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§0. INTRODUCTION

Let M be a C* Poisson manifold with a Poisson structure {, }, and C*®°(M)
the commutative topological algebra over C with the C™ topology of all C-valued
C® functions on M. In what follows, we put C®°(M) = a for simplicity. (a,{, })
is called a Poisson algebra (cf. [W]).

By introducing a formal parameter v, we consider the direct product

(0.1) af[v]] = [] v"a

and consider a product *:a[[v]] x a[[v]] — a[[v]]. According to the decomposition
(0.1), we can set, for any f,g € a,

o0

(0.2) fxg= Z v (f,9)-

n=0

Definition 1. For a Poisson algebra (a,{, }), (a[[v]],*) is called a deformation
quantization of (a,{, }) if (a[[¥]], *) satisfies

(A.1) = is an associative product, and v is in the center,

(A.2) mo(f,g) = fg and mi(f,9) = —3{f, ¢} for any f,g € q,
(A.3) foreachm > 2, 7, : a X a — ais a bidifferential operator of positive order

and 7, (f,9) = (—=1)™7(g, f) for any f,g € a.

The Poisson algebra (a, {, }) is called deformation gquantizable if it has a defor-
mation quantization.

Remark. (A.3) indicates 1 is the identity.
It is known in [OMY1],[DL] that if M is a symplectic manifold, then (a,{, })

is deformation quantizable. However, as to Poisson algebras of nonconstant rank,
there seems to be no general theory for the deformation quantizability.

*) Dept. of Math. Fac. of Science and Technology, Science Univ. of Tokyo, Noda, Chiba

278, Japan **) Dept. of Math. Fac. of Science and Technology, Keio Univ., Hiyoshi,
Yokohama 223, Japan
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The purpose of this paper is to propose an inductive method of constructing
a deformation quantization of (a,{, }), and to give the necessary and sufficient
conditions for this method to be continued.

To this end, we introduce k-truncated algebra: Set

(0.3) avllk =adrvad-- & vra = alv]]/v* T al]]
and consider a product *; : a[[v]]x X a[[¢]]x — a[[v]]x such that

k
(0.4) 1 =0 and fxrg= H v*7.(f,g) forany f,g€a.

n=0

We denote this algebra by (af[v]]k, *x)-

Definition 2. For k > 2, (a[[v]]x, *) is called a deformation quantization of order
k of (a,{, }), if the following conditions are satisfied:

(B.1) = is associative, and v is in the center,

(B:2) mo(f,9) = fg and m(f,9) = —3{f,¢} forany f,g € q,
(B.3) for each m > 2, m, is a bidifferential operator of positive order and

Tm(f19) = (—=1)™7m(g, f) for any f,g € a.

Now, suppose a deformation quantization (a[[v]]x,*x) of order k of (a,{, }) is
given. Our problem is to seek

(P)i+1 a bidifferential operator mxy1: axa— asuch that x4 = Zf;:) vm, yields
a deformation quantization (a[[v]]k+1,*k+1) of order k+1 of (a,{, }).

We obtain the equation for the above 741 in §1. We introduce Rj4, in §§2-3,
which comes from the Jacobi identity of (a[[v]]#,*x). The necessary and sufficinet
condition to solve (P)r+1 will be described by Rx41 = 0 in §4. It is also studied
that Rr4; determines a deRham-Chvalley 3-cocycle.

By means of our method, we give several concrete examples of deformation
quantization of Poisson algebras in §5.

§1. EQUATIONS AND HOCHSCHILD COBOUNDARY OPERATORS

Let (a[[v]]x, *k) be a deformation quantization of order k of (a,{, }). The asso-
ciativity of (a[[v]]k+1,*k+1) can be read as

(1'1)"1 Z "Ti(ﬂ'j(fag)vh): Z ’ﬂ'i(f,ﬂj(g,h)) forany f?gaheaa

i+j=m 4 j=m

for 0 < m < k + 1. Thus, in order to solve (P)k+1, we construct 741 with (B.3)
satisfying (1.1)k+1.

Before treating this, we introduce some algebraic tools.
1.1. Hochschild coboundary operators. Denote by C?(a), p > 1, the space
of all continuous p-linear mappings of a x --- x a to a. We denote by AC?(a) and
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SCP(a) (p > 1) the set of the alternative and the symmetric elements of CP(a)
respectively. If p=0, we set C°(a)=AC’(a)= SC°(a)=a.

For any = €C?(a), we define the Hochschild coboundary operator éx : CP(a) —
CP*i(a), p> 1 by

(1.2) (6xF)(v1,- -+ ,Vp41) = m(v1, Flv2, - 5 vp41))
+Z(_1)iF(v17" : ,7T('U,‘,’U,‘+1)," ' avp)

+ (—1)”+17r(F(v1, e, Up), Ups1)
for F € C?(a), and for p=0, we set for any v € a,
(1.3) (6xv)(v1) = 7(v1,v).
By a direct computation using the linearization, we have the following;:

Lemma 1.1. For any =, 7', 7" € C?(a), we have

(1) Som' = bpim, 6.1 ==, (I = identity)
(2) Snbrm =0,
(3) Y bpbpm’ =0,

(m,m’ ')

where . means the cyclic summation with respect to 7, ', x".
(1r,7r’77r”)

For any m €C%(a), —6,7 is called the associator of (a,7). Namely, we have
1

(1.4) —-2-6,\.71(11, v,w) = m(7(u,v), w) — 7(u, 7 (v,w)).
Hence, §xm=0, if and only if (a,7) is an associative algebra. If (a,7) is an associative
algebra, then
(1.5) 82F =0,
for any F € CP(a) (cf. [Mc]). In particular, §2/==6,7=0. Therefore, we have
Lemma 1.2. §2=0 is equivalent to §,7=0.

1.2. Equation for (P)z4;. For {r;}f;"ol, we denote §; = 6, for simplicity. By
using these notations and owing to Lemma 1.1(1), (1.1)k41 is equivalent to the
equation

1
(1-6)k+1 SoTh41 = —5‘ . }: . 5i7fj-
i+j=k+1,i,j21

Thus, we shall solve (1.6)x+1 for mx+1 satisfying (B.3), under the conditions (1.1)m,
(B.2) and (B.3) with 0 <m < k.

Since the associativity of Ty implies 62=0, the right hand side of (1.6)x.4+; must
satisfy
() T bt =0,

i+ j=kt1,i,j>1

Hence, (1.7) is a necessary condition for (a[[v]]x, *x) to be extended to the deforma-
tion quantization of order k + 1. However, (1.7) substantially gives no restriction
on (a[[v]]x,*k). Namely, we have:
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Proposition 1.3. If(a[[v]], *x) is a deformation quantization of order k of (a, { , }),
then my, - -+, 7y satisfy (1.7).

Proof. We put # = mo + vmy + --- + v¥m. Since (a[[v]]x, *#) is associative, i.e.
§xz7 = 0, we have

(1.8) > &m=0

i+j=m

for 0 < m < k. Applying éx—m, we get Ez’+j=m Sp—mbimj =0for 1 <m < k. It
follows

(1.9) S Gbomi+ Y, Gidimo+ > ba6pmc = 0.
i+j=k+1,1,52>1 i+j=k+1,i,j21 a+b+c=k+1,a,b,c>1

Lemma 1.1 implies

(1.10) > ba6s7e = 0.

a+b+c=k+1,a,b,c>1

Thus, using Lemma 1.1(1), we get

(1.11) > bibomj=0.

=k 1,i,§ 21

On the other hand, Lemma 1.2 gives

(1.12) S 8i6=0
i+j=m
for 0 < m < k. Hence, we have
(1.13) ST Gbmi+ Y. biboms+ > Sabpme = 0.

itj=k+1,i,j>1 i+j=k+1,i,j>1 a+bte=k+1,a,b,c>1

(1.10) and (1.11) yields the desired result. [

$2. DERHAM-CHEVALLEY COHOMOLOGY

2.1. p-derivations. We will introduce the following notion:
Definition 2.1. For given = € C%(a) and p > 1, we define 7 : C?(a) — CP*'(a)
(1<i<p)by
(OFF)(v1,+ - »vp1) = m(vi, F(v1,++ , 0iy 0o+, Ups1))
(2'1) -F(vla"' ,ﬂ'(’l),’,'l),‘_*.l),"' ’vp+1)

+ w(F(vy,- -, Oigr,- " vvp+1)7'vi+l)

for any F' € CP(a).
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We call F € CP(a) a p-derivation with respect to , if for any j, (1<j7<p)
(2.2) OTF = 0.

By Der?(a, ), we denote the space of all p-derivations with respect to m. We also
set

(2.3) AP(a,7) = ACP(a) N Der?(a, ).
2.2. Chevalley coboundary operators. For any 7 € AC?(a), we define the
Chevalley coboundary operator
dr : ACP(a) — ACP(a)
by

(24) (der)(vh R vP+1)
p+1
- Z("'l)i-*—lw(via F('Ul, Tt 7'{71'3 Tty Uptd ))

+ Z(—l)i+jF(7r(Ui,Uj), V1, -" ,’E'ia e ai)j7 tot 7vp+1)‘
i<j
By a direct computation using the linearization, we have

Lemma 2.2. For any 7,7, 7" € AC%(a),

(1) dor! =dpr, del=m,

(2) drdem =0,

(3) . E d,,d,,:*fr" =0.
(‘"’,W',W’,)

Since 7 is skew symmetric, we have

(2.5) (dam)(u,v,w) =2 & 7(u,7(v,w)).

‘u’"v)w)

Thus, d,7 = 0 if and only if (a,7) is a Lie algebra. If (a,7) is a Lie algebra, then
d:F = 0 for any F € AC?(a) (cf.[Ma]). Therefore,

Lemma 2.3. d2 = 0 is equivalent to dxm = 0.

In the following, we use the notations
+ 1
(2.6) 7= (u,v) = ~2—{7r(u,v)j:7r(v,u)}.

for = € C%(a).
We first remark the following:
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Lemma 2.4. (a,7), # € C%(a), is an associative algebra if and only if é;n €
AC3(a), and (a,77) is a Lie algebra.

Proof. The necessity is obvious. Note at first that 6,7 € AC?(a) implies that (a, )
is an alternative algebra (cf. [S]). It is known in [S], p. 76, that

(2.7) 3brm(u,v,w) =4 & 7 (u,7 (v,w)).

(u,v,w)
Thus, if (a,77) is a Lie algebra, then ;7 = 0, hence (a, ) is associative. O

2.3. Cohomology. The following is not hard to prove:

Lemma 2.5.
dfrl =0 and d, AP(a,m) C A”“(a, 7o),

where Wo(fvg) = fg and 7"-1(f7g) = —'%{fag} for any f,g € a.

Definition 2.6. For Poisson algebra (a,{, }), we denote the p-th cohomology
group of the cochain complex :

(2.8) oo — AP(a,mg) l?_,” P+1(a’ o) — -+

by H?(a,{, }). H*(a,{, }) will be called the deRham-Chevalley cohomology group
of the Poisson algebra (a,{, }).

§3. JACOBI IDENTITY AND THE DERHAM-CHEVALLEY 3-COCYCLE

Let (a[[v]]k, *k), *x = Ei=0 v¥7,, be a deformation quantization of order k of

(e, {,

Definition 3.1. For simplicity, we set d; =d,,-. We definefor 2<m <k +1

= 1 . .
(3.1) { Qm =3 Lisjmmijz1 07

R =5 Yisjmmiin1 4 75 -

Remark if m is odd, then it is clear R, =0 from (B.3). Moreover, the Jacobi
identity of (af[v]]x,*x) yields
Proposition 3.2.

R,=0 for 2<m<k.

By Proposition 1.3, we have 6§,Q¢+1=0. Similarly, we have the following:
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Proposition 3.3.

di Rk41 =0,

Proof. We put
(3.2) F=mo+um 4+ vFm
Then, (a[[#]]x,%~) is a Lie algebra, so we see, by Lemma 2.3, d;z-#~ = 0 and
d?r_ = 0. Hence, we have
(3.3) > dir =0,

i+j=m
(3.4) > didy =0,

i+j=m

for 2 < m < k. Computing similarly as in the proof of Proposition 1.3 and using
(3.3), we have
(3.5)

> didiry+ ), didim+ > d7dyn; =0.

it j=k41,i,5>2 i+j=k+1,i,j>2 a+b+e=k+1,a,b,c>2

Lemma 2.2 gives

(3.6) > didin; =o.

it ik, 22
Thus, (3.4) with (3.6) gives the desired result. [

Note that Ry4; is computed only by using {7y (= m1), -+, 7 }-
In the rest of this section, we shall prove the following theorem.

Theorem 3.4. Ry, is a deRham-Chevalley 3-cocycle.

It is sufficient to show 8;Ri4+1 =0 (j = 1,2,3), where 9; = 9}°.
We define two mappings op,¢, : CP(a) — CP(a) by

(3.7) (0pF)(v1,v2, - ,vp) = F(vp,vp1,+++ ,01),
(3.8) (cpF)(v1,v2,+* ,vp) = F(vp,v1,v2,-+ ,Vp-1)-

Obviously o3 = ¢z. Since ¢3 = 1, we have

(3.9) (14 +3)(1—c3)=0,
(3.10) Q-+ +a)=2

We have the following formulas.
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Lemma 3.5. (i) For any m € C%(a) and F € C*(a), we have

(1) bx0pF = (=1 0p1180,nF,
(2) T, F =107 F (1<j<p-1), 95c,F=c,,07F.

(i) In particular, if € SC*(a), we have
fopF = 0p110,_j 1 F (1 <j<p)

Using the above, we get the following relation.

Lemma 3.6.
(14e+ Cg)(l —03)Qk+1 = 4R,

Proof. Since §; = 5;" + 67, where 6? = 6,2+, we see by the definition of Qx+1,

1 - -
(3.11) Qs =3 DN (2 S e o S i
i+j=k+1,i,52>1 i+ j=k+1,i,721
Lemma 3.5(1)(1) gives 036;-*'71"]7 = 6;"7rj_, 036;"7@" = —6?'77;-", o3b; My = =6 m; .

Then, we have

{ Qk+1 —03Qk+1 = Ei+j=k+1,i,j21(5z+7r?— +6775),

(3.12) L
Qk+1 +03Qr+1 =23 iy imptr,ij>19 7 -

By the direct calculation, we get

(1+e+E)(1-0)Qn(fie.h)=4 > w7 (f,75(9,h)

it j=kt1,i,7>1 (f:9:R)
= 4Rk+1(f7 g, h)

which gives Lemma 3.6. [
To simplify the notations, we shall use the following:

( f'g :WO(f7g)7 (fag>$=7r$1(fvg)7 (le),
<f’g ’ (h’t>ﬂ:>$ = . Z . W;t(fag : W_?:(h’t)) (m 2 2)1
(3.13) o
T ({(f g M)F) 500 = 2 rE(m(f,7E(g, ), 1) (m23),
a+b+c=m,a,b,c>1
({(fsa)% ()5 )s = 2 rE (v (f,9), 7E(h, 1)) (m 2 3).
\ a+b+c=m,a,b,c,>1

8
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Proof of Theorem $.4. By using notations (3.13), Ri4; is written as

(3.14)
Rk+1(f,g’ h) = < ( 7h>—.>;+1 + <g <h f)—>l:+1 + <h7<fvg)—>l:+1
= S 6775 (f.9,h).
(f’Q)h) ,+]___k+1
Note that (1.8) holds for 1 < m < k. By lemma 1.1 and (3.1), (1.8) can be

written

(315) 607(',,-, = "‘Qm-

Set 7% = 3(1 £ 02)7m. Remarking o, = ¢;, and using Lemma 3.5, we have
1

(3.16) 607’&';; = 5(1 - 0‘2)5071'17, = —(1 - C3)621I‘j,;,
1 -

(317) 507'(;1 = '2'(1 + 0'2)607!’,-" = —-(1 + C3)627Tm

By (3.10), the equation (3.15) splits into two equations:
1
(3.18) Oamyy = Z(l — 3+ N1+ 03)Qm,

1
(1 - C3)827T;1; = 5(1 — 0’3)Qm.

By using (3.12), (3.18) is equivalent to the following:
(3.19)

7rr—n(fa g9- h)

=g T (f ) + 7 (£,9) - b+ ((F,9) 7S RV + (1) 7 9)m = (5 (g, b))
We now compute the following quantity:
(3'20) Rk+1(f 9, h’t) = (f ‘9, (h7t)_>l:+1 + <h? {t, f- g>_>;+1 + (tv (f ‘9, h>_>;+1'
By using (3.19), (3.20) can be rewritten as

f . (g,(h,t)—>; +9- (f7(hat>~>;c—+1 + (<f7 (hat>—>_79):+l

+ (<g7 <h7t>_>—7f>;:-+1 + (<h9t)—a ({,g>+>l:+1

(3.21)
+(h (4 ) 9 + (B (69) T - N + (670 i

+ (hv ((tag>_7f>+);+1 + <ha ((fa g>:7t>—>;+l
( (h f) >k+1 ( 7(hag)—'f);c_+1—<t’<<hsf)_,g>+>;+1

- (ta (<h1g)_af>+>k—+1 - (t, ((f’g>-i’ h>—>;c—+1'
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The three terms marked by A vanish by virtue of Proposition 3.2, for setting 4; =
(f,g)?' we see that these terms are

(3.22)
k
Z{(<h,t)”,Az)Z+1-z + ({8, A7 R) g+ (A )7t i i
= k+1-1
= — Z Riy1-1(Ar, hyt) = 0.
1=1

Computing the underlined 4 terms in (3.21) by using (3.19), we have

Reta(f - 9, k1)
=f-{{g, (rs ) Viga + (B (1,9) ) igr + (8:{9, 1) )iy}
+g- {(F () )i + (A (6 ) )i + (6 (H R )i}
+ ()™ )T+ (AT (9T —(49)7 (R )T = () - (hyg)”

(3.23)
+(<<t7f>—7g>+7 h>1:+1 +(<h’ (ta f)_)_vg>2-+l +(<h’g>~a (taf>~>;:-+1

+<((t79>_7f>+7h>l:+1 +<<ha (t,g>_‘>—,f>;:-+1 +<<h7 f>_’ <t7 9>_>k++1

A *
“(((hvf)—;g>+’t>;+1 ”((t’ (hvf>_>—ag>2_+1 —(<tag>—aih,f)_>z-+l
—<<<hag>_7f)+7t>;+1 _<<t’<hag>~>—’f>;:+l _(<taf)—vihvg>—>;c|—+l
+(h, ((t, f)_vg)+>;+1

A

+(h7 ((t7 g>_a f)+)l:+1

A

—(ta<<haf>_,g)+>1:+1 +<<f7 (hvt)_>—7g);:+1 +(<ga<h7t)—>_7f)2-+1

A

_(t1 ((ha g>_, f>+>1:+1 .

Here six terms below the line of (3.23) come directly from (3.21). A~ - B~ means
Ei+j=k+1,i,j>1 A7 - B; . Note that the terms marked by ¥ and A vanish by them-
selves, and the third line of the right hand side of (3.23) also vanish by itself. Hence,

10
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we have

(3.24)
Rip1(f-g,h,t)
= f+ Rey1(9, b t) + g - Reya (£, b, 1)

+ ((h, <t,g)—>_, f);:—-i-l + ((t, <9’ h>_>—, f>‘li-+1 + ((g, (h’ t)_>_, f);c:-l
+ ((ho (& ) 7))k + (R T 90 + (B ) T) T 90

The last six terms in (3.24) vanish by virtue of Proposition 3.2, and (3.14). Hence,
we have 01 Ry41 = 0. As Ry, is alternative, we have 0;Ry41 = 0 (j = 1,2,3).
Then, Theorem 3.4 is obtained. O

§4. MAIN RESULTS
We state the following theorem ([OMY?2]).

Main Theorem. Suppose (a[[v]]x, *x) is a deformation quantization of order k of
(a,{, }). Then, there exists a bidifferential operator mx4; : a X a — a satisfying
(P)k+1 if and only if Ry1=0.

We will give a brief sketch of the proof of Main theorem. The necessity is obvious
by Proposition 3.2. For the sufficiency, we work on each coordinates (z1,--- ,z,),
and seek mgy1(z%,2#) for every multi-index (a,3). Then, the equation (1.6) for
Tr+1(z®, 2#) gives a huge linear system and the assumption Rj4; = 0 plays to the
role of the solvability condition. Lastly, using polynomial approximation theorem
and the partition of unity, we obatin 7t globally.

The construction is given by long direct calculations. Here, cohomological theo-
ries do not seem to be useful for our construction.

Our method of the proof is very primitive, so that this can be applied to infinite
dimensional manifolds. Hence several application to field theory can be expected.

If Ry41 is s non-trivial deRham-Chevalley 3-coboundary, we can replace m; to
7k + 0 by the deRham-Chevalley 2-cochain 6 so that Rgy; for 7 + 65 vanishes.
Since the above replacement gives another solution of (1.6), Main theorem and the
above property give a step up for the construction of deformation quantization.

Now, suppose (a[[v]]2k—1,*2k-1) is a deformation quantization of odd order
2k — 1 of (a,{,}). We consider the cohomology class [Rzx]. Note the solu-
tion of {1.6) has the ambiguity by Hochschild 2-cocycles. Let # be a symmet-

ric bidifferentail operator of positive order satisfying 6,8 = 0. By a replace-
ment 7y, _y =mag—2+6, {7, T1, -+ , T2k—3, Ty _,} gives a deformation quantization
(af[v]]2k—2, *55_,) of order 2k — 2. Since R}, , = 0 for (a[[v]]ak~2,*hr_5), there
exists my, _, such that {mo, 7y, -, Tok—3, Tpp_o, Ths_, } defines a deformation quan-

tization (a[[v]]2k—1,*5;_,) of order 2k — 1 by Main theorem. We have

Proposition 4.1. [Ryi] = [R);], where Ry and R, are determined by (3.1) for
(a[[v]l2k—1,*2k—1) and (a[[v]]2k~1,*54_;), respectively.

Before proving Proposition 4.1, we prepare the follwing Lemma.

11
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Lemma 4.2. Let 6 be a symmetric bidifferential operator of positive order such
that 8,8 = 0. Then, there exists a linear differential operator £ such that § = éo¢.

Proof. Suppose (Uq,T1,--+ ,Z5) is a local coordinate system on M. If §=6¢{q on
each U, then using a partition of unity, {¢s}, we see that 6= 6o ), #afa. Thus,
we have only to show that 6=6p€, on U,. For any point a=(a1, - ,an), and f €
C>=(Uy), we set f2= f(ay, -+ ,Gi—1,Zi,** ,Tyn). Obviously,

n

$o0 - f@) =Y. BT gy,
1=1 '

Notice that f—;j_—f‘:fi is C with respect to (a,x) € Uy X Uq. Define {o(f) by

£a(f)(a) = Ze( fin zi — ai)(a).

Note that 6(x,1)=0. If 6 is a bidifferential operator of order k, {4(f) is a linear
differential operator of order k. Thus, we have

(b0€a)(f, 9)(a)
= —(ga(fg) - fé-a(g) - ga(f)g)(a)

= Y0 T o) - S g*jl - ai)(a))

£ 308 - I o a(a) - g(ao I 4y ).

i=1 Ti—ai
Since 6,6=0 implies

we have by using 0(f, 9)=60(yg, f) and 6(*,1)=0 that

(6o€a)(fr9)(a) = > _(B(fP, 08 — g41) + 6(g8ha, 7 — F341))()

= Z(G(f, y97) — 6(fi41,951))(a)
= 9(f3 g)(a). O

Proof of Proposition 4.1. Due to skew symmetricity of solutions, (1.6)2g—1 is
reduced to the first equality of (3.18) with m = 2k — 1, for the second being always
true. Therefore, if we write 75, _; = max—1 + w, then w is given by

(4.1)  Bw(f,g,h) = —(60&)(m1(f,9), k) — (8o£)(m1(f, k), 9) + m1(F, (8a€)(g h))
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for any f,g,h € a. The right hand side of (4.1) is equal to
gA(f,h) — A(f,gh) + A(f, 9)h = —(8,A)(f, 9, h),

where A(f,g) = &(mi(f,9)) — m1(f,€(9))-
Put

(4.2) w(f,9) = m1(9,€(f)) — m(f,£(9)) + &(m (£, 9))-

Then, it is easy to see
w(f,g9) = —w(g,f) and Gw= -84,

so (4.2) gives a solution of (4.1). Hence, we have nj,_, = max—1 — (d1§)(f,9g) for
any f,g € a. By (3.1), we get R}, = Rox + d1d; € = Ray.

Note that the ambiguity of 7, _, is A%*(a, 7o), 1., another solution of (1.6)2x—1
is given by 7, _, =mak—1 + 6, 8 € A%*(a, 7). It is easy to check R}, for this my;_,
is cohomologous to Ryr—;. Thus, we get the desired result. O

Therefore, if a Poisson algebra (a, {, }) is given, then the cohomology class of the
first obstruction cocycle Ry is determined only by (a, {, }). If there exists (a,{, })
such that [R4] # 0, then such a Poisson algebra has no deformation quantization.
However, such examples are not known yet.

§5. EXAMPLES

We give several examples of deformation quantization of Poisson algebras.

Ex.1. (cf. [B]) Let G* be the dual space of a finite dimensional Lie algebra G.
Regarding X € G as a linear function on G*, we define {X,Y} =[X,Y], i, for a
linear basis Xi,--- ,X, of G, we set

{Xi, X5} = Z ki Xk
k=1

using the structure constants cfj of G. By the polynomial approximation the-
orem, the above procedure makes C*°(G*) a Poisson algebra whose rank is not
constant. (C*°(G*),{, }) is deformation quantizable and the deformation quanti-
zation is given by the closure of the universal enveloping algebra U, (G) of G with
the parameter v, i.e. the algebra generated by X;,--- , X, with the relations

(X, Xj]=—v)_ cfiXx.

k=1
In the construction of 741, we can set always 7, (X, X;) = 0 for m > 2. If this is
the case, we have only to check the quantities
(5.1) Rep1(Xi, X5, X0) = B mp (Xi, mi (X, X1)).

(i,3,0

R, always vanishes because dr,m; = 0. Hence, if 71(X;, X;) = ¢ij + 2, cﬂjX,,
then R, = 0 for any s > 2. This will be also applicable to Poisson algebras of

constant rank, and linearizable Poisson algebras (cf. [W]) for making deformation
quantization.
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Ex.2. Consider the symplectic form ;%rh' A dy on the upper half plane H,. This
gives a Poisson algebra structure {,} on C°°(H ) such that

{fag} = y2(azfayg - ayfa:cg)
which can be extended to C*°(R?). (C*(R?),{, }) has a deformation quantization.
Since all 7,, are bidifferential operators, the restriction f * g|H, depends only on
flH,g|Hy. Hence, any deformation quantization (C°(RZ?)[[v]],*) defines a *-
product on C®(H,)[[v]]. Taking the cartesian coordinates (z,y) € R?, we can
construct the quantized algebra (C°(R?)[[v]], *) with mn(z,y) = 0 for m 2 2. So
we have the relation [z,y] = —vy? where y? = yy = y *x y. This is equivalent to

yro=(z+vy)*y
and the algebra C°°(R?)[[v]] can be characterized only by this relation. Its restric-
tion onto H is isomorphic to the algebra of covariant symbol calculus given in [Be]
Mo].
Ex.3. Let r,y,z be the natural coordinate functions on R®. For any positive
integers k, [, m, the relations

{z.9) =25 {yz} =<', {z2}=y"
define a Poisson algebra structure on C°°(R?), in which the function
_ Y 1 mn 1
folay,2) = g™ + v YRy
Poisson-commutes with all elements of C*°(R?) (i.e, fo is in the center). The
Poisson algebra (C*°(R?), {, }) has a deformation quantization such that

ﬂ-j(xay) = rj(y,z) = 7'r,'i(zaw) =0
for j > 2. The obtained quantized algebra is characterized by the relations

e,y = —vz, [y.e) = —val, [s,2] = o™

where zF = (2:)F = (2%)F etc.
Ex.4. Let z1,z9, -, 2, be the coordinates on R™. For any skew symmetric matrix

(aij)i<i,j<n and for any positive integers p1,- -+, pn, the relations

{zi,2;} = a.‘ﬂf"ﬂﬂ;’j, (1<4,5 <n)

define a Poisson algebra structure on C*(R"). If p = --- = p, = 1, then
(C>=(R"),{,}) has a deformation quantization such that

me(zi,z;) =0 (1<4,5<n) for k>2

or such that

n . N 27
E vira(zi, ;) = T e T ;.
n=0 2a']

The latter relates to a noncommutative torus, for

1—%0,,']' 1+%a,~j
T;xT; = Y %7y, Tj*T; = Tl‘gl‘j,
1+§a,‘j 1—'5(1”

1+%a;; .
hence z; * ; = y—f—-z; * ;. Thus, a noncommutative torus can be understood
270

as a deformation quantization of Poisson algebra of this type.
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Ex.5. Let g be the algebra of the so called quantum group Gly(2, R) (cf.[Wo,[D]).
This is the algebra generated by z,y,u,v with the relations

zrxu=c’u*xzr, rrxv=¢e’v*zx
uxy=¢e"yxu, v+xy=ce’y*v

UV =V *U

v

Txy—e'uxv=y*rxr—e ‘uxv.

g defines the structure of Poisson algebra on C°(M(2)), where M(2) is the space
of 2 x 2 matrices, as follows:

{z,u} = zu, {z,v}=2zv, {z,y}=2uv,

{u,0} =0, {u,y} =uy, {v,y}=v0y.
This Poisson algebra (C*°(M(2)),{, }) has a deformation quantization such that

nm(linear function , linear function) =0 for m > 2.
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