naturally contains the universal enveloping
algebra of the Lie algebra g, i.e. the Lie algebra generated by g and v with the
relations [X,Y] = v[X,Y]".

For any k € N, let x4 be the linear function on g* defined by zx(p) = (e, p)o.
Zy, -+ ,Tk, -+ are elements of C*(g*).

In the quantized algebra (a{[v]], *), we have

! !
Ti*Tj = TiT; + 51/[2‘,,-,:”] , SO T *T; —xj*x; = vzi z;].

Hence, the above theorem extends the Poincare-Birkhof-Witt theorem for finite di-
mensional Lie algebras.

The method of proof of our main theorem is as follows : suppose we have {7, 7y,

-, Tm—1} satisfying (O,) in (0.1) for 0 < s < m — 1. Our problem is to construct
mm such that (O,) is satisfied for s = m.

For multi-indices a = (ay,-++ ,ak, ), we set |a| = > ar. For a with |a| < oo,
we set @ = z{'z5? ... xf* ... We shall first construct mn,(2%,2#) for monomials
2%, 27, and then applying Taylor’s formula. To show key properties of m,,, we usc
the following polynomial approximation theorem :

Theorem B. Tlhe space of all polynomials is dense in C*(g*) in the C* topology.
The condition lin, .o An = 00 is essentially used in this theorem.

Note that the assumption ) 5, A;*° < oo, for some integer s, is crucial for
Theorem A. In fact, for a separable Hilbert space E, let H = E@ E & C be an infi-
nite dimensional Heisenberg Lie algebra with the skew-symmetric continuous bilinear
mapping 6 : (E® E) x (E® E) — C given by 8((u,v),(v',v")) = (u,v") — (v,u).
Then, f((u,v,c)) = |[ul|?, g((u,v,c)) = ||v||* are polynomials of degree 2 on H* = H,
but the *-product f x g diverges (cf. [OMY1] (2.9)). Thus, there is no deformation
quantization of C*°(H).

If g is the Lie algebra of all C® vector fields on a compact manifold, then Theorem
A can be applied for g . Thus, there are several applications including quantizations
on coadjoint orbits, which will be given in forthcoming papers.

§1. SMOOTH FUNCTIONS ON g*

1.1 Polynomial approximation theorem.
First, we note the following :

Lemma 1.1. There exists an increasing series of compact subsets Ky C I{a C --- C
I, C --- such that {JK, = g*. For any compact subset ' C g*, there is I'p
containing I.
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Proof. For any positive integer s, let D_, be the open ball in g~* of radius s. It is
easy to see that D_, C D_,_; C --- . Since the inclusion mapping ¢ is compact, D_,
is a relatively compact subset of g=*~!, and hence of g*. Set I, = D_, in g*.

Let p € g*. By the definition of g*, there exists s such that p € g=°. Suppose
llpll=s < m for a positive integer m. Setting n = max{s,m}, we have p € D_,.

Let I C g* be a compact subset. Suppose for each positive n, there exists p, € I{
such that p, € g* — I{,,. By taking a subsequence if necessary, there exists p, € g*

such that po € g* — D_, for any n. This contradicts the above fact. O

Proof of Theorem B. Consider now a C* function f on g*. Let I be an arbitrary
fixed compact subset of g*. By Lemma 1.1, one may assume that X' C D_,, for some
n. Since D_,, is relatively compact in g~/ for any { > n and f is C* on g~!, for any
e and N, there exists § > 0 such that if ||p — q||—; < 8, then ||d’ f(p) — d7 f(q)}| -1 < €
forany 0 <j < M. :

- Let R™ be the subspace of g spanned by ey, - , e, and m,, the projection of g*
onto R™. We regard 7, as a linear mapping of g* into itself. For any point p = Y a;e;
of D_p, set pm = mm(p) (= Yiv, aie;). Then

[P = pmll—r < nAZH™

for any p € D_,,. Since lim \,,, = oo, taking m so large that nA;+" < 6, we find that

f is approximated on I{ by «¥ f.

By the polynomial approximation theorem on R™, we see that on K, n} f is
approximated by a series of polynomials on g*. Thus, the space of all polynomials is

dense in C*°(g*) in the C* topology. O

1.2 Tensor products and differential operators.

For a Sobolev chain {g, g°; s € Z}, we introduced the tensor products (&g*)™ as the
Banach space of all continuous symmetric m-linear mappings of g=% x -+ - x g™° into C
with the natural operator norm, and set (®g)™ = [, (®g°)™ with the projective limit
topology. For L € (®g°)™, setting ||[L||-s = sup |L(z,---,z)| defines a Banach

Tl - ,=1
norm on (&g’)™.
On the other hand, let (®g*)™ be the usual symmetric tensor product of g* as a
Hilbert space, that is, any element a € (®g°)™ can be written as a = 5 a;,...i, i, ®
- ® e, with the Hilbert norm |al, defined by

(1.1) a2 = 3" sy ein X2 - 22

Obviously, the dual space of (®g°)™ is (®g™*)™

There is a natural continuous inclusion of (®g*)™ into (&g*)™. Moreover, by the
assumption that ) ., A7 < oo, we see also that there is a continuous inclusion of
(®g°)™ into (®g**°/2)™. Hence (®g)™ coincides with the inverse limit of (®g®)™.
Taking its dual, we sec that the dual space of (®g)™ is |J,(®g~*)™ with the inductive
limit topology, which will be denoted by (®g*)™.
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For multi-indices o = (ay,--+,ak, ), we set |a] = Y ai. For a such that
la] < oo, we set af = ajlag! - ag!l -+, and

O ¥ 02 Ok o _ A Hoe2 ., 9% ...
%= za'z; Ty . 07 =071072 -0

For any te Z, Ao — /\iml\éaz . /\;cm; v
Z,al:m iaam“ is a homogeneous polynomial of degree m on g* if and only if

> Jaal?A?*® < oo

laj=m

for any s > 0. For any f € a, d'f(p) is a continuous symmetric [-linear mapping of
g7° x -+ x g7* into C for any s, hence d'f(p) € (®g*)" for any s. It follows that
d'f(p) € (®g)". We define the norm |d' f(p)|, by

(1.2) [ f(p)I = D 107 fP(p)A>.

[vl=1
The following is easy to see by the converse of Taylor’s theorem:

Lemma 1.2. f € a, if and only if |[d' f(p)|, < co for any non-negative integer | and
any integer s, and d'f(p) is continuous with respect to p € g*.

It is easy to see that any [-differential operator 7 of order d has the expression

= > T s9°®-- @0
Nt e’
lat---+6]<d !

For any linear differential operator L = ZI al<m a,0° of order m mapping a to itself,
by evaluation at cach p € g*, L defines a continuous linear mapping

Ly= ) a(p)0®: ) @&(®g)* — C.
Jo]<m k=0
Thus, L, € 3, ®(®g*)*. This implics that

L, e Z@(@g")k for some s = s(p).
k=0
Since L is a differential operator of order m, p — L, is a C° mapping of g*
into 3 L, ®(®g*)*. In particular, for any N, (dVL.), € (®@g)V ® S, ®(®g*)*.
This implies that for any t, there exists s = s(t) such that (dVL.), € (@) ®
E:l:o EB(C*)Q—S)’C'

The continuity of (d" L, ), implies that for any p € g* and for any integers t, N > 0,
there exist s = s(¢,V, p) and a neighborhood V,, of p in g=* such that p — (dVL,),
is a continuous mapping of V, into (®g" )N @ 1w, ®(@g~*)*.

Similarly, we have the following criterion:

5
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Lemma 1.3. 7 = ﬁ”a,ﬂaa ® 87, map € a, is a bidifferential operator of
lot+B|<m
order m, if and only if m, g satisfles for any non-negative integers t, N and for any
peg,

(i) there is an integer s = s(t,N,p) > 0 such that

> D10 s(P)PATIATEAD) < oo,

I7|=N ofB
(ii) for any € > 0, there exist s = s(N,t,p,€) and a neighborhood V,, of p in g™* such
that

> S 1077 5(p) — 870 p(@) AN < e for anyg € V.,
]7|=N O’,ﬁ

Proof. Suppose 7 is a bidifferential operator of order m. Then, we have

ma,p(p) = 7((z — 2(p))*, (= — =(p))”)(p)-
At every p € g*, by the same argument as above n induces

13 m= Y ,ﬁ, 7a,p(p)0 ® 0° € (Z (@g*)* Z@(og )*).
lat+-Bl<m k=0 k=0
The differentiability of m, gives the first inequality. The continuity of p (dN7u)p
yields the second one.
Conversely, given 7(c, 3) € a, {a + ] < m, satisfying (i) and (ii), we define 7, by
(1.3). Then, by (i), we have

(1.4) T € (Z B(®g") )®(}: (®g")*)
k=0
for any p € g*. The second inequality (ii) gives the smoothness of p — 7,. Note that

7(f,9)(p) = mp(f,g) for any f, g € a and 7(f, g)(p) depends only on 8% f(p), d?g(p)
for la + f| < m. Thus, n(f,g) € a by (i) and (ii). It is easy to scc that 7 gives a
continuous bilinear mapping of a x a into a. O

For any f € a and p € g*, we sce that f = f(p) -+ Zl<x<°°F(J‘,]))(J‘, — zi(p)),
where Fi(z,p)'= fOJ 52 (T (p) + t(z — z(p))dt. By Lemma 1.3, we have the following:

Lemma 1.4. Let 7 be a bidifferntial operator of order m. Then, the operator L
defined by

L(f)( p) ZW Fiyzi—z; (P))( )

is a linear differential operator of or der m.

Note that a similar criterion is available for 3-differential operators. If =, ' are bi-
differential operators of order m, m' respectively, then =(f, 7'(g, k)) is a 3-differential
operator of order m + m'. If E(f,g,h) is a 3-differential operator of order m, then
E(z;, f,#;) is a linear differential operator of order m — 2 with respect to f.
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§2.ALGEBRAIC PRELIMINARIES

To introduce the obstructions Ry, given in §3, we prepare some algebraic tools,
called Hochschild and deRham-Chevalley coboundary operators. This notion is given
in a purely algebraic manner. So, in this section, we do not specify a and take it only
as an abstract topological vector space.

2.1. Hochschild coboundary operators.

Let a be a topological vector space over C. Denote by CP(a), p > 1, the space of all
continuous p-linear mappings of ax- - - xa to a. We denote by ACr(a) and SC?(a) (p >
1) the set of the alternative and the syminetric p-linear mappings, respectively. If p=0,
we set C%(a)= AC%(a)= SC°%(a)=a.

For any © €C?(a), we define the Hochschild coboundary operator 6, : CP(a) —
Cp_H(“)v p=21, by

(2.1) (6 F)(v1,- -+ vpg1) = m(vy, F(va, -+, vps1))
: r
+Z(_1)iF(v1)”' ,7T('U;',U,'+1),"‘ avp+1)
i=1

+ (1) (F(vy, -, vp)s vpta)
for F' € CP(a), and for p=0, we set (6,v)(vy) = m(v1,v) for any v € a.
By a direct computation using the linearization, we have the following:

Lemma 2.1. For any m,n', 7" € C%(a), we have

Onr' = 8w, 6xI =m, (I = identity) and 6,87 =0,

> bxbpm’ =0,

(m,m! ')

where . eans the cyclic summation with respect to =, n', n".
(m,m! ') ’

d»m=0, if and only if (a,7) is an associative algebra. If (a,7) is an associative
algebra, then 62F = 0, for any F' € CP(a) (cf. [Mc]). In particular, §2I=6,7=0.
Therefore, §2=0 is equivalent to §,m=0.

Let (a,m) be any associative algebra. Suppose mg, 7y, -+, me—1 € C?(a) satisfy

(i) in (0.1) for any integer ! such that 0 < ! < k — 1. We denote §; = 6, for
simplicity. We consider the equation (O ), which is equivalent to

1
(2.2) 607rk = —Qk, where Q)k = 5 Z 61'71']‘.
i+j=k,i,j>1

Since §2=0 by the associativity of m, if (2.2) can be solved, then the right hand side
must satisfy doQx = 0. At the first glance, this looks like a necessary condition for
(a,mo) to be deformed associatively, but in fact this is fulfilled automatically. Namely,
we have
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Proposition 2.2. Let (a,7y) be any associative algebra. If my,my, -+, mp—) € C2%(a)
satisfy (O;) for any integer | such that 0 <1< k —1, then my, -+, mx_y satisfy also
60Qr = 0.

Proof. is seen in [OMY?2], Proposition 1.3.

2.2. p-derivations.
For m € C?(a), we define 87 : CP(a) —» C**(a) (1<i<p), p21,by

(OF F)(v1,- -+ ,vpg1) = (03, F(v1, -+ 04y 0, 0p41))
— F(vy, -, m(vi,vig1)y "+ 5 Vpt1)
(2'3) + 71'(-F(vlv" R TSPREE ,U,,+1),U.‘+1)

for any F € Cr(a).

We call F € CP(a) a p-derivation with respect to m, if OTF =0 for any j, (1<j <
p). By Der?(a, ), we denote the space of all p-derivations with respect to 7. Set also
AP(a, ) = ACP(a) N Der(a, ).

We define mappings g, ¢, : CP(a) — CP(a) by

(24) (UPF)(UI,‘UQ,' ot 7vp—1)vp) = F(vp’vp—la“' y V2, vl)a

(2'5) (CPF)('U;,Uz, T ,vp—l’vp) = F(Upavl)v2a Tt 7vp-—1)-
Since ¢ = 1, we have

(2.6) 1+ +SE)(1-c)=0,
(27) (1—C3 +C§)(1+C3) = 2.

The following formulas are useful for later computations:

Lemma 2.3. (i) For any = € C?(a) and F €CP(a), we have
SnopF = (—1)”+la,,+16(,2,rF,
Of ey F =cp101 F (1<j<p=1), O, F= cf,H(?}'F.

(ii) In particular, if # € SC?(a), we have

§F =Y (=1)'0F, 0fopF =0p105,_;F (1<j<p)
1<i<p
(iii) If # € SC?(a) and 6,7 = 0, we have
(07 = 0741)07 =0 for1<j<p.

2
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2.3. deRham-Chevalley coboundary operators.
For any = € AC?(a), we define the Chevalley coboundary operator d. : ACP(a) —
ACP+(a) by

(28) ((]"F)(’Ul, Tty Up+1)
p+1 .
= Z(—l)l-*—lﬁ(vg,F(Ul," " ,{}i" o 7vp+l))
1=1

+ 3 (1) F(r(vi,0), 01,0 506, D550 3 Vg )-
i<j
By a direct computation using the linearization, we have
Lemma 2.4. For any =, 7', 7" € AC%(a),
dem’ = dprw, dol =, (I = identity), and ded.m = 0,
> dpdpn" =0, (dew)(u,v,w)=2 % =w(u,n(v,w)).

(mym!,m!") (u,v,w)

By the last identity in Lemma 2.4, d.m = 0 if and only if (a,x) is a Lie algebra. If
(a,7) is a Lie algebra, then d2F = 0 for any F' € ACP(a) (cf.[Ma]). Therefore, d% =0
is equivalent to d.m = 0.

In the following, we use the notations

(2.9) 7 (u,v) = %{ﬂ'(u,v) + 7(v,u)}.
for m € C?(a).

Definition 2.5. For mp,--- ,T,_1 € C%(a), we set
(2.10) { Qm = %Zi+j=m,i,j21 bimj, (e (2.2))
Ry = %Zi-{-j:m,i,jZ] dimy,

where d; = d-.

By Proposition 2.2, we have §Qx=0, if mg, 71, -+, mg—1 satisfy (0;) 0 < I < k—1.

Assume that (a,m, 7, ) is a Poisson algebra, i.e. my € SC?(a), m; € AC?*(a) such
that 6071'() = 0, (S(J'Il'] = 0, dlﬂ'l = 0.
We easily have

dr, AP(a,m0) C dny AP (a,mp), d2 =0.
Thus, we can give the following p-th cohomology group HF(a,m,n) of the cochain
complex
dx
s ‘Ap(aa 7T0) = Ap—}-l(a’ 7!‘0) oy,
which is called the deRham-Chevalley cohomology group of the Poisson algebra. By a
similar manner as in Proposition 2.2, we have the following:
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Proposition 2.6. Suppose (a,my,,) is a Poisson algebra. If g, - -+, mk—; € C?*(a)
satisfy (O;) for 0 <1<k —~1,then Ry =0for2<1<k—1 and d Rx=0.

Proof. is seen in [OMY2], Propositions 3.2 - 3.3.
§3. JACOBI IDENTITIES

3.1. The obstruction R,,.
Let a = C°°(g*) and assume the following:

(H.1) Set no(f,9) = fg, m™(f,9)= —%{f,g}. Furthermore, 72, -- , Tm—1 € C%(a)
are given so that (O;): }:‘-ﬂ-:, é;im; = 0 forany [,0 <I<m—1.
(H.2) w:dd = Toven = 0 and 7w, (zi,2;) =0for 2<s <m — 1.

even

(H.3) m, is a bidifferential operator of order 2s for any 0 < s <m — 1.

Remark that if m is odd, then R,,=0. R,.(f,g,h) is a 3-differential operator of
order 2m.

Let Q. be given in (2.2). Under the assumptions (H.1)~(H.3), we want to solve
the equation o7, = —Qmm (cf.(2.2)). By remnarking oy = ¢g, and using Lemma 2.3,
the above equation is rewritten as

(3 1) { (1 - Cg)agﬂ';; = —607'-;:; = ”‘%(1 - 0'3)507"711 = %(1 b J3)Qm,
) (1 + cs)('?g?r,; = —6071"; = —%(1 -+ 03)6()7!',—,1 = %(1 + US)Qnu

where 97 = 8?. By (2.7), the equation (3.1) splits into two equations:

(3.2) or = 2(1 — s + )1 +03)Qnm,

(3.3) (1 = c)@0n = %(1 — 03) Qo

Assume (3.1) has a solution m,,. By applying Lemma 2.3, and (2.6), (2.7), in

addition to 6pQm = 0, @ must satisfy the following consistency conditions for
(3.2-3):

(3.4) (08 = B)(1 = ¢ + E)(1 4+ 03)Qum = 0,

(3.5) 1+ +3)1—03)Qm =0.

However, (3.4) is not a new condition. Namely, we have the following;
Lemma 3.1. If §Q = 0 for Q@ € C3(a), then (3.4) is satisfied.
Proof. is seen in Appendix 6.1.

Next, we consider (3.5), the consistency condition for (3.3).

10
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Lemma 3.2. (14 ¢y + ¢3)(1 — 03)Qm = 4R,,. Thus, the consistency condition of
(3.3) is R,, = 0.

Proof. Since §; = 6} + 6, where (5;‘~t = 6, &, we see by the definition of @, that

) 1 - .
i+j=m,ij>1 i+j=m,1,j>1
Note 03677 = 6Fn7, 036 T = —6Fnt, 036777 = —67 77 by Lemma 2.3. Then,
1 "y t Uy t 7y LI B LI ) L
we have
(3.7) Qm = 03Qm = Tigjmm i1 (6 7] +6777),
Qum+03Qm =231 i 6z‘+7"j_-

By (2.2), (3.7) and Lemma 2.4, we have

+a+3)(1=-03)Qm(f,g,h)=4 Y. & = (fi7;(g,h))

i+j=m,i,;>1 ([:9:h)
(3.8) = 4R, (f,g,]). a

3.2. Cohomological property for R,,.
By Lemma 3.2, %, = 0 must hold for 7., to exist. First,recall the following fact
whose proof is seen in [OMY?2], Theorem 3.4.

Theorem 3.3. Suppose 73, -+, Tm—1 € C*(a) satisfy (H.1) ~ (H.3). Then,
O Rm =0, for j=1,2,3 ie. R € As(a, ).
Hence, by Proposition 2.6 R,, is a deRham-Chevalley 3-cocycle.
Using Theorem 3.3, we have

Corollary 3.4. Assume that (H.1)~(H.3) hold for a = C*(g*). Then, R,, = 0.

Proof. mi(xi,z;) = 0 for | > 2. By the 3-derivation property and by the polynomial
approximation theorem, we have only to check the quantities

Rn(ziszj,2k) = B, mp (@i, 7y (w5, 21))-
(irk)

Ry always vanishes because dr, 7y = 0. Hence, if mi(zi, z;) = ¢ij + Zk cfj:ck, then
R, =0 0O

Remark. We shall call R,,, = 0 the Jacob: identities.
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For the convenience sake, in what follows, we use the notation:
f-g =7r0(fwg)7 (f,g)?,i=7r,:5(f,g), (mZ 1),
(fg-h)®)E = ¥ mi(fig-mi(ht) (m22),
i+j=mi, i1
B A (hlawHEnE = ¥ xEEf(frEe )Y (m2I),
a+b+c=m,a,b,c>1
((fig)* (ht)B)E = ) w2 (xE(f,9), 7E(h,t))  (m > 3).
a+b+tc=m,a,b,c,>1

Now, we shall discuss the cases m = even and m = odd separately.
(E) Case n = 2k: The equations (3.2-3) for myx = 7} + 75, are rewritten as follows:

(a) (1- C3)337r;k = % Z (5;*7‘-;!’ + 5:”;—)
(3.10) i+j=2k,i,j>1

(b) B3my =0,

where we used (3.7). One may set 7, = 0, for this is the trivial solution of (3.10,(b)).

By a little careful computation together with the definition of 5?‘7{';-, 6w, we see
that (3.10,(a)) is equivalent to the following:

(3'11) W;k(fagh)—w;c(h7gf) = E2k(f’g7h)7
where
(312) EZk(fv.q)h) = W;k(fag)h—w;k(h)g)f

+{(H 9t g - (ha)t, N
— ((h £) 75 9) 2%

Esk(f, g, k) is a 3-differential operator of order 4k.
(O) Case m = 2l + 1: The equations (3.2-3) are changed into

(3.13) { (a) 7y = (1 — 3+ )1+ 03)Qa4r

() (1- c3)ag7r;l+1 = %Ei+j=2l+l,i,j21(6?-7r?_ + 6i_7rj_)'
By (H.2), the right hand side of (3.13,(b)) vanishes. In what follows we set 75, , = 0.
§4. CONSTRUCTION OF mgoqq
In this section, we prove the following:

12
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Theorem 4.1. Let | > 1. Under the assumptions (H.1-3), there exists w41 €
AC?(a) such that Ei+j=2l+l (>0 §;7j = 0 and my4y is a bidifferential operator of
order 2(21 + 1) satisfying Tor41 (T4, z;)=0.

Let zx be the linear functional on g* defined by zx(p) =< ek, p >0 and set
(4.1) Ty (Ti,25) = 0.

4.1. Construction of 7.

First, we show how to construct my;, ;. By (3.7), we see that (3.13,(a)) is equivalent
to

(4.2) 772—1+1(f7 gh) = g7r2—1+1 (fih) + W;H-](fa g)h
+((F,9) 7 R + ()75 000 — (F (o ) D)z
Setting (; = =; — z;(p), we have
9(z) = g(p) + Y_ Gj(=,p)(s
i1
where G(z,p) = 0 62 =L (p+ t(z — p))dt. Putting f = z; in (4.2), we get
(4.3) To141 (zi,9)(p) = Z{ (2, G J'>'jl+1(p)

j>1
+ ((zi,25) 7, G331 (P) — (25 (G 25) )51 (0))-
Remark that 092G (z,p)|e=p = m%(@garjg)(p). By the assumptions (H.1-3) and
Lemma 1.4, the right hand side (4.3) is a linear differential operator of order 4! + 1

with respect to g.
Define 75, (h,z;) by

(4.4) T (M i) = =75 (24, h).
By (4.2), we have
(4.5)
a1 (f0)(p) = Z{ ()t (£,7)()
j>1

+ ((f, Gik_wxj)le(P) +{({f,z;)7, Gj)zl+1(P) - (f, (Gj’xj)+)2_l+1(1’)}~
By a similar proof as in Lemma 1.4, the right hand side of (4.5) is a bidifferential

operator of order 2(2! 4 1) with respect to f,g.
Thus, we obtain n; ,(f,g) for any f,g € a. However, we only see that

Tg141(®i, ;) = 0 for I > 1 and 7r2_,+1(mi,fz) = =71 (1, i)

4.2. Skewness of 7y14;.
To prove Theorem 4.1, we only show the following;:

13
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Proposition 4.2. n;,,,(f, ) given by (4.5) is skew-symmetric.

Proof. By the polynomial approximation theorem, we have only to show the skewness
for polynomials. Thus in what follows, we assume the following:

(S)s 7(2_,+](:c°’,zﬁ) = —-7r2“,+1(zﬂ,x°’) for any «,f suchthat |a+f]|<s.

Consider 73, (z*,2#) such that | + ] = s + 1. If either of ||, |B] is 1, then (4.4)
shows the skew-symmetricity. We now show (S),41 for |a,|8] > 2. Since 75, is a
continuous bilinear mapping, it is enough to show that

7r2—1+1(m“x°' ,zPz? )= —7r;,+](a:ﬁzﬂ ,2%z%) for |al,|a'],]8],18'| = 1.

For simplicity, set f = z%, g = 2%, h =2f, ¢t = z#'. By the assumption (8)s, one
obtains

(4.6) 7r2—,+1(fg,h) = —75,,(h, fg), T (Frgh) = =7, (gh, f), ete.

By (4.2), we have

W;I+1(fga h‘t) = W;1+1(fgv h)t + 7T;I+1(fg,t)h + ((fga h>—7t>’jl+1
+((fg: 1)  h) gy — (£, () ) gy

Using (4.2), and the assumption (S),, we have

(4.7)
Ty (fg, ht) = Torp1(f, R)gt + T (g, ) ft + 7y (f,t)gh + 7"2—I+1(97t)fh
— t{(h, f)_,g);lﬂ = t((h, 9)—vf)2+l+1 + t(h, <f79>+)2_1+1
= h{(t, )7, g>;+1 — h{(t, 9>~7f>;r1+1 + ht, (fa9)+>2—1+1
+ ({f9, h)—’t);l-{—l + ((fg,t)_,h);ﬂ - (f9, (h,t)+)2_,+1-

The first line of the right hand side of (4.7) is skew-symmetric under the permutation
of (f,g,h,t) — (h,t, f,g), which we shall denote by . Let & denote 1+ o. Then,

14
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using (4.2) and applying the assumption to the last line of (4.7), we have the following:

(‘57r,;,+1(fg, ht) =
—&t((h, )75 9) T —6t((h,9) 7, )31 +6t(h, (£,9) ) 3141
”Gh«t,f)_ag);lu —Gh((t,g)‘,f);m +6h(t, (f»g)+)2—l+l
A

-6 (g, (h,t) V)11 —~6g(f, (h, ) )31
+6((f’ g>+3 (hat>+>2_l+1
L4

+S () F, F) 7, 9) T +6((<”’7t>+’9)‘7f>;1+1

=6(((h, /)™, 9) 005 —S(((hy9) ™, AT )1 —(‘5<((f79)+>"1)‘,t)§1+1
“S(((L )79 W ST DT R U007 R
+6(f{g, k), t) iy +6(g(f, k)7, )34
+6(f(g,t) 7, h) Jigs +6(g(f,1) 7, k)3

The terms marked by A, ¥, ¢ are cancelled out. Denoting by ¢,5,034 the permutations
(fig,h,t) = (g, f, 1 t), (f,9,h,t) — (f,g,%, h) respectively, we have:

(4.8) G7r;,+l(fg,ht)
=—6(14+034)(1 + 012){5((]%1[)_»9);14-1
+ (((h,f)_7g>+at)—2‘_l+l - <f(g>h>_7t);l+l ‘

Substitute the equality (ez;) given in Appendix 6.2 to the last term of (4.8), where
we remark that (€g;) is valid for any =}, such that m < 2I. Note that

(4.9) 6(1 + 034)(1 + 012)Sa(f, 75 (9, k), 1) = 0.
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By a little complicated calculation, we have
(4.10)
S41 (f, 1) = 561+ 730)(1 + o12)( S, ( (9,1) ) iy

A e M) D — 30 (0T i
FR 0 W) i — 300 (6 (W7 i
F2 00U (007 Dz — 305 (09,07 i
3ty U507 i = 3000 0 (507 i

We sce by (3.8) that

(4 (0 W) ) Vaigs = U (640,17 i

= (g, 7)™, (&, /) ) qaga + Bt fy71 (g, 1))

Substituting these to (4.10), we have

(4'11) 6”2;—!+](fg,ht) = %RZI(tv e Wr(g) h)) + %RZI(Fr(tv f)a 9 h)

1 1 -
+ §R21(tvg) 7r1_(fa h)) + ERZI(Wl (ty g)) f, h)

=0,

because R,, = 0 by Corollary 3.4. Proposition 4.2 is thereby proved. 0O

§5. THE CONSTRUCTION OF Teyen
The goal of this section is as follows
Theorem 5.1. Assume (H.1)~(H.3) for m = 2k. There exists max € SC?*(a) such

that Z,-H:Zk §;m; = 0, and 2 Is a bidifferential operator of order 4k.

Notice at first that several existence theorems which will be given in what follows
for monomials z®, z? etc. are evenly valid for monomials (z — z(p))*, (z — z(p))?
ete. for any p € g* by usual parallel displacements.

5.1. Induction for constructing =,.
To construct wjk, we work at first on monormials of zy,- -+ ,z,---. We set

(5.1) h(zi,z;) =0, (k>1).
For multi-indices «, 8, we construct ﬂ;"k(x",zﬂ ) inductively.
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Assume the following:

(B)s m;}(z*,2#) are obtained for any z®, z# such that |a 4 8] < s, and these satisfy
(3.10), and 7, (2%, 27) = nf(z?,2*).

In what follows, we put unknown quantities W;k(ai“, zP) by wj(z*,2?) for |a+p| =
s+ 1. Under (B),, we want at first to obtain w(zi,z7) for |y| +1=s+1.
Use the following notation:

(z%) € 2", (z“,zﬂ,z"’) € z" etc,

. . ’ ’
if there exist z%, 2% such that z°z% = z#, 2°2Pz72® = z* etc.

Now, for any (zi,2?,z;) such that z;z;2# = z*, (3.10,(a)) is read as follows:
(5.2) w;k(z,-,xﬂxj) — w;k(mj,zﬂa:,') = Fox(z, mﬂ,a:j),

where Ey; is defined by (3.12). Set the right hand side of (5.2) by A;;(= —A4ji).
Under the assumption (B),, Aij’s are known quantities.

5.2. Left extremals. We now assume that ¢ is fixed as |u| = s+1. wi;(zi,2Pz;)
depends only on 7 such that (z;) € z#. Set

(5.3) - T: = wi(zi,2%z;).
Then, (5.2) is nothing but an over determined linear system
T - T; = Aij for (zi,z;)€ ¥,
This can be solved if and only if A,; satisfy
(5.4) Aij+Ajp+ Api =0 for any (i, z;,zh) € 2P,

First of all, we remark the following:

Proposition 5.2. For any fixed z* such that |u| = s + 1, the solubility condition
(5.4) is satisfied.

Proof. is seen in Appendix 6.2. .

By Proposition 5.2, T; is given by

- _ 1
(5.5) T; =)

Z Ag + Ko (z),
]

where n{u) is the number of () such that (z;) € z*, and

K, (z*) = arbitrary element of C*°(g”) depending only on z*.
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We choose simply {33 = 0 in what follows.
For a fixed p such that |u| = s + 1, we define a set of pairs of multi-indices by

Sp={(a,8);a+ B =p,la| 2 1,|8| > 1}.

For any 1,1 > 1, we denote < ¢ >= (0,---,0,1,0,---). Anelement (< >, u— <1 >)
(resp. (u— <1 >,< 1 >)) will be called a left eztremal point (resp. a right extremal
point) of S,,.

For a fixed x”, set pu(i) = p— < 1 >, pu(t,j) = p— < 1 > — < j > for any
(z:), (xi, zj) € z". Then, we have by (5.5)

@i (i — wi(p), (@ — <(p))")

(5.6) = ﬁ S Bae(i = (o) (o = (), 25 = 2,(p)) Vo e

Lemma 5.3. Let Li(f)(p) = 3o @ax(zi — z(p),(z — 2(p))*)(p)0°f(p) by using
wi(zi — xi(p), (z — z(p))*) obtained by (5.6) for any (z; — z(p), (z — z(p))™). Then,
L; is a linear differential operator of order 4k — 1 for any 1.

Proof. Replace wj(zi — z(p),(z — z(p))*)(p) in Li(f)(p) by the right hand side of
(5.6) and remark that Ey(z; — zi(p), (z — z(p))*~<9>,z; — zj(p))(p) involves only
the terms ((, )%, );tk Since ((, )%, );tk is a 3-differential operator of order 4k by
the assumptions (H,1)-(H,3), L; satisfies that at every p € g* that
o (zi, (z — z(p))*)(p) =0 for la] > 4k — 1.
+

By using the similar criterion of Lemma, 1.3 for 3-differential operators (( , )*, )53,
we have that there is an integer s such that

> Iwdilen (e - =) HEA < oo
Inl<4k

Similarly, for any € > 0, and for any p € g*, there is a neighborhood V, of p and
an integer s > 0 such that for any ¢ € V,,,

3 1@, (2 = 2(0)*)(g) — DFi(zi, (2 — 2(2)*)(p)PA72" < e.

Now, assume that
(1) For a fixed integer I — 1 and an arbitrary t, there is s = s({ — 1,t) such that

Yo Do 10w (i — w(p), (= — 2(p)*)(p)PAPTATEY < oo,

rl=t=1 »
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(2) For any € > 0 ¢, and for any p € g*, there is a neighborhood V}, of p and an integer
s = s(l — 1,t,V,) such that for any ¢ € V,,

Z Z 107w (21, (2 — 2(¢))")(g) — O7@Hi (e, (x — 2(p)) N P)PNTAT <.

|vl=i-1 »

We shall show that same inequalities as (1),(2) hold for I. Recall (3.11), and we
see that (07 Eqx(z; — zi(p), (z — z(p))*, = — z;(p))(p) involves the partial derivatives
aﬂw;k up to only || < I —1. Hence, the assumptions (1),(2) can be applied. Other
terms are written as ({ , )%, );hk By using the similar criterion as in Lemma 1.3 for
3-differential operators ({ , )*, )3}, we obtain the lemma. 0O

5.3. Bridges.
Using the left extremal points, we shall construct w2+k(a:°‘, z?) for the pair of multi-
indices (a, 8) with a + 8 =p,

Definition 5.4. For pairs of multi-indices (o, 3) and (o', ') such that there is v
with

o =a+7y, B =p—v and a+ f = o + ' = p. the bridge relation (Br), from
(o, B) to (o', ") is the following:

’

(Br)y w;k(xa 7Iﬂ )— w;k(za’mﬂ) = —E(z%, 27, 2 )
where

Ezk(zo’,z",mﬂ') = w;k(a:",x"')xﬂ' — x"w;'k(m7,zﬂ’)
+ (2%, 2, eV — (2%, (27,27 ) Mg

2k
— (7, (=%, 2" ) g (cf. (3.12)).

If (a, B), (o, B') € S, have the bridge relation (Br)., we denote by («, ) NS (o, 8
(or (z*,28) % (2 ,z?")).
Note that if («, ) 4 (o', B'), then (A',a") % (B, @), which is called the dual bridge

relation to («, ) NN (o', B8"). The following lemma shows that any chain of bridges
from a point of S, to another can be replaced by a direct bridge:

Lemma 5.5. For (o, +v+7"), (a+7,8+7"), (a+v+7",8) € Sy, the relations
(,B+7+7) > (a+7,8+7") and (e +7,8+7") %, (a +7+7,B) generate the
relation (a, B+ v +7") iy (x+7v+7",0).

Proof. Let f =z, g=a",h= 27,k = z” for the simplicity. By Proposition 2.2, we
see that 6oQ2x = 0. Using (3.6) and Corollary 3.4, we have

(5.7) Q2x(a,b,0) = (a, (b,e) )3, — (0, 8)F, )y + (b, (e, 0) T
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The bridge relations (Br)y, (Br)yr, (Br) 4y are written as follows:

—frf (g, ht) + w5 (Fg, ht) — Wi (foght) + 73 (f,9)ht = Qax(f, g, 1t),
—Fgnfi (b, t) + i (fgh,t) — wh(fg, ht) + 73 (Fg, h)t = Qar(fg, hy1),
“fﬂ';‘k(ghy t) + w'jk(fghvt) - w;k(f’ght) + ﬂ;k(fa gh)t = QZk(fa gh)t)'

Computing —(B7r)y — (Br)y + (Br)yqy, we get

f(6UW;-k)(g7 hi t)+(507r;-k)(f7 ga h)t
(58) o = _QZk(fvgvht)—Q2k(fgwhvt)+Q2k(f)gh1t)-

By the assumption (B), we have
(6o )9, by t) = —=Qax(g, 1y 1), (073 )(f19,h) = —Qak(f, 9, h)-
Hence, (5.8) is
—fQak(g, b, 1) = Qui(f, 9, h)t = —Q2x(Fg, h, 1) + Qax(f, gh, t) — Q2k(f, g, ht).
This holds because of §gQ2x = 0. O

Note that by (5.7), we see easily that

(59) E sz(fvgv h) =0.
(f.9:k)

By a similar manner, we have
Lemma 5.6. If there are relations
(<i>p=<i>) b (a,f), (<j>p—<j>) 5 (xh),

then the computation of w;'k(:t“,zﬁ) does not depend on (Br), and (Br).., where
the initial conditions for the bridges are given by (5.3), (5.5).

Proof. One may assume that i # j. Since there are bridges, (z%, z#) must be given in
the shape (z;z;h,2#). We set t = z# for simplicity. Then, (Br),, (Br)y are written
as follows:

(5.10) wi(zizjh,t) = wi(zi, ¢ ht) + it (20, 1) — 7 (i, 2 jR)E + Qar(zi, Tjh, t),

(5.11) wjk(ij,-h,t) = w;'k(mj,J;iht)+xj7r;k(:c,-h,t)——7r;k(zj,1:,~h)t+Q2k(xj,x,-h,t).
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We have only to show the right hand side of (5.10) — (5.11) vanishes. Note that
w;k(m,-,za) satisfies (5.2). By (5.2), we have

(5.12) wh(zihte;) — wh(z;, htx;)
= —m;w;k(ht,xj) + Tl';—k(.'l?;, ht):!)j — sz(:l,‘,‘, ht,:nj).

Using (5.12), we compute the right hand side of (5.11). So, the right hand side of
(5.10) — (5.11) is

(5.13) wimh(aih,t) — wh(ht,5))
+ (i, ) — i (aih, 1)
+t(nfi (2, zih) — mfi (i, z5h))
+ Qak(zi,xjh,t) — Qak(zj, zih,t) — Qai(zi, ht, z;).

By the assumption (B),, (5.13) is

z;Qak(zj, hyt) — 2;Q2k (i, hyt) — tQax (x5, b, ;)

+ Qai(zi, zjh, t) + Q2k(t, xih, z;) + Qai(z;, ht, x;).
Recalling the definition of §,(},x and using (5.9), we see that the above quantity is

(5.14) (60Q2k)(ziszj, h,t) — (80Q2k)(zj, Tis h,t) =0. O

5.4. Right extremals.

As we have shown in 5.2, we have obtained w;k(:r:,-, z®) for o+ < i >= g, |p| = s+1.
Next, we shall determine @}, (z%, ;) for a+ < i >= g, |p| = s + 1. Given (z°,z;),
there are a pair (z;,2”) and a multi-index v such that (z},z?) & (2, 2;). Thus,
we can get w;k(:c",zi) by (Br)y. By Lemma 5.6, w;’k(:c",z;) is independent of the
choice of y and (z,z?). We now show that w;k(:r;,x") = wi(z%, z:).

First of all, we easily have

Lemma 5.7. For any 1, and a multi-index «, we have

(5.15) w2z, 05) = wii(zj,z%2:).

Proof. Consider a bridge relation (< i >,a+ < j >) “ (a+ < i >,< j >) and we
have

(5.16) wh (2%, 2;) = (i, 2%5;) — Eaw(zi,z%,2;)

by (Br)a. On the other hand, we write down (5.2) for (z;,z%z;):

(5.17) wh(z;,2%2) = wh(zi, 2%;) + 4ji.

Combining (5.16) with (5.17), we have (5.15). O

Using Lemma 5.7, we have:
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Lemma 5.8. w;'k(:ri,a:") = w;’k(z"‘,m;) for any 1 and «.

5.5. Determination for @}, (z®,z”).
To determine @}, (z,z?), we choose an left extremal point (zi,2%) such that

(zi,2%) % (2%,27). Thus, we put w; (2, 2#) by (Br),, which also does not depend
on the choice of y and (z;,z°).

We now prove
Proposition 5.9. Under the assumptions (HE.1-3), w3, (2%, 2#) can be constructed
so that they satisfy (Br),, w;k(:r",xﬂ) = w;k(zﬂ,z"‘), and w';k is a bidifferential
operator of order 4k.

Proof. Using the bridge relation

(5 18) { m;k(;,;'r+<i>’xﬂ) - w;_k(xi’xﬂ‘ﬁ) = —-Egk(:x,-,:c7,zﬂ),

wi (27, 20) — wi (2,27 <) = —Ep(af, 27, 2)).

Hence, we have w}, (z*,27) = w3, (2?,2°) for |a + B| = s + 1. This implies that for
any a, f,v with o+ 8+~ = 1, the equation (Br). is equal to that of (3.11) substituted
by f =2%,g =a”,h = zP. Then, we get the first and the second part of Proposition

5.9. This construction can be applied for monomials (z — z(p))?, (z — z(q))? etc..
To prove the last part, remark that

@5 ((z = 2(p)%, (z — z(p))”)
= @ (2i,(z = 2(p))*HP<) = Ea(zi, (z — 2(p))* <, (= — z(p))”),
for an (z;) € . By a similar proof as in Lemma 5.3, we have the desired result.

Namely, we obtain by induction that w;k satisfies that for any [, ¢, there is an integer
s = s(l,t) such that

> Y10 @n((@ - 2(p)" (= — 2(p) )P)PATTATCEHD < oo,
lv|=1 a,8

and that for any € > 0 and [, ¢, there is a neighborhood V}, of p in g* and s such that
for any g € Vj,,

D0 Y 107ma((z = 2(p)”, (z — 2(p))P)(p) — Fwar((z — 2(q))", (= — 2(9))")(9)I?
"ﬂ'—"k o,f
x A2ty ~2s(ath) ¢

a
We now put w;"k(za,xﬁ) = w;'k(m“,mﬂ). The symmetricity of my) is obtained by

the polynomial approximation theorem and Proposition 5.9. Theorem 5.1 is thereby
proved, and we obtain Theorem A.
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86. APPENDIX
6.1 Proof of Lemma 3.1.
If 6,Q = 0, then §y(1 +03)Q = 0 by Lemma 2.3. Set Q+ = -;-(1 +03)Q. Note that
6o = 09 — 82 + 89 by Lemma 2.3, (ii). Thus, we have (83 — 89)Qt = 9{Q*. Using
Lemma 2.3, we have (89 — 89)c2 = ¢}(8) — 97). So, we get
(%~ 95);QF = —135Q™.
Hence,

(6.1) (32 = )1 — 3 +5)QF = 8Q* — (87 ~ 9)ewQ™ ~ 383Q™.

Evaluating the right hand side of (6.1) at (f, g, h,t), we have

(6'2) f ’ Q+£ga h)t) - Q+(f * 9, h’t) + Q+(f7 h)t) g

_g'Q+(t>fah)+Q+(t7fvg' h)_ Q+(ht7fvg)+Q+(h>fvg)t

_tQ+(f)hag)+Q+(gvhatf) —Q+(g)ilvt)'f)

where f-g = mo(f, g). The terms marked by A are trivially cancelled. Use 03Q = QF,
60Q = 0, to the underlined terms of (6.2). Then, these terms are changed into

Q*(g- f,ht)—Q*(g, f- h,t). Hence (6.2) is
"'Q+(g7f'h7t) —g'Q+(t7f7h)+Q+(t7fag 'h)_t'Q+(f’hag)+Q+(g7hat'f)'

Using 03Q1 = Q% to Q¥ (g, h,t- f), we sec that (6.2) is —(6QF)(¢, f,h,g) =0. O

6.2. Proof of Proposition 5.2.

We shall show that (5.4) is satisfied under the assumnptions (H.1-2). For that
purpose, we shall investigate (3.11) more precisely. For any fixed (f, g, k), (3.11) can
be regarded as a linear system with unknowns Wfk(f,gh), W;k(g, Rf), w;"k(h,fg):

W;k(ﬂgh) W;k(g,hf) ”;k(h, fq)

1 0 -1 : EZk(f,g, h)
-1 1 0 : Ear(g, Iy f)
0 -1 1 :EZk(hv f:g)
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The solubility condition of the above linear system is satisfied by virtue of Ryx = 0.
Set
(6'3) SZk(f, 95 h) = E W;k(fv gh’)'

(fr9,h)

Then, Sox € SC3(a). By using (3.12), the solution of the linear system is written as
follows:
(€2k)

w(10h) = Sk (F,0,0) + 7 (r0)h + 37 (f R)g ~ 2 Frilg, )
Fo () W+ S UL e — (0 1)

(
1 _ _ 1 _ _
+ 30,97 Wk + 5 (17 0)5

All others are obtained by the cyclic permutation of (f, g, 2). Note also that the above
formula can be applied for 7} such that m < 2k — 1.

Suppose (z;,z;,x4) € z#, i.e. there is a monomial g such that z;z;z,9 = z*. By
(3.12), we have

(6.4) Aij + Ajn + Api

> [W;k(xivgmh)xj - W;k(xjagzh)xi
(i,5,h)

+ ((zisgzn) Tz h — (25, 920)F, i),
+ (@i, 25) 7, 92h) 21
= (1) +(2) +(3),

Il

where

(1) = & ci{nfi(zn,97;) = nh(zj,920)) = & z:iEan(zh,9,7;)

(i,5,k) (i,5,h)
(2) = E (:E,‘,(Ih,ga?j)+ - (xj’gwh>+);_k

(i,,k) :
(3)= ¥ ({zi,z;)7,97n)5-

(i,5,k)

Recalling (3.8) and using (4.2) for the term (3), we have
(6.5) () = 2enl(zi,7) 7, 9)ak
+ 2X((2i,25)7,9) 7 wn)gk — 2w i) 75 (g, 20) )

where we used

E(((zi’zﬁ—axh)—vg);k = Z W:(Rb(zivmj’zh)’g)=0'

a+b=2k,a,b>1
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From (3.12), we have
(6.6) (1) =8 z{{{zr, )t 2j)ze = ({25, 9), 20) 3}
+ 2 zi{(zh, 25) 75 9) 5k

Note that in (1) + (3) the last term of (6.6) and the first term of (6.5) are cancelled
out. Use (3.11-12) to (2), and remark that R,, = 0. Then, we see

(6.7)

Aij + Ajn + Api
=% (g,z1)" (=i 2) D + B (((zi25) 7, 9) s en) i
+ 2 zil{l(en, )T )5k — (25, 0) T wn) 3} + B (@i, (zho 9) e — (5, 9) Y on) 5y
+ 2 (@i ((en9)t e = ((2),0) T o)™ )2k+E($ia((mhvmj> ,9) )5k

Note that the second term and the last term of the right hand side of (6.7) are
cancelled out. We now use (ezx) to the second term of the second line in (6.7). After
a little complicated rearrangement of the terms, we have

(6.8)

Aij + Ajn + Ani

=2 zi ((zh,g ) 31)21: ® i ((z5,9 ) >2k +2 ((g,:z:h) (zi""j)-)z_k
+§: (zi, (2, (zm ) )N — 2 (x;,(zh,(:cj, )RR

+3B Y Som@ne)a) -3 Y Suenti(@nem)
a-+b=2k a+b 2k
* *

F 3B ezt <mh,g>++§gm,- (wi, o 0) e — 3B (o (o0, 0) Vs

B et (55,0 — B (w25 0) D+ 2B (o (5000 )

DU AN CONP A EARTE S (CON N by AR I E NN R AP
L]

3Bl an) (25,0 N~ 5B (e (25,001 2l + 2 Bm (o, (25,0 )
.

B0 ) ™ (w0 )5+ 3B (o0 D) 205

1

- ‘éE((xivmh)‘) (x1’7g)+>;k - %E((zn ('Tj’g)+)-‘vxh)2_k’

where At . Bt means Za+b=2k’a’b>l A;"B:. The terms marked by A, %, ¢ are
cancelled out respectively. Since

2z ((zn, )t Tk = & xi (), (Th, 0) ) = & an - (24, (2, 9) T) Fes
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the six

(6.9)

terms involving - of (6.8) are cancelled out. Note also that

(e (250N an)de = & (zi (25, (zr,9) ) )50

It

> (i zn) " (25,0) ox = —& ((z25) 7, (@h, 9) )i

Finally, (6.8) is reduced to the following:

(6.10)

e N RN TN A P  (CN T o P

= LBl en s o)) )

1
3
1

(‘22){((wi,$j)—,(xh,g)+)£k-F(((xh,g)+,1w)",mj)£L-F((mi,(wf,g>+)_s$h)£k}

E Ra(z;,xj,nz'(mh,g)) = 0.
at+b=2k,a,b>1(FJsh)

So, w;k(z;,x") is obtained by (5.5) for any (z;,z*) such that z;z* = z". Thus,
Proposition 5.2 is proved. O
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