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1. Introduction

Let © be a bounded open set in the m-dimensional Euclidean space

Rm,m > 2 and let T be a given positive number. For a positive int-

eger N, we put

h=T/N and t_=nh (n=20,1,--+,N). (1.1)

n

In this paper we shall consider a family of linear elliptic partial

differential scalar-valued equations of the divergence form:

m

(w, - w,_4)/h = > Di(aij(X)Djwn) (1 <n<N) in &, (1.2)

n i,j=1
where Di = a/exi(l < i £ m). We assume that the coefficients
aij(x)(l < i,j < m) are measurable functions defined in Q and
fulfill the uniform ellipticity and boundedness condition with
positive numbers x and u, x < u:
Mgl < ag (xogEg < nlzl?

Here and hereafter summation convention is used.

Around 1957, epoch-making papers [1] and [7] were published by
E.DeGiorgi and J.Nash,each of which succeeded in achieving Holder
estimates of solutions for scalar-valued elliptic or parabolic

partial differential equations of the divergence form with bounded

for any & € R" and x g Q. (1.3)
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and measurable coefficients. Since then, 0.A.Ladyzenskaya and
N.N.Ural'tseva have made it capable to deal with non-linear elliptic
and parabolic ones([3],[4]),whose works have become classical results
of great importance. On the other hand, J.Moser has proved in
celebrated papers [5] and [6] that a Harnack inequality is valid for
solutions of elliptic and parabolic differential equations with
bounded and measurable coefficients.

The purpose of this paper is to extend some results of Holder
estimates obtained in [3] and [4] to the equations of the type (1.2),
which we call difference- partial differential equations of the
elliptic-parabolic type having the divergence form. In deriving
Holder estimates for solutions of such equations, we are essentially
to rely on two theorems demonstrated by Ladyzhenskaya-Ural’tzeva. The
reason is that the equations (1.2) represent the feature of elliptic
or parabolic type, depending on whether a time discrete mesh h 1is
relatively large or small compared with the size of considered local
domain. From this standpoint we introduce later two function classes,

variances of classical function classes stated in [3] and [4].

Standard notations

Q

r = FT = {(t,x):0 < t < T,x € 3Q} U {(t,x):t = 0,x € Q},

where the set &R 1is the boundaray of Q.

Qp= (0,T) x @, (1.4)

For a point (to,xo) € Q,we put

Bp(xo) = {x € Rmzlx—xol < p},
- (1.5)
Qp(xo) = 0n Bp(XO)
and
Q(p,T) = {(t,x) €Q : ty- T <t < t,,x € Bp(XO)}’ (1.8)

the set being called a local parabolic cylinder.

- 2 -
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Throughout the paper we suppose the domain § is of the type A
([3]),that is,there exist two positive numbers o and A, 0 < A< 1
, such that IQpi! < Aprl for any ball B/ with center on 8@ of
radius p < po and any connected component Q; of Qp. Here and

hereafter, the notation |:| denotes an m-dimensional Lebesgue measure.

0
We adopt usual Sobolev spaces Wé(Q) and Wé(ﬁ) from [3] and

[4].

Let ¥(t,x) be a Holder continuous function on [ with some

positive numbers C and ao, 0 < ao < 1, such that
le(t,x)-¥(s,y) | < clt-sI%’%+ Ix-y1%0) (1.7)
for any (t,x),(s,y) € T.

We shall now define "a family of weak solutions for equation (1.2)
with the prescribed boundary and initial date " by a family of
functions W€ Wé(Q)(l < n < N) which satisfy

IQ{%(WD— Wo1)® + ay (0D W De} dx = 0(1 £ < N) (1.8)

for any function ¢ € CZ(Q) and
L wt on 9Q(1 £ n < N) in the trace sense,

n

wo(x) = ¥(0,x) for xeQ, (1.9)
where wt (1 < n < N) are sections such that
n
wt (x) = w(tn,x) for x € 9Q. (1.10)
n
We set the function w(t,x) by means of the equalities

w(t,x) = wn(x) for t < t< tn(l < n < N), (1.11)

w(0,x) = ¥(x).
Let 6, 0 < 8 <1, be a number to be determined later in Theorem
P, not depending on h, while we take h in (1.1) sufficiently small
satisfying
h < min{6? 07273 1/36}. (1.12)

We are now in a position to state our main result.
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Theorem. Let {wn}(l < n < N) be a family of weak solutions of
(1.2) with the initial and boundary data . Suppose that {wn}(l <n
< N) 1is equi-bounded:

max suplwn(x)l <M (1.13)
1<n<N x€Q

for some positive constant M.

Then there exist positive numbers C and o,0<x<1l,depending only
on A,u,m and M, such that

osc{wn:Qp} < cp®(1 < n < N) (1.14)
for any positive p and

lw (x)-w . ()] < C{(n-n')h}®/4

(1.15)
for any positive integer n and n',(n - n')h < 1,1 £ n' <n <N

and any X € Q.

To make our proof more clear,we have confined ourselves to
treating only linear equations of type (1.2). However,the similar
assertion might hold for solutions of the equations (1.2) with a
quadratic nonlinear term of the gradients in the right hand side. For
linear equations with the initial and boundary data (1.9), the
estimate (1.13) shall be derived in the usual way of maximum
principle (see [4]).

We should here notice that (1.14) and (1.15) are uniform Holder

estimates with respect to h.
2. Preliminaries
In this section we desplay only a variation of results obtained

by 0.A.Ladydzenskaya and N.N.Ural'tseva(refer to [3],[4]), which is

indispensable to our reasoning. First we recall two function spaces
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from [3] and [4].
Let f Dbe an integrable function defined on § or Q. For

measurable sets $ c Q@ and Q c Q, we use the usual notations

e, & = ([51212ax)1/2,
2,8 IQ (2.1)
_ 2 1/2
hotl, o - Ifﬁlvfl dxdt)
and
osc{f:%} = sup{f(x):x € {I} - inf{f(x):x € §},
osc{f:Q) = sup{f(t,x):(t,x) € Q}-inf{f(t,x):(t,x) € Q},
(2.2)
where
vl = (le, D2f,"', Dmf),
m
|Vf|2 = (3 |Dif|2)l/2. (2.3)
i=1
For a number k, we put
£ (t,x) = max{f(t,x)-k,0},
£ (x) = max{f(x)-k,0}. (2.4)
Wé’O(Q) is the Hilbert space with scalar product
(£.8) 4 o = [[trer(vr,ve)axat, (2.5)
Wz’ (Q) Q
where
m
(vf,vg) = > D.fD.g. (2.8)
i=1 -t
V2(Q) is the Banach space consisting of all elements of Wé’O(Q)
having a finite norm
IfIQ = sup{llf(t,')llz’g: 0 <t<T} + IIVfIIZ’Q. (2.7)

In accordance with this, we handle local norms
= . tt,a- v ,
IfIQ(p,t) sup{|If(t, ) Ilq (x.)ito T <t < tgl o« I fllQ(p,r)
p0 (2.8)

where Q(p,T) 1is a local parabolic cylinder defined in (1.6).
Let W, v, and & be positive numbers and take positive numbers

po and Ty- We say a function f(t,x) belongs to a function space
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BZ(Q,W,y,2(1+2/m),6,2/m)(see to [4]),if f(t,x) satisfies the

conditions 1),2) and 3):

1) f € VZ(Q)’ (2.9)
2) sup {If(t,x)|:(t,x) € Q} < W, (2.10)
3) the functons g = =f satisfy the following:
sup (1e®le, 112 5 ¢ -t < t < tg)
p-ogp
t
(k 112 -2, (k)2 0
< He®legme 0115 oo vt 2HENNG o oye] O In p (0100
P 0 (2.11)
and
) (k) 2 -2 -1 (k) {2
lg IQ(p_olp,t_ozt) <y[{(o,p) "+ (0,T) Mg IIZ,Q(p,t)
t
0
: ft A (o latl, (2.12)
0

in which Q(p,T) 1is any local parabolic cylinder; p and T are
arbitrary positive numbers satisfying p < Po and t < Ty’ ol and o,
are arbitrary numbers from the interval (0,1); k 1is an arbitrary
number subject only to the condition: if Q(p,T) C Q,

k > sup{g:Q(p,T)} - & and |kl < W, (2.13)
or if Q(p,T) N T # ¢,

k > sup{g:Q(p,T) N }; (2.14)

Ak,p(t) = {X € Qp(xo);g(t,x) > k}. (2.15)

Let W, v and & be positive numbers and take a positive number

ps. We say a function f(x) belongs to a function space
B,(R.W,7,5,1/2m) (see to [3]1), if f(x) satisfies the following 1%,

2*) and 3*):

1%y f e w%(Q), (2.18)
2%)  sup {If(x)|: x € Q} < W, (2.17)
3*) the functions g(x) = * f(x) satisfy the following:
[a 1781%ax < v (727" supl(g(x)-k)%e1yla 117, (2.18)

k,p-0op Ak o

in which p 1is an arbitrary positive number satisfying p < p;; o is

- 6 -
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any positive number from the interval (0,1); k is an arbitrary
number subject only to the condition: if Bp c Q,

k = sup {lg(x)| : x € B,} -8 and Ikl < w (2.19)
or if Bpﬁ N = ¢,

k > sup {lg(x)| : x € BN a0} ; (2.20)

Ak,p = {x € Q(XO): g(x) > k}. (2.21)

For the above two function spaces, there have been proved the
followings(refer to [3],[4]):

Theorem P. If f(t,x) € BZ(Q,W,y,2(1+2/m),6,2/m) satisfies a
Holder estimate on FT: there exist some positive &g, pl and L such
that

osc {£:Q(p,p?) n rpt < Lp® (2.22)

holds for any 0 < p < pl, then f(t,x) satisfies a Holder estimate in

QT' To be exact,

osc {f: G(p,002)} < C(p/p)° (2.23)
for

p < p := min {poypl,/ro/e, pl//e}, (2.24)

where C,B8,s,b and 8 are positive numbers such that

B b

¢ = bPmax{w,255% }, w = osc{f:Q(5,05%)},

B

B(m,y,L,g,A), s s(m,v,8,L), (2.25)
b>1, 8 = 0(m,7v,A).

With a little modification, we may assume, instead of (2.12),

(k)2 -2, -1 (K) 2
lg IQ(p_olp't_oér)?{(olp) (0,T) Hilg IIZ,Q(p,t)
~apto (2.26)
+ 0y |(Ak p(t)|dt
to-t ’

for p > Pgr T > T, with some positive numbers Py and Ty such

that < min{ po,pl}, T, < T and for k as in (2.13) and

Pa
(2.14). In fact, if, further,
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p := min{po,pl,/?g7§,ol//§} > max{pz,/?;7§} =: p, (2.27)

then estimate (2.23) does hold for p under the restriction

- 2.28
p<p < p . ( )

Theorem E. If f(x) € BZ(Q,W,y,é,l/Zm) satisfies a Holder estimate
on 9Q:there exist some positive pI,sf 0 <g" <1 and L* such

that

*

osc {f:Bpn 20} < L*p8 (2.29)

holds for any 0 < p < p*, then f(x) satisfies, for any 0 < p <
1

p¥i= min{pg,pI },
= * *B*
osc {f:Q} <C (p/p7)", (2.30)

where CT Bf s* and b* are positive numbers such that

*
* b*®nax {@*,ZS(B*)ﬁ}, w'= osc {f:QB*},

C

b* > 1, s*= s*(m,¥,e*,L), 8% = 8% (m,v,LY,e¥,A). (2.31)

In order to treat solutions of equations (1.2), we now introduce
two function spaces.

Let W, ¥ and & be positive numbers and take positive numbers
po and Ty- We shall say a function f(t,x) Dbelongs to a function
class Bg(Q,W,?,2(1+2/m),5,2/m) if f(t,x) satisfies (2.9) and
(2.10) and,further, the functions g(t,x) = * f(t,x) satisfy
(2.11) and (2.286) for any p and T with the restriction
0<p <o, Jh < t < t,. and all 0,0, € (0,1).

Let W, ¥ and & be positive numbers and take positive numbers
ps. We shall say a function f(x) belongs to a function class
BI(Q.W,7.5,1/2m) if f(x) satisfies (2.16) and (2.17) and,
further, the functions g(x) = * f(x) satisfy (2.18) for any

positive p with the restriction p < ps and p < h.
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For the above function spaces, we have the following theorem, a
variance of Theorem P. We now recall w(t,x) is a function defined in

(1.11).

Theorem Ph. Let w(t,x) belong to the function class
Bg(Q.W,Y,2(1+2/m),5,2/m). If w(t,x) satisfies a Holder estimate
on FT:there exist some positive numbers Pys g, 0 < g <1 and L
such that
= 2 g

osc {¥:Q(p,p") N I'n} < Lp (3.32)
holds for any positive p < Py then w(t,x) satisfies the estimate

osc {w:a(p,00%)} < c(p/p)” (2.33)

“1/2p1/4 p < p, where C,90,8 are

for any positive p satisfying @
positive numbers defined as in (2.25) and p 1is a positive number

defined as in (2.24).

For the proof of Theorem Ph we have only to make the following
observation. We follow the proof of Theorem due to Ladyzhenskaya
and Ural'tseva ([4]) with the use of local parabolic cylinders of
only the special type Qp(xo) X (tn— r,tn), X0 € Q,1 < n < N. Since
(2.11) and (2.12) are satisfied for any positive t, =t 2 vh, it

follows from Theorem P that (2.33) holds for any p, P 2= 9_1/2h1/4.

3. Two Lemmata

The proof of our Theorem rests on the following two Lemmata, which
are obtained by making combination of Theorem P with E.

Let {wn}(l < n < N) be a family of weak solutions for (1.2)
satisfying the prescribed data (1.9) and the condition (1.13). Defin-

ing a function w(t,x) by the relation (1.11), we have the
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following Lemmata. Let & be a positive number.

Lemma 1. There exists a positive number ¥y independent of h such

that w(t,x) belongs to Bg(Q,M,Y,2(1+2/m),6,2/m).

Lemma 2. There exists a positive number ¥y independent of h such

that {w_(x)}(1 < n < N) belong to Bg(g,m,y,a,l/Zm).
Proof of Lemma 1

According to the assumption on W one finds that w(t,x)
satisfies the conditions (2.9) and (2.10) with W = M. Hence it
remain to verify that w(t,x) satisfies the conditions (2.11) and
(2.26) with the restriction <t 2 /h.

Let X

0
defined in (1.1) and put Q(p,T) = Qp(xo) X (tn— t,tn). At first, we

be any point in § and tn(l < n < N) be a point

shall begin by considering the case: Q(p,T) <© Q.

Defining a scalar-valued function ¢ € C:(Rn),for ol, 0 < o, <1,

1 for Ix - xol < (1 - 9a;)p,

g(x) = (3.1)
0 for |x - Xol > p, .

0 <&(x) <1, |vegx)| < 2/0p.

We choose hwék)tz as a test function in (1.8). After thus, sum the

resultant equality over n from n, to n, and one sees

2
2 IB (w, - wn_l)wék)gzdx
n=n,""p
n n
o k), (), 2. . D2 (k) (k)
hngnlpraij(X)Djwn Dyw." ¢%dx 2hn§nlIBpaij(x)Djwn w §Dj§dx.
(3.2)
By virtue of
(k) (k) _ (k) 2
wo_- k<w 7 oand  (w -k Jw tr= (w m0)S (3.3)

- 10 -
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w0y (K (05 B2 ((K)) 2y /2,
we have
n
2
2 (w - w W (k) 24x
nen pr n n-1
1
N2
= (k)2
-g IB {(w -k)-(w _,-kK)}w =7g%dx
n=n,""p
1
N2
(k) (k), (k). 2
= g IB (W™= W)Wy e
n-nl P
1 (k) 2_ (k) 2 2
23 Z IB (w,_1)7 }gTdx
= 1 (k) - (k)
-3 IB 2¢2ax - 2 IB ) 2e%ax. (3.4)

On the other hand, it follows from Young's inequality that

n
-n 32 [, 00D, w(k)D w(k)tzdx _on 52 fB a;; (0D, w(k) (k)gD.;dx
n=n, p n=n, J
n
< -ah §2 IB |Vw£k)|2§2dx - 2h 22 IB FESLY w(k) (k)nggdx
n=n,""p
n
< -2h ;2 IB | v (k)lzt ax+22 " Luh ;2 IB (wék))zlvglzdx
n=n,""p
n
< -3h 52 IB |Vwék)|2§2dx+81 w(o,p) 2, 32 f (w(k))zdx (3.5)
Il=n1 [e] n= nl p

Combination of (3.4) and (3.5) with (3.2) gives the estimate

(k),2,2 S2 (k) 2,24
ij( n, ) “£“dx+xh E IB |

n
IB (K )2¢2ax+160 " (o, 0) %0 3 f (w(®))%ax. (3.6)
n=n."B
1 °p
The assumption Tt > /h and 0 < h <1 imply <t = h, thereby,

ng- [t/h] + 1 < ng,

where [*] means, by convention, Gaussian symbol. Picking nl and n,

n, 1in (3.8) as

n, = ng- [t/h] + 1, n,- [t/h] + 1 < n, < ng,

- 11 -
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we have for n,.- [t/h] + 1 < n, < Ny,

0
f (k) f (k) 2
) 24x < i ) Tdx
Bp_o p n2 B n [Tt/h]
1
+161° u(olp) “2p 22 I (w(k))zdx (3.7)
n=n
1 D
While the inequality (3.7) with n, = ng- [t/h] Dbeing trivially
valid, we arrive at the estimate
max IB w(k))zdx
n —[t/hlsnsnO p-0,pP
L) (k),2
IB n —[t/h]) Zax +161" wiog p) Zh 2 I (w ~7)"dx. (3.8)
n=n
1 D
Based on the definition of w(t,x), we rewrite (3.8) 1in the form:
sup i (w(k)(t,x))zdx
t. —-T<tLt p-0.p
nO nO 1

t
< IB (w(k)(tn - t,x))zdx +161_lu(clp)—zf Iy IB (w(k)(t,x))zdxdt.
P 0 tnat (3.9)
Consequently, w(t,x) satisfies (2.11) with v = 162 1y,

We shall next show that w(t,x) satisfies (2.26) for any <t
with the relation <t = /h . The assumption <t = /h, together with
(1.12), implies

t > /h > 6h. (3.10)
We now distinguish the following cases:

Ozr > 4h, (3.11)

02r< 4h. (3.12)

At first, we shall start from the case (3.11). Let ¢&(x) be the

function defined as in (3.1).

For ng,, 1 < n, < N, we introduce a step function n(t) on [O0,T]
as follows:
n(t):=n_ for t _,<t <t (1<nc< N), (3.13)

- 12 -
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1 for no—[(l—oz)r/h] < n < ng,
Nyt {n-n,+[t/h]1-1}/{[t/h]-2-[(1-0,)t/h]}
for no—[r/h]+1 <n < no—[(l—az)t/h]—l,
0 for n < nO—[r/h].

Particularly, in view of (3.11),

0 <na - n,_ 1< 1/{lt/h] -2 - [(1 - 0y)t/h]}
< 4h/02t (1 €£n < N). (3.14)
Under these preparations, we now take w(k)gzn as a test function

in (1.8) and then integrate the resultant equality over [tn— t,tn 1

0 0
,s0 that
t
I n, IB w(t,x)gw(t—h,x) W(k)(t,X)ﬁz(x)n(t)dxdt
t -t o}
n
(k)Ez)ndth. (3'15)

0
tn
= - f 0 I ai.(x) D.wDi(w
t -t VB, J J
0

We estimate the left-hand side of (3.15). From the definition (3.13)
of n(t), we have,by making a calculation analogous to that in (3.4),

t
I n, I w(t,x)-w(t-h,x) w(k)(t,x)gz(x)n(t)dxdt
t -t BP h

Do

t (k) K)o
n w t,x) t-h,Xx) (k) 2
> ft 9thp L w B (£, x)¢%(x)n(t)axde

n

20 [

-[(1-0,)t/h]+1
n.~-[(1-o,)t/h]
« 30 2 I (wék)_ w(gi)w(k)n «Zax. (5.16)
n=n0‘[f/h]+l B n n n
P

nn—[r/h] = 0, and, from (3.11), n, -
[(1-0,)t/h]-(n,-[t/h]+1) > 0,T/h > 4. As seen in (3.6),

n
20 I (wék)— wé%i)wék)gzdx
n=n0~[(1—02)t/h]+1 Bp

1 (k) 2.2 1 (k) 2.2
23 IB (wnO )Tg%dx —QIB(WHO_[(l_OZ)t/h]) ¢7dx. (3.17)
(Y P

(k) (k) (k). 2
gy W n—l)wn ¢ dx

0

observing that

- 18 -
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Because of (3.14) and the identity

(ap - ay_)by = (agby = a, 4by 4) - a, (b = by 40, (3.18)

we have
n —[(1 g )t/h]
Z I (w (k) (%))w(k)n tzdx
n=n —[t/h]+1

¥
ny-[(1-0,)%/h]
=21 3° 2 [ el 2wk in cPax

2 n=ny-[t/h]+1 .
_ l go‘[(l'az)'t/h] I {(w(k))zn (k)) N gzdx
2 n=n0-[t/h]+1 n-1
4 Qo y< )20 0 e o
2 nen —[t/h]+1 n-1°"
1 2.2
f Y10 ,t/ny e dx

n.-[(1-0 )t/h] -1
- 2(0,0) " 'h 50 I (wék))zgz ax . (3.19)
n=n —[t/h] p

Hence, substituting estimates (3.17) and (3.19) into (3.16) yields

t
Itno f w(t,x)ﬂw(t—h,x) w(k)(t,x)tz(x)n(t)dxdt
no—r B
P
> 1 J w8y 2ax - 2(0,0 )7t I 0 f (w®))2qxdt. (3.20)
0 t -t
P—Olp HO P
We also have
f 0 f 0D WDy (w®) ¢2) naxdt
t —t p
A n (k) 2.2
< -Z 0 | vw | “¢“dxdt
: It 0_ IBp
-1 ~2ptn (k)| 2
+8x “u(o.p) f 0 I (w )“dxdt. (3.21)
1 tn—t Bp n

Substitution (3.20) and (3.21) into (3.15) 1leads to the

inequalities
tn
lf 0 I IVW(k)ldedt
- B
p-a,P

- 14 -
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t
< max{4,161_1u}{(olp)_2+(021)_1}f ngy f(w(k)(t,x))zdxdt (3.22)
tn(-)‘t Bp
and similarly
sup j (w(k)(t,x))zdx
t. -(1l-0,)T<t<t p-0.p
no 2 nO 1
-1 -2 -1, % (k) 2
< max{4,16x u}{(olp) +(02t) }I 0 I (w (t,x))“dxdt. (3.23)
tn(-)'t Bp

(3.22) and (3.23) imply that w satisfies (3.26) as long as <t = /h
and 05T > 4h.
We shall next deal with the case (3.12):02r < 4h. From this
assumption with <t = /h,
vh < © < 4h/o, (3.24)
and therefore

1 < 16ho£? (3.25)

From the uniform boundedness of wn,lw(t,x)l <M, (2.13) and

(3.25),
t
I n, IB w(t,x)iw(t—h,x) w(k)(t,x) ;2(x)dxdt
tn—r P
0
< 3250‘2MItno A, (t)] dt (3.26)
2 t -r K.P ’ )
Do
where
Ak,p(t) = {x € Bp:w(t,x) > k}. (3.27)

Putting n(t) =1 in (3.15) and bearing in mind (3.21) and (3.286),

we have (3.22).
Let us now calculate the term

- [(1 - oz)r/h] <n < n,.

I(wék))zdx for n,

B
p-0,p

To this end,we classify the cases:

[(1r - oz)r/h] =1, (3.28)

- 15 -
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[(r - Oz)r/h] = 0).

We first treat the case (3.28). With the aid of (3.25) and

(2.13) in Q(p,pz), we have for n, - [(1—02)t/h] <n < n,

fB w(®))2ax < 160§2hf8 (w(¥))2Zax

p—OlO 0(1‘0 )
< 16820 2n1A" | < 16582 o 2, 30 lap |
2 k,p ' P
n= nO-[(l o )t/h]

< 1652 Zf i (t)Idt
where

n _ . _ .

Ak,p" {x € Bp.wn(x) > k} and Ak,p(t) = {x € Bp.w(t,x) > k}.

We next handle the case (3.31). In order to do this, we
distinguish the sub-cases:
[t/h] > [(1 - o,)t/h],
[t/h] = [(1 - Oz)t/h]).
In case (3.32): Since [T/h] = 1,

tna (tna t) =t 2 [t/h]h = h.

Namely,by (3.25), we have

I (wék) dx < 160;2hIB (wék))
p(l o) ) 0 0(1—01) 0
n n
2 -2 0 2 -2 70
< 16870, hlAk,pI < 16570, ft i A Ay p(t)ldt
Do

In case (3.33): From [T/h] = [(1 - Oz)t/h], we have ,for n,

n, - [(1—0 Jt/h] < n < no,
I (w k)) dx < t© I IB (wék))zdxdt
Bp(l 01) n,-t p(l—ol)

Combining (3.34) with (3.35), we obtain

- 16 -
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IB t X)) dx < (0 T) lf IB (k) dxdt
p(l-0 ) (3.36)
-2
+168°2 o, J' k p(t)ldt
for t - (1 -o,)t £t <t .
no 2 nO

Collecting (3.21),(3.26) and (3.36), we have (3.23).

As rergards the case:Q(p,r)an¢ ¢, in all the same way as just
described, we can prove that w(t,x) satisfies (2.11) and (2.26)
for

k > max {w:Q(p,T) N T }.
So we can for -w(t,x). Hence we have completed the proof of

Lemma 1.
Proof of Lemma 2

From the definition of the weak solutions of (1.2) and
assumptions (l.8),wn(x) satisfies (2.16) and (2.17). It remains
only to show (2.18) with p < h.

At first,we consider the case ch Q. Let & be a function
defined by (3.1) and Kk a positive number subject to (2.19). In

0
the relation (1.8), we insert wék)gz € W%(Q) into test function ¢

to obtain

w_- W
[ w2 v a comjwp, (w(Fe?)rax - o, (3.37)
where w(n) is the function defined as in (2.4). By the assumptions
p £ h, we infer, Km being the area of the unit sphere in Rm,
1/h < 1/p = Ki/mIBpl_l/m, (3.38)
. (k) .
By virtue of Iwnl < M and lwn | in Bp,
IIB wil)eZax| < 25Mh‘1f ¢2dx
n
A
k,p

- 17 -
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1/m 1/m
< 28M Kk IB . IAk p| (3.39)
where AE o is the set defined in (3.31).

On the other hand,by making use of Young's inequality, we estimate

the second term of (3.37):
(k)tZ

IB 13(X)D3wnD1(w ydx
: IB (k)|2 _ u(op) ZIB (k))2 (3.40)
Consequently, from (3.41),(3.43) and (3.44),
IB low ()| 2ax < 321-2u(0p)—2IB (K))2q
p-0,p
+ 482" Mnl/mlB |~1/m la) [1-1/m

< {321_2u(op)_zsup(wn - k)zlA , |1/m
v 40 MKl/m}lAﬁ |1-1/m
< Klémmax(SZA—zu,461—lM){o p_lsup(wn— k)2+ 1}IAE IDll_l/m,(3.41)
which is the required inequality (2.18) with
v = kM Mnax(sza "ty 4527 tmy (3.42)

In case Bpn 90 # ¢, one can prove (2.18), in the same manner as
the arguements just carried out, for
k > max {wn(x):x € Bpn 2%},

the difference being,however,that the balls Bp are to replaced by Qp
4. Proof of Theorem

On the basis of the fact that

W lgg= Wit ) € c%o({t } x 8Q)

and
osc {w:Q(p,p?) n T}
/2, Ix - yI%i(x, t ). (y.t .)€ Qlp,p 2)ary,
(4.1)
(2.22) in Theorem P and (2.29) in Theorem E are valid. Via

< C sup {((n - n')h)

- 18 -
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Lemma 1 and 2,
w € BD(Q,M,¥,2(1+2/m),5,2/m)
and
w_ € BM(Q,M,7,5,1/2m)
n o (4, M, 7,9,
for some positive 7y independent of h.

Let n(l < n < N) and X

€ Q) be arbitrary taken and fixed. We

put Q(p,@pz) = (tn- sz,tn) b Qp(xo),where 0 1is a positive number

determined in (2.25). In the light of Theorem P and E, we establish

the estimations of w(t,x) and wn(x)(l <n < N):

osc {w:Q(p,002)} < co® for 671/2n1/4 < p < 5 (4.2)
and
- s*
osc {wn:Qp(xo)} < Cn (p/h) for p < h(l1 £ n < N), (4.3)
where
—w 6* . S* 6* .
Cn = b’ max {wn,2 h” }, W, = osc {wn:Qh(XO)}(l <n < N) (4.4)
and the constants C,0,p,8,8° and s* are positive numbers,
R . -1/2.1/4
independent of h,given in Lemma 1 and 2. By setting op 0 h ,
we derive from (4.2)
osc {w:Q(0 Y/2p1/4 y1/2)y o o B/2B/4 (4.5)

We now fix positive numbers p and bear in mind that assumption h <

h< 62/3 (0<0<1) of (1.12) gives
h < o 1/2p1/4

To proceed the proof, we now classify the relations between h

p:
p < h,
h<p< o~1/2,1/4
9_1/2h1/4 < p.

The case (4.7): Upon putting

1/2,t )

-1/2,1/4 . 1/2, _ ~ _
Q(e h ,h ) = Qe 1/2h1/4(x0) X (tn h n

- 19 -
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we deduce from (4.5) and (4.8) that
@; = osc {wn:Qh(xo)} < osc {w(t,x):x € Qe—l/2h1/4(X0),t = tn}
< osc {w:Q(9_1/2h1/4,hl/2} < 06_6/2h8/4, (4.10)
in which

o = min{B/4,B*}. (4.11)

To continue the proof, we further classify the sub-cases.

Case 1. Suppose Zs*hB* > ﬁ;. Then, from (4.4),
* * *
c* = bP 25 nf
n

Since p < h (< 1), from (4.3),

B B

* *

25 n

* (,* B* *

osc {w :Q (x,)} <D (p/h)” < b 25 %, (4.12)
n"p 0

* *

Case 2. Suppose 28 h6 < @;. We have from (4.4) and (4.10)

*  *

*
B W< co~B/2p8 8/4 (4.13)

c* <bp
n
Thus ,it follows from (4.3) and (4.18) that

*

osc {w,:0, (X))} < cob/2u8 1874 o /nyb (4.14)
To proceed an estimate of (4.14), we here notice the following
inequality holds:

hB/4(p/h)B* < p% for p < h. (4.15)
Actually,

In case 8% > 8/4,

* * * *
pBra-8 8% B/a-6¥ 8% 8/4 _ o

< P = p
In case 8" < 8/4,

* *
hB/4—B pB < pB - o,

Estimates (4.14) and (4.15) imply

*
osc {wn:Qp(xo)} < 09—8/4b6 pa for p < h. (4.16)
The case (4.8): On account of assumption h < 62,
h<p< o~ 1/2p1/4 o

- 20 -
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Hence, by taking

/2,t )

-1/2.1/4 . 1/2, _ B .1
Q(o h ,h ) = Qe 1/2h1/4(x0) X (tn h n

we obtain from (4.5)
osc {Wn:Qp(xo)} < osc {w(t,x):x € Qe—l/2h1/4(x0),t = tn}

< osc {w:Q(9—1/2h1/4,h1/2} < CG‘B/ZhB/4

< coB/2,8/4 gB/2,0 (4.17)
The case of (4.9): By putting
2y _ .2
Q(p,08p%) = Qp(xo) X (t - 00%,t),
and noticing (4.9), we have from (4.2)
osc {wn:Qp(Xo)} = osc {w(t,x):x € Qp(xo),t = t_}

B« o2, (4.18)

< osc {w:Q(p,0p%)} < Cp
Thus, summing up the estimates (4.16), (4.17) and (4.18)
obtained above, we obtain

osc {wn:Qp(xo)} < Cp* for p<p (1L <n<N), (4.19)

where

& - max (c,co P2 coP/ 2,87y, (4.20)
which is not independent of h.

We shall close the proof of Theorem by proving estimate (1.12).

We take two positive integers n and n' with

(n -n')h <1 (n>n'). (4.21)
For such n and n' taken as above, we choose a positive number ¢
satisfying

h<(-nHh=0%%<1, (4.22)
where @ 1is the positive number from (2.25). From (4.22), there
holds

o 1/2p1/4 £ 3. (4.23)
For each x € Q, we take x, € ! satisfing x € QB(XO)' Putting

0
~oa2 a2
Q(p,8p7) = Qp(xo) X (tn 0p .tn),

- 21 -
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we make use of (4.2) to obtain

osc {W:Q(S,Osz)} < CEB. (4.24)
By (4.22),
0234 < 0p2, (4.25)

SO wWe see

_ _ ' _ n2~4 ~2 .
tn— tn,- (n n')h = 0% < 8p~. (4.286)
Hence, we obtain from (4.24) and (4.28) that
lw (x) - w . (x)] < sup {lw(t ,y) - wit ., y)l:y € Q5(x4)}
< osc {w:Q(5,0625%)) < c078/2((n - nnym /2. (4.27)
We reach the desired estimate (2.15).

These complete the proof of Theorem.
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