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INTRODUCTION

It is fairly known that the classical mechanics is written by using functions
on a phase manifold, and the quantum mechanics is written by using “opera-
tors” obtained through the correspondence principle from functions on the phase
manifold. Here, “operators” are sometimes not genuine operators, densely defined
on a Hilbert space, but a symbolic non-commutative objects corresponding to func-
tions on the phase manifold.

Considering this vague character of the quantization procedure, Bayen et al.
[B] proposed the idea, called deformation gquantization, that quantization is not
to make operators, but to deform the algebra of functions to a non-commutative,
associative algebra. The advantage of this idea is to make us possible to consider
the quantization purely algebraic without the representation theory.

First, let us recall the notion of deformation quantization briefly. Let (M,w)
be a C* symplectic manifold and C°°(M) the set of the smooth functions on M,
which is denoted by a simply. Consider the direct product

al[v]) = Z vEa.

k>0

An associative product * defined on a[[v]] is called a deformation quantization
of a, or simply a x-product, if the following conditions are satisfied: For f,¢ € a

(AL) (V) x1=1xFf)=vFf, (WFf)x(vmg) = vFtmfxyg.
(A.2) Let Ek;o vEme(f,9), m(f,9) € a, be the decompostition of f % g.

Then, mo(f,g) = fg, the usual product, and = (f,g9) = —{f,9}/2, where
{, } is the Poisson bracket on M.

We have already known in [DL], [OMY1] that there exists a *-product on any
symplectic manifold. Thus, in this note, we shall concern how many %-products
exist on a symplectic manifold. To consider this, we will call two algebras (a[[V]], *)
and (a{[v]], ¥') isomorphic, if there is a linear isomorphism ®: (a[[v]}, *) — (a[[v]], ¥')
such that ®(f = g) = ®(f) * ®(g9). Note that ®(v) = v is not requested.
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For instance, let P,(C) be the complex projective n-space with the standard
Kahler form. There are two different ways of making #-products on P,(C). The
first one is intrinsic, initiated by Berezin [Be], who discussed on the 2-sphere, ex-
tended to P,(C) by Moreno [M}, and to bounded domains or compact Kahler man-
ifolds by Cahen, Gutt and Rawnsley [CGR). Here the %-product is obtained at first
by making operators corresponding to real analytic functions on P,(C), and the
asymptotic symbol calculus similar to [K] gives the -product on C¥(P,(C)). This
can be extended easily on C*°(P,(C)). The second one was given in [OMY3] which
is obtained by the reduction of the natural *-product on C**! via C*-action. Con-
sidering the natural projection C"**!—{0} onto P,(C), one may regard C*°(P,(C))
as a subalgebra of C®(C"t! — {0}) consisting of all f such that f(z) = f(re'’) for
any re®, r > 0. Thus, let

A={f¢€ C""’(C"+1 = {OP[M]] : f(zv) = f(reiaz;rzu) for any re'’,r > 0}.

Then, A is a *-subalgebra of C°(C"*! — {0})[[v]]. The center of A is C[[£]],
the formal power series of % and R = (1/2) Y, ¢icny1 12| Regarding v/ = %
as a deformation parameter, we showed in [OMY3] that A can be regarded as
C>(P,(C)), and hence A gives a *-product on P,(C).

The following is our main result:
Theorem. Any x-products on P,(C) are mutually isomorphic.

The above theorem will be proved purely algebraically by using the facts that
dim H2(P,(C)) = 1, and the symplectic 2-form is not exact.

1. ALGEBRAIC PRELIMINARIES

We recall several algebraic tools which have been developed in [OMY4]. Let M
be a C°° paracompact manifold, and let C?(a) be the vector space of the p-linear
mappings of a X - -- X a (p-times) into a. By SCP(a), (resp. ACP(a)), we denote the
subspace of CP(a) consisting of the symmetric (resp. alternative) p-linear mappings.

For any 7w € C2%(a), we define the Hochschild coboundary operator 6,: CP(a) —
CP+1(a) as follows:

(6xF)(v1, -+, vpg1) = m(vy, F(va, - - ) Up+1))
+ Z (=1 F(ve, -, m(vi, vig1), +  Vpt1)

1<i%p
+ (=) ia(F(vy, - +Up)s Upt1)-

For any =, n',n" € C%(a), we see that

(1) b = bpim, D bpbpm’ =0,
cyclic

where Y, means the cyclic sum with respect to 7, n’, #’/. We shall denote 6, by
cyclic

8. The following is known in [OMY4]:
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Lemma 1.1. (a) 62 = 0 is equivalent to 6,7 = 0.
(b) 6xm = 0 if and only if (a,7) is an associative algebra.

(¢) Form € C%(a), 6om = 0 if and only if o7+ = 0 and o~ = 0, where 7£(f,9) =
(7(f,9) £ n(g,1))/2.

(d) For # € AC*(a), éom = 0, if and only if « is a biderivation, i.e. n(fg,h) =
fx(g,h) + n(f, h)g. '

(e) Suppose § € C?(a) is a bidifferential operator of order k, and 6(1, ) = 6(x, 1) =
0. If is a Hochschild cocycle with respect to 8, then 8 is a Hochschild coboundary,
i.e. 8 = 60¢, and £ can be chosen as a linear differential operator of order k.

On the other hand, for any 7 € AC?(a), we define the Chevalley coboundary
operator dy : AC%(a) — ACP*1(q) as follows:

(deF) (1, vpp1) = D (=1 (v, F(vg, -+ 05, , Upps))
1<i<p+1

ivi v v
+Z(—l)'ﬂF(”(vi’vJ’))le"' 2Oy 35,0, Upy).
i<y

For any m, ', n" € AC?(a), we see that

(2) der’ =dim, Y deden” = 0.

cyclic
Lemma 1.2. (cf. [OMY4]) (a) d2 = 0 is equivalent to dew = 0

(b) dxm = 0 if and only if (a, ) is a Lie algebra.

F € CP(a) will be called a p-derivation if F(vy,---,v,) satisfies the derivation
rule for each v;, that is

F(vl’...’y‘-w’... ,vp)zviF('Ul,"’ ,W, - ,'Up)"l’F(U],"' y Voo ’Up)w_

By Der?(a), we denote the space of all p-derivations. Obviously, p-derivation is
nothing but a (p,0)-tensor field on M. We set

AP (M) = Der?(a) N ACF(a).

AP(M) is the dual space of p-forms. Note also that any Poisson bracket {,}isan
element of A*(M). If m € A?(M), then it is easy to see that

d. % (M) C d, 24P+ (M).

Hence, one can define on any Poisson manifold, the cohomology group HP(M,{, })
of the cochain complex (27 (M), d1), where di = d,,, and m,(f,g) = —{f, g}/2.

3
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Lemma 1.3. Let (M,w) be a symplectic manifold and {, } its Poisson bracket.
Then H?(M,{, }) is isomorphic to p-th de Rham cohomology group.

Thus, we will call H?(M, {, }) the p-th de Rham-Chevalley cohomology group.

Now, let (a[[v]], *) be any associative algebra such that

(B1) (Af)xl=1x (W f)=vHf, (Ff)x(vmg) = 4™ fug.

(B.2) Let Y psov*me(f,9), f.9, (S, g9) € a, be the expression of f % g. Then,
mo(f,9) = fg, the usual product, and =y is a bidifferential operator of order
2k.

Remark. In §1 and §2 the condition m;=(—1/2){, } is not assumed.

Since (a[[v]], ¥) is associative, we have for each m,

3) Z b;m; =0, where & =6,,.
i+i=m

(1) > &8 =0.

i+j=m

Now, let 7(f,9) = (mi(f,9) £ 7i(g, f))/2. By the Jacobi identity, we have also
the following for each integer m > 0:

(5) Z dim =0, where di —=d,, _.
i+i=m

(6) > didy =o0.

i+j=m
Note also that m; = 0.

In what follows, we shall often use linear isomorphisms

¢:allv]] — o] suchthat ¢(f) = f +0¥p(f), k> 1,

where p is a linear differential operator such that p(v) = v, and consider a new
*-product given by ¢=1(¢(f) * ¢(g)). Since ¢ can be regarded as a change of the
decomposition a[[v]] = 37, ., v*a, the new %-product gives a new expression of the
same *-product by a new decomposition. For k > 2, then f*g in the new expression
is written as follows:

(M frg=fo+vm(fig)+ - +v* 'm_i(f,9)
+ v (m + op)(f, 9) + vV (mppy + dip)(fog)+---.

We use also the replacement of v by ¥(1 + av*), a € C . Since these are in the
center, this replacement gives an isomorphism of a[[v]}.

4
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2. SKEW-SYMMETRIC PARTS OF 7], Teyen AND SYMMETRIC PARTS OF 7o4q

Let (a[[v]], #) be an associative algebra with (B.1), (B.2) in §1. By (1) and (3),
we have §omy = 0, and hence §o7F = 0 by Lemma 1.1, (¢). Therefore, by Lemma
1.1, (e), there is a differential operator ¢ of order 2 such that §¢ = 7f. Now,
consider the linear isomorphism

¢(f)=f_1/€(f)7 ¢(V)=V)
and the new expression of f g is as follows:
Frg=fg+vai(f,9)+ +vim(fig)+--

where 7;, for j > 2 are changed from the original ones.
Next, we shall consider 7. In this stage one may assume that = = m;. By (1)
and (3), we have that

1
® by =—§517r1-

By a little complicated calculation, (8) is equivalent to the following:
1
] (1- c)agﬂ'; = 5617"1) 837"; =0,
where ¢ is the cyclic operator defined by (¢cF)(f,g,h) = F(h, f,g), and
(03F)(f,9,h) = gF(f,h) = F(f,gh) + F(f, g)h.

The second equality of (9) implies also that 75 is an element of 22(M) and hence
bowy = 0. Moreover, by (2) and (5), we have d;m; = 0. Thus, 7; determines a
cohomology class [r5] of H2(M,{, }).

In the case that dim H?(M, {, }) = 1 and [m;] # 0 such as P, (C), thereisa € C,
and 7 € A!(M) such that 7, = amy + dy7n. Consider also the linear isomorphism

¢(f)=f-vn(f), ¢(¥)=v
Since §pn = 0, we have, by using (7), that the new expression of f * g is as follows:
frg=fo+vm(f, )+’ (nf +am)(fr9)+--.

Consider now the replacement of v by v(1 — av). This replacement gives an iso-
morphism of a[[v]] onto itself, and the new expression of f * g is

frg=fg+vm(f,9) +vnf(f,9)+ -,
where @;, for j > 3 are changed from the original ones.

Now, we prove the following:
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Theorem 2.1. If dim H*(M) = 1, and [m] # 0, then by a suitable isomorphism
¢: a[[v]] — a[[V]], the expression of f g satisfies 7}, = 0, 7, = 0.

Proof. Suppose w;'k_l = gy, = 0 for 2k — 1,2k < 2r. For m = 2r + 1,_v“ve have
(10) > &m; =0, where & =6,
i+j=m

By a little complicated calculation (c¢f. [OMY4]), the above equality yields the
following:

(11) Somt =0,

1
Oam = §(I—c+c2)(1+a) Z bim;

i+j=mii>1

where (¢F)(f,9,h) = F(h,g, f).
By Lemma 1.1,(e), there is a differential operator ¢ of order 2m such that 6o =
n},. Now, consider the linear isomorphism

¢(f)=f—ym£(f), ¢(V)=V,

and the new expression of f * g is as follows:

frg=fg+vm(f,g)+ -+ V" tmmoa(f,9) +v™ 7 (f0) 4+ .

Thus, one may assume in what follows that Tordl = Mopyq-

Next, we shall consider 7, for m = 2r + 2. By a little complicated calculation
(cf. [OMY4]), we have

(12) (1=c¢)o3n} =

Z 6,'7I'J' ,

i+j=mii>1

N =

ogm;, =0.

The second equality of (12) implies also that #; is an element of A2(M) and
hence 6o, = 0. Moreover, by (2) and (5), we have dy7 = 0, because m + 1
ig odd. Thus, 7, determines a cohomology class of H2(M). So, by the same
procedure as in the case of 3, one can eliminate the skew-symmetric part of ,,
in the expression. The condition dim H2(M) = 1 is used at this stage. Repeating
these procedures, we obtain the result. O

3. THE PROOF OF THEOREM

Let C°(P,(C)) denote a. Now, suppose we have two associative algebras
(a[{¥]], ), (a[[v]], #') satisfying (A.1) and (A.2). Moreover, by the above theorem,
one may assume that W;"dd =0, 7., =0 and 7";:4 =0, 7.5, =0.
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Suppose m; = ; for j,0 < j < m — 1. Then §o(mm — 7,,,) = 0 by (3). If m
is even, then by Lemma 1.1,(e), there is a differential operator ¢ of order 2m such
that 60§ = n,,, — w/,. Now, consider the linear isomorphism

¢(f)=f—-v™(f), d(v)=v.

Then, one can assume w,, = #/,, in the new expression.

If m =odd, we have by (5) that di(m, — #/,) = 0. Since dim H?(M) = 1, there
is a € C, and n € %A'(M) such that 7, — 7/, = am, + dyn.

Consider the linear isomorphism

() =f-v™"n(f), é(v)=v.

Since §on = 0, we may assume, by using (7), that m, — #/, = am. Thus, the
replacement of ¥ by ¥(1 + av™~1) gives an isomorphism of a[[]] onto itself, and
yields 7y, = m,,. Repeating these we have the desired isomorphism.

Remark. 1If H*(M) = 0, then we obtain the same conclusion without using the
replacement of v. The result has been known as the theorem of Lichnerowicsz.
Also, Gutt [G] discussed the case dim H?(M) = 1, and [m;] = 0. One can show this
case can really happen on a cotangent bundle.
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