Research Report

KSTS/RR-91/005 September 10, 1991

A Remark on Wagner's Ring of Normal Numbers.

by

Hiroyuki Kano

Hiroyuki Kano

Department of Mathematics Faculty of Science and Technology Keio University

Department of Mathematics Faculty of Science and Technology Keio University

©1991 KSTS Hiyoshi 3-14-1, Kohoku-ku, Yokohama, 223 Japan

A remark on Wagner's ring of normal numbers

H. Kano

Wagner [3] is the first who constructed rings of normal and nonnormal numbers. In [1], the author jointly with I. Shiokawa gave a new construction of rings of the same properties. In this paper, we shall extend the construction of Wagner by the method developed in [1].

Theorem. Let a and b be integers with $a, b \ge 2$ and (a, b) = 1, and let $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ be increasing sequences of positive integers with

(G1)
$$\lim_{n\to\infty}\frac{\alpha_n}{\beta_{n-1}}=\infty$$
, (G2) $\lim_{n\to\infty}\frac{\log \beta_n}{\alpha_n}=\infty$.

Let R be the ring generated by the set of all numbers

$$\prod_{n=1}^{\infty} \left(1 + \frac{\varepsilon_n}{a^{a_n} b^{\beta_n}} \right) , \quad \varepsilon_n \in \{-1, 1\}.$$

Then R has the following properties:

- (a) R is uncountable,
- (b) all numbers $x \in R$, $x \neq 0$ are normal to base b, and
- (c) all numbers $x \in R$ are nonnormal to base ab.

In Wagner's theorem in [3] it is assumed that a is prime and $\lim_{n\to\infty}\frac{\alpha_n}{n\beta_{n-1}}=\infty$ instead of (G1). To prove our Theorem, we use the following lemma.

Lemma ([1] Theorem 3). Let α , b>1 be integers with $(\alpha,b)=1$, let $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ be sequences of positive integers which are increasing and $\beta_n \ge \alpha^{\alpha_n}$

for all large n, and let $\{A_n\}_{n=1}^{\infty}$ be a sequence of integers such that

$$|A_n| < a^{a_{n}-a_{n-1}}$$

for all large n and $A_n \neq 0$ for infinitely many n. Then the number

$$x = \sum_{n=1}^{\infty} \frac{A_n}{a^{a_n} b^{\beta_n}}$$

is normal to base b and nonnormal to base ab.

Proof of Theorem. Since the proof of (a) is easy, we prove (b) and (c). For any given polynomial

$$F(x_1, \dots, x_h) = \sum_{\lambda=1}^{I} \sum_{m=1}^{M_{\lambda}} v_{\lambda m} x_1^{e_{m1}} \dots x_h^{e_{mh}} (e_{m1} + \dots + e_{mh} = \lambda)$$

of h variables x_1, \dots, x_h of total degree $l \ge 1$ with integral coefficients and generators

$$y_k = \prod_{n=1}^{\infty} \left(1 + \frac{\varepsilon_{nk}}{\sigma_n b_n^{\beta_n}} \right)$$
, $\varepsilon_{nk} \in \{-1, 1\}$, $k=1, \cdots, h$

we have to prove $x=F(y_1, \dots, y_h)$ is normal to base b and nonnormal to base ab. We can write as in [3]

$$x = A(0) + \sum_{\substack{n_1 > \dots > n_r \ge 1}} \frac{A(n_1, \dots, n_r; \mu_1, \dots, \mu_r)}{\sum_{\substack{j=1 \ q^{j=1}}}^{n} \mu_j \alpha_{n_j} \sum_{j=1}^{n} \mu_j \beta_{n_j}}$$

with

$$A(0) = \sum_{\lambda=1}^{l} \sum_{m=1}^{M_{\lambda}} v_{\lambda m}, \quad 1 \leq \mu_{j} \leq l,$$

where

$$|A(n_1, \dots, n_r; \mu_1, \dots, \mu_r)| \le 2^{n_1 l} \sum_{\lambda=1}^{l} \sum_{m=1}^{M_{\lambda}} |v_{\lambda m}| \ll 2^{n_1 l}.$$

Hence we have

$$x = A(0) + \sum_{n=1}^{\infty} \sum_{m=1}^{N_n} \frac{A(n, m; \mu_{n1}, \cdots, \mu_{nn})}{\sum_{i=1}^{n} \mu_{ni} \alpha_i \sum_{i=1}^{n} \mu_{ni} \beta_i}$$

with

$$|A(n,m;\mu_{n1}^{(m)},\cdots,\mu_{nn}^{(m)})| \ll 2^{nl}, \ 0 \le \mu_{ni}^{(m)} \le l, \ \mu_{nn}^{(m)} \ne 0, \ N_n \le l(l+1)^{n-1}.$$
 (1)

₩e put

$$\alpha'_{k\lambda} = \lambda \alpha_k + l \sum_{i=1}^{k-1} \alpha_i, \quad \beta'_{k\lambda} = \lambda \beta_k + l \sum_{i=1}^{k-1} \beta_i$$

and define new sequences $\{\alpha''_n\}_{n=1}^{\infty}$ and $\{\beta''_n\}_{n=1}^{\infty}$ by

$$\{\alpha''_{n}\}_{n=1}^{\infty} = \{\alpha'_{11}, \dots, \alpha'_{1I}, \alpha'_{21}, \dots, \alpha'_{2I}, \dots, \alpha'_{k1}, \dots, \alpha'_{kI}, \dots \} ,$$

$$\{\beta''_{n}\}_{n=1}^{\infty} = \{\beta'_{11}, \dots, \beta'_{1I}, \beta'_{21}, \dots, \beta'_{2I}, \dots, \beta'_{kI}, \dots, \beta'_{kI}, \dots \} .$$

Using these symbols we may write

$$x = \sum_{k=1}^{\infty} \sum_{\lambda=1}^{l} \frac{A'_{k\lambda}}{a^{\alpha'_{k\lambda}}b^{\beta'_{k\lambda}}} = \sum_{n=1}^{\infty} \frac{A''_{n}}{a^{\alpha''_{n}}b^{\beta''_{n}}}$$
 (2)

with

$$A''_{n} = A'_{k\lambda} = \sum_{m=1}^{N_{n}} A(n, m; \mu_{n1}, \dots, \mu_{nn}) a^{\binom{m}{l-1}} a^{\binom{m}{l-1}} \alpha_{l} b^{\binom{n-1}{l-1}} (l - \mu_{ni}) \beta_{l},$$

where

$$|A''_{n}| = |A'_{k\lambda}| \leq N_{n} \max A(n, m; \mu_{n1}, \dots, \mu_{nn}) \alpha^{\sum_{i=1}^{n-1} (l - \mu_{ni}^{(m)})} \alpha^{i} \sum_{i=1}^{n-1} (l - \mu_{ni}^{(m)} \beta_{i})$$

$$\ll (l+1)^{n-1} 2^{nl} \alpha^{2l\alpha_{n-1}} b^{2l\beta_{n-1}}.$$

using (1), (G1), and (G2). Hence we get

$$\log_a |A''_n| \ll n + \alpha_{n-1} + \beta_{n-1}.$$

Thus we have by (G1)

$$\log_a |A''_n| < \alpha_n. \tag{3}$$

for all large n. Therefore, noticing that

$$\alpha''_{n}-\alpha''_{n-1}\geq \alpha_{n}$$

we have by (3)

$$|A''_n| < a^{a''_n - a''_{n-1}}. \tag{4}$$

We have also by (G1) and (G2)

$$a^{a^{n}} = a \lambda \alpha_{k} + l \sum_{i=1}^{k-1} \alpha_{i} \leq a^{2l\alpha_{k}} \leq \beta_{n}.$$
 (5)

Finally we remark that $A''_{n} \neq 0$ for infinitely many n by Corollary of Lemma 2 in

[3]. Hence we may apply Lemma to the number x defined by (2) with (4) and (5), and find that x is normal to base b and nonnormal to base ab.

I would like to express my thanks to Professor Iekata Shiokawa for his valuable advices concerning the paper.

References

- $[\ 1\]$ H. Kano and I. Shiokawa, "Rings of normal and nonnormal numbers", preprint.
- [2] A. N. Korobov, "Continued fraction of certain normal numbers", Math. Notes 47 (1990) No.2, pp. 128-132 = Matematicheskie Zametki 47 (1990) No.2, pp. 28-33.
- [3] G. Wagner, "On rings of normal and nonnormal numbers", preprint.

H. kano

Department of Mathematics
Faculty of Science and Technology
Keio University
Hiyoshi 3-14-1, Kohoku-ku, Yokohama-shi, 223 Japan.