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A remark on Wagner’s ring of normal numbers

H. Kano

Wagner [3] is the first who constructed rings of normal and nonnormal numbers.
Ih [1], the author jointly with I. Shiokawa gave a new construction of rings of the
same properties. In this paper, we shall extend the construction of Wagner by the

method developed in [1].

Theorem. Let @ and b be integers with @, b=2 and (a,b) =1, and let
{ant :=1 and {Ba} :=1 be increasing sequences of positive integers with
An 108 Bn
(G1) lim =00, (G2) limn—— =®

n—1 noe o 81

Let R be the ring generated by the set of all numbers
o Ean
F(1e =S} eaeion 11,
n=1 aanbﬁ"
Then R has the following properties:
(a) R is uncountable,
(b) all numbers x€ R, xXx+0O are normal to base b, and

(c) all numbers X € R are nonnormal to base ab.

an

In Wagner’s theorem in [3] it is assumed that @ is prime and lim—B— =00
noe n n—1

instead of (Gl). To prove our Theorem, we use the following lemma.

Lemma ([1] Theorem 3). Let @, b>1 be integers with (a,b) =1, let
{ant :=1, {Ba} :=1 be sequences of positive integers which are increasing and
Bngaa”

for all large 72, and let {Aax} :=1 be a sequence of integers such that
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| An I <Cl""_a"_l
for all large 72 and A.#O for infinitely many 72. Then the number
o An
X=3 ———
n=1 aanbﬂn

is normal to base b and nonnormal to base ab.

Proof of Theorem. Since the proof of (a) is easy, we prove (b) and (c). For any

given polynomial

I M,
F (X1, ** ), Xa) =% % UzaXi®nl: - Xp®m2 (Eut - ° -+ ear=Aa)
A=1 m=1
of h variables X, - - -, X of total degree /=1 with integral coefficients
and generators
E nk
a"nbﬂn

we have to prove X=F (¥:, * - +, ¥a) is normal to base b and nonnormal to

yk="=ﬁ:<1+ ) , Eme {—1, 1}, k=1, -+, h

base @ b. We can write as in [3]

A(nl; cc o, Ny My "’1”")

x=A(0) + by

él>'-.>"'zl ajzil'u"a"jb;é{l”g"i
with
1My
A(O) =Z Z U am, lgﬂiél,
=1 m=1
where

1 M,
A, =« e My, = oy M) | S2MIT 2] vaa | <27t

A=1 m=1

Hence we have

(m) (me)

« N A(n, m; Unr, "'aﬂ'!)

sz(O)‘f‘z:}_i: n () " (m) -
n=1 m=1 ai=lu"l alb‘z;l/-‘niﬂl

with
VAT st oo o) | <28, OSptmi= 1, san#0, Na=I(I+1)*1. (1)
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We put
k-1

k-1
a'm=dartlZ ai, B umu=AbBtIlZ B
i=1

i=1

and define new sequences {Q@”n} n=1 and {B"n} a=1 by

{a’s} :=1= {a’ 1, a2y, @ 2n, e S SRRy MY FREREEE '
{B"a} :=1= {B 11, B 10,B 21,8 21, B Ry, Bl i
Using these symbols we may write
o 1 A ra b A"a
xX=Z = =X (2)

k=1 =1 @ rapHB ra  n=1 qnph? n

with
1 {m)

(m) Zi(l—l;:)a)an E (1 —nai)By,

A"..=A’u=:2’llA(n.m:/2:)1.---,,u,.n) a b=t
vhere
(m) () gl(l—ﬂ(::)a. "E_‘(l—/t(:).ﬁa)
[A"al=]A"r| SENn max A(7n,M;n1, -, Han)a’=! b=t
<(l+1)~12%qg?m-1H2 8n-1,
using (1), (G1), and (G2). Hence we get
loga| A" | <+ Qn-1+Bn-1.
Thus we have by (Gl)
loga | A"a | <ca. (3)
for all large 712. Therefore, noticing that
a’n—a"a-12da,
we have by (3)
| A" | <a@® n @ n-1, (4)
We have also by (G1) and (G2) -
a“"néaaak+l£1a‘§a”“k§ﬁn. (5)

Finally we remark that A”»#O for infinitely many 72 by Corollary of Lemma 2 in
[3]. Hence we may apply Lemma to the number X defined by (2) with (4) and (5), and

find that X is normal to base & and nonnormal to base ab.
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