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DEFORMATION QUANTIZATION OF POISSON ALGEBRAS

Hipex: OMORI*), Yosiaki MAEDA**), Akira YOSHIOKA*)
Dedicated to Professor Morio Obata for his 65th birthday
ABSTRACT. We give an obstruction theory for making an associative algebra deformed from a
given Poisson algebra. The obstruction cocycle is obtained as a 3rd deRham-Chevalley cocycle of

the Poisson algebra. Several examples of Poisson algebras without obstruction are given. These
examples relate to non-commutative torus and quantum groups.

§0. Introduction
Let M be a " paracompact manifold, and C*°(M) the commutative topological algebra
over C with the C' topology of all C-valued C'° functions on M. In what follows, we

denote C°(M) by a for simplicity. We are now concerned with "deforming” this algebra to
a non-commutative but an associative one.

By introducing a formal parameter v, we consider the direct product

o0

a[v]] = [] v"a.

7=0
What we want is to define a product * on a[[v]] with the following properties:

(A. 1) *: a[[v]] X a[[v]] = a[[¢]] is a continuous and associative product.

(A.2) v commutes with any element of af[v]].
(A.3) 1% f=f«1=fforany f e al[].
Given a product % on a[[v]] with (A. 1-3), we set for any f,g € g,
frg= ZVn”n(f,g)
n=0

as the decomposition of f % g. So (A. 1-3) imply that, for any f,g,h € a,

(01) E Wk(ﬂ-l(.ﬂg)a h) = Z Wk(f;”l(ga h))a for any m > 07
k+l=m k+l=m
(02) 7T0(.fa1) 27‘-0(17](): f; 7rm(f71):7rm(1af) =0 for any m > 0.

In this paper, we give the following notion on deformations of d.
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Definition 1. (0) (a[[»]], *) is called an associative deformation of a if * satisfies (A.1-3) and
(A.4) wo(f,9) = fg  (the usual commutative product) for any f,g € a.

(1) An associative deformation (a[[¢]],*) of a is called a weak A-deformation of a, if the
following (A. 5) is satisfied:

(A.5) Tm:aXa——qa is a bidifferential operator. for any m > 0.

Here 7 : a X a — a is called a bidifferential operator, if w(f, g) is a differential operator with
respect to both f and g. The sum of the order of differentiations with respect to f and g will
be called the order of «.

(2) Moreover, a weak A-deformation (a[[v]],*) of a is simply called an A-deformation of a, if

(A6) Wl(f,g) = ”Wl(g’f)
holds.

As it will be seen later (cf. Proposition 2.2), any weak A-deformation can be changed into
an A-deformation. For an A-deformation (a[[v]], *) of a, we set

{f’g} = _2771(.f’g)

and call it the Poisson bracket. Put [f,g] = f *g — g* f. From the associativity of (a[v]], %),
the identities

[f;g] = —[.q,f]a
(0.3) [f,g*h]=1[f,g]*h+g*[fR]
[fa [9,R]] + [g, [~, F1] + [h7[f’.q]] =0,

for any f,g,h € a, give the following relations for a to be a Poisson algebra (cf.[W]):

{f’g} = _{gvf}’
{f,gh} ={f,g}h + g{f, R},
{f:{g,h}} + {9,{h, fF}} + {h,{f,9}} = 0.

Thus, a natural question arises as follows: Given a Poisson manifold M with the Poisson
bracket {, }, is there an A-deformation (a[[v]],*) of a such that ~27,(f,g) = {f,g}?

On M, we denote by - the usual commutative product on a = C°(M). The triplet
(a,-,{, }) is called the Poisson algebra of M.

Definition 2. For a given Poisson algebra (a,-, {, }) of a Poisson manifold, (a[[v]], ¥) is called
a Q-deformation of (a,-,{, }) if (a[[v]],*) is an A-deformation such that {, } = —2n;. The
Poisson algebra (a,-,{, }) is called to be deformation quantizable if it has a Q-deformation.

The purpose of this paper is to construct an obstruction theory for the deformation quan-
tizability of Poisson manifolds. On any Poisson algebra (a,-, {, }), {f,9}(p), p € M, de-
pends only on df(p), dg(p). Thus, {, }(p) defines a skew-symmetric bilinear mapping of
(TyM )€ x (TyM)C into C, where (TyM )¢ is the complexification of the cotangent space
Ty M at p. The rank of {, }(p) will be called the rank of {, } at p. M is a symplectic mani-
fold if the rank of {, } is equal to dim M at every point. It is known in [OMY],[DL] that if
M is a symplectic manifold, then (a,-,{, }) is deformation quantizable.

However, for Poisson algebras of non-constant rank, there is no general theory for the
deformation quantizability. The following is a typical example of deformation quantizable
Poisson algebras of non-constant rank:
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Ex.1. (cf. [B]) Let G* be the dual space of a finite dimensional Lie algebra G. Regarding
X € G as alinear function on G*, we define {X,Y} =[X,Y], i.e for a linear basis X1,--- , X,
of G, we set

{X,‘,Xj} = chij
k=1

using the structure constants c?j of G. By the polynomial approximation theorem, the above
procedure makes C'>°(G*) a Poisson algebra whose rank is not constant. (C*°(G*),-,{, })
is deformation quantizable and the @-deformation is given by the closure of the universal
enveloping algebra i/, (G) of G with the parameter v, i.e. the algebra generated by X1,--- , X,

with the relations .
(X0, Xj] = —v Y ek Xe.
k=1

Now, we define the following :

Definition 3. A Q-deformation (a[[v]],*) is called regular, if 7., satisfies

(A7) Wm(f,g)'—'(——l)mﬂ‘m(g,f), f?ge a, (m:0,1a2a"')-
The product  of a regular Q-deformation is sometimes called a *-product(cf.[B],[CG]).

Given a Poisson algebra (a,-,{, }), one can define a cohomology group H?(M,-{, }) by
using the Chevalley coboundary operator defined on the space of alternative p-derivations
(cf. 8§1), which is called the p-th deRham-Chevalley cohomology group. This is the same
cohomology group which is said the pure 1-differentiable cohomology by Lichnerowicz [L1](see
also [Va],(H],[LMR]). If M is a symplectic manifold, then HP(M,-,{, }) is isomorphic to the
usual p-th deRham cohomology group. The obstruction for (a,-,{, }) to be deformation
quantizable appears in H3(M,-,{, }).

Theorem 1. Let M be a Poisson manifold. Assume H3(M,-,{,}) = 0. Then, for any coho-
mology class [0] € H*(M,-,{, }), there exists a regular Q-deformation (a[[v]], *g)). Moreover,
if for given two cohomology classes (6], [6'] € H*(M,-,{, }), there exists an isomorphism

¢+ (a[[V]], 1e) = (allV]]; (1)

such that ¢ = 1 (modv?) and ¢(v) = v, then [0] = [¢"].

If the first obstruction cocycle Ry (cf. (2.12)) is not a coboundary, then (a,-,{, }) has no
regular Q-deformation (cf. 3.3, Remark 2). R4 relates to the anormaly in the Jacobi identity
of [VK]. However, we do not know whether there is a Poisson algebra with Ry ~ 0.

In the case of dim M = 2, H3(M,-,{, }) = 0 trivially. Furthermore, we can observe that
all obstructions vanish exactly for this case. Let g(™) (m = 2,3,---) be a 2-contravariant C'®®
tensor fields on M such that

(0.4) g = (=1)mglm,

where we write as

2
g™ =3¢ 00,

ij=1

by using a local coordinate system (z1,%;). Following the proof of Theorem 1, we have
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Theorem 2. Suppose dim M = 2. Then, for any 2-contravariant C* tensor fields g{™)  with
(0.4) (m = 2,3,---), there exists a regular Q-deformation of (a,-,{, }) such that 7, (z;,z;) =
g
Ex.2. Consider the symplectic form ;lfdx A dy on the upper half plane Hy. This gives a
Poisson algebra structure {, } on C°(H,) such that

{fvg} = yz(arfayg - ayfazg)

which can be extended to C°°(R?). The above theorem shows that (C°(R?),-,{,}) has a
regular ()-deformation. Since all 7, are bidifferential operators, the restriction f * g|H,
depends only on f|H,,g|Hy. Hence, any regular -deformation (C°(R?)[[v]],*) defines a
s-product on C(H)[[v]]. Taking the cartesian coordinates (z,y) € R?, we consider the
quantized algebra (C°°(R?)[[v]], *) obtained by setting 7,,(z,y) = 0 for m > 2. So we have
the relation [z,y] = —vy? where y? = yy = y * y. This is equivalent to

yxz=(z+vy)*y

and the algebra C*°(R?)[[v]] can be characterized only by this relation. Its restriction onto
H, is isomorphic to the algebra of covariant symbol calculus given in [Be] [Mo]. Notice that
our quantized Poisson algebra are obtained by a purely algebraic manner without using any
operator representations.

Since any symplectic manifold is deformation quantizable [DL] ,[OMY], we see that the
condition H3(M,-,{, }) = 0is not a necessary condition for a Poisson algebra to be deforma-
tion quantizable. Quantizability seems to relate to local structures of singularities of Poisson
structure where the rank is changing.

The following theorem gives a generalization of the result of Lichinerowicz [L2](see also

[G1] and [G2]):

Theorem 3. If a Poisson algebra (a,-,{,}) is deformation quantizable, and H*(M,-,{,}) =
{0}, then any Q-deformation of (a,-,{,}) is mutually isomorphic.

Next three examples were found by means of our proofs of Theorems 1 — 3:

Ex.3. Let z,y,2 be the natural coordinate functions on R3. For any positive integers k,1,m,
the relations

{z,y} = Zk7 {y,2} = zl7 {z,2} =y™
define a Poisson algebra structure on C*°(R3), in which the function

k+1

— 1 I+1 1 m+1
fo(m’y’z)_ulw tomri? tEr

Poisson-commutes with all elements of C*°(R?) (i.e fo is in the center). The Poisson algebra
(C*(R3),-,{,}) has a regular Q-deformation such that

z

Wj("va'y) = 7Tj(:'/’z) = 7TJ'(Z,£L‘) =0
for j > 2. The obtained Q-deformed algebra is characterized by the relations

k

[z,9] = —vz*, [y,2]= —vz!, [2,2] = —vy™

where z¥ = (z.)* = (2x)* etc.
It is remarkable that the obtained algebra has no nontrivial center.
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Ex.4, Let 1,23, -+ ,2, be the natural coordinate functions on R”. For any skew-symmetric
matrix (ai;)1<i,j<» and for any positive integers py,--- , p,, the relations

{wiamj} = aijz?ixfi; (1 S ia] S n)

define a Poisson algebra structure on C*®°(R"). If p; = ++- = p, = 1, then (C*(R"),-{,})
has a regular @Q-deformation such that

(i, z;)=0 (1<i,j<n) for k>2

or such that

oo

1+ %a;;
E v Wn(dfi,ﬂ?j): 1— Lg.. i%i
n=0 2

The latter relates to a non-commutative torus, for

}.V .. —Xa:.

T;%xT; = ———1 7a":v':c- T;ixT; = ——1 ZaUII}'Z‘

% 7 1 v, YY) j B 1 v vit)y
_7a1] +_2.a”

1—%a;; .
hence z; x z; = ﬁg%im, * ;. Thus, a non-commutative torus can be understood as a
L8

@-deformation of Poisson algebra of this type .

Ex.5. Let g be the algebra of the so called quantum group Gl4(2, R) (cf.[Wo],[D][M]). This
is the algebra generated by z,y,u,v with the relations

rxu=¢e’uxzr, rxv=e€e’vx2
uxy=e’yxu, vxy=e’yxv
UV =V*U

zxy—e'uxv=y*xxr—e Yuxv.

g defines the structure of Poisson algebra on C'°°(M(2)), where M (2) is the space of 2 x 2
matrices, as follows:

{z,u} =zu, {z,v} =zv, {z,y} = 2uv,
{u,v} =0, {u,y} = uy, {”a y} = vy.
This Poisson algebra (C*°(M(2)),-,{, }) has a regular Q-deformation such that
7 (linear funciion , linear function) =0 for m > 2.

Indeed, by the similar computation as in Ex.4, we have that all obstructions vanish.

81.Algebraic preliminaries

1.1. Hochschild coboundary operators. Let V be a vector space over a commutative
ring R. Denote by CP(V), p > 1 p-linear mappings. We denote by AC?(V') and SCP(V') (p >
1) the set of the alternative and the symmetric p-linear mappings respectively. If p=0, we set
CO(V)=AC(V)= SC°(V)=V.
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For any w €C?(V'), we define the Hochschild coboundary operator 6, : CP(V) — CPHL(V),
p21by

(1.1) (57rF)(’D1,- .- ,’Up+1) = W(Ul,F(’Dg," . ,’Dp+1))
P
+ Z(_l)IF(vl’ Tt ’W(vivvi-i-l)’ v a'Up)
i=1
+ (=P a(F(vt, - 4 0p),0p41)
for F' € CP(V), and for p=0, we set for any v € V,

(1.2) (6xv)(v1) = m(v1,v).

By a direct computation using the linearization, we have the following:

Lemma 1.1. For any m,n', 7" € C*(V), we have

(1.3) b’ = i, 6.1 ==, (I = identity)
(1.4) b b =0,
(1.5) » 6bur" =0,

(w7 \7'")

where ) means the cyclic summation with respect to m, 7', 7".
(! yw")

Regarding any = €C%(V') as a bilinear product on V, we give the following:
Definition 1.2. A €C'(V) is called a derivation of (V, ) if A satisfies

(1.6) (6xA)(v1,v2) = w(vy, Ave) — A(w(vy,v2)) + 7(Avy,v3) = 0.
We denote by Der(V,7) the set of derivations of (V,7).
For any A, B € CY(V), we define [4, B] € C}(V) by AB — BA. Note that

6x[A, B)(u,v) =A(6xB)(u,v) — (6-B)(Au,v) — (6xB)(u, Av)

(1.7) ~ B(6xA)(1,) + (6:A)(Bu,v) + (6. A)(u, Bv).

So, we have Der(V, ) is a Lie algebra.

For any © €C*(V), —16,7 is called the associator of (V,r). Namely, we have

1
(1.8) ——2-5,,7r(u, v,w) = w(7(u,v), w) — 7(u, (v, w)).
Hence, 6,7=0, if and only if (V,7) is an associative algebra. If (V,r) is an associative algebra,
then
(1.9) §2F =0,

for any F' € CP(V) (cf. [Mc]). In particular, §27=6,7=0. Therefore, we have



KSTS/RR-91/004
September 1, 1991

DEFORMATION QUANTIZATION OF POISSON ALGEBRAS 7

Lemma 1.3. 62=0 is equivalent to §,7=0.

1.2. Partial Hochschild coboundary operators. We will introduce the following
notion:

Definition 1.4. Given 7 € C%(V), we define

(110) a:r : CP(V) - CP+I(V) i= L--- b, p21
by
(07 F)(v1, -+ s vp41) = m(vi, F(v1, -+, iy -, 0p11))
(111) —F('Ul’--- ’7'{'(1)1-’@1-_}_1)’... avp-}-l)
+7I'(F(’U17-n 7®i+13"' 1vp+1)avi+1)

for any F' € CP(V). OF, (i=1,---,p) are called the partial Hochschild coboundary operators.
Lemma 1.5. Assume n € C*(V) is symmetric, i.e. # €SC*(V).
(i) For any F € CP(V), we have
P
(1.12) 8 F = (-1)7'9rF.
i=1
(ii) If (V,r) is associative, i.e. 8,w=0, then
(113) (67 - 07,107 =0
for1 <i<p.
We define mappings o, ¢, : CP(V) — CP(V) by

(114) (O'pF)(Ul,vg, R ,v,,_l,v,,) = F(vp,v,,_l, ey ’UQ,’U]),
(1.15) (cpF) (01,02, - ,0p_1,0p) = F(vp, 01,05, -+ ,Vp—1).

Obviously o3 = ¢3. Since ¢ = 1, we have

(1.16) (1+e+e2)(1—-c3)=0,
(1.17) l-c+e)(l+ca)=2

The following formulas are useful for later computations:

Lemma 1.8. (i) For any * €C*(V) and F €CP(V), we have

(1.18) bropF = (=110, 4168, o F,
(1.19) O epF = o107 F (1<j<p~1), O5cpF =¢2, 6]F.

(i) In particular, if © €SC*(V'), we have

(1.20) (9;07,17 = ap+18;¢7;+1—jF (1 S j S p)
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We call F' € CP(V) a p-derivation with respect to =, if for any j, (1 < j < p)
(1.21) 9TF = 0.
By Der?(V, ), we denote the space of all p-derivations with respect to . We also set
(1.22) AP(V,n) = ACP(V) N Der?(V, r).

1.3. deRham-Chevalley cohomology. Let V be a vector space over a commutative

ring R. For any = € AC*(V), we define the Chevalley coboudary operator
dr : ACP(V) —» ACPTY(V)

by
(1.23) (dxF)(v1,- -y vpt1)
Pl
= Z(—1)1+17l'(1),',F(’01,' . 7731'7 v 1vP+1))
i=1
+ (DR (R(vi,05), 01, By By U,
i<j

By a direct computation using the linearization, we have

Lemma 1.7. For any m,x',n" € AC*(V),

(1.24) de! =dpm, dod =, (I = identity),
(1.25) dpd.m =0,
(1.26) 5 dedpr” = 0.
("’"I,WII)

Since 7€ AC*(V'), we see that for any A € C'(V)
(1.27) dyA = 6, A.
We have also
(1.28) (drm)(u,0,w) =2 ¥ w(u,n(v,w)).

(uyv,w)

Thus, d,m = 0 if and only if (V,x) is a Lie algebra. If (V,7) is a Lie algebra, then d2F =0
for any F € ACP(V) (cf.[Ma]). Therefore,

Lemma 1.8. d% =0 is equivalent to d,7 = 0.
In the following, we use the notations

(1.29) 7 (u, v) = %{w(u,v) + 7(v,u)).

for = € C}(V).
We first remark the following:
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Lemma 1.9. (V,x), # € C?(V) is an associative algebra if and only if 6,7 € AC3(V), and
(V,®~) is a Lie algebra.

Proof. The necessity is obvious. To prove the sufficiency, note at first that 6,7 € AC3}(V)
implies that (V, =) is an alternative algebra (cf. [S]). It is known in [S] p. 76 that

(1.30) 3b,m(uyv,w)=4 & 7 (u,7 (v,w)).

(u,v,w)

Thus, if (V,77) is a Lie algebra, then 6,7 = 0, hence (V, ) is associative. O
The following is not hard to prove:

Lemma 1.10. For any 7 € C}(V), if n' € As(V,x), then
d (V) C Appa (V).

Consider two products m, «' on V such that # € C¥V), #' € Ay(V,7). We give the
following;:

Definition 1.11. (i) A triplet (V,7,x') is called a non-commutative Poisson algebra if it

satisfies
(V1) b =0, dpr' =0.
(ii) Moreover, a non-commutative Poisson algebra (V,=,7’') is called simply a Poisson
algebra if
(V2) T € SC*(V).

Definition 1.12. For any non-commutative Poisson algebra (V,x,r'), we denote the p-th
cohomology group of the cochain complex :

(1.31) o Ap(Vym) 2 Ay (Vo) = -

by HP(V,w,x'). H*(V,n,x') will be called the deRham-Chevalley cohomology group of the
(non-commutative) Poisson algebra.

§2. Deformation of C*°(M)

2.1. Associative deformations of C'°(M). Let M be a paracompact smooth man-
ifold. The usual multiplication f - g in a=C(M) may be denoted sometimes by mo(f,g).
Introducing a formal parameter v, we consider the direct product

al[v]] = H via

with the direct product topology where a is regarded as a vector space over C and a[[v]] is
a topological vector space over the coefficient ring C[[v]]. By extending the coefficient ring,
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any F € CP(a) can be regarded as an element of CP(a[[v]]). Hence, any F' € CP(a[[v]]) can be
decomposed as

(2.1) F=Y"viF, FieCa).
i=0

F; will be called the i-th component in v of F. By C?(a) (resp. CP(a[[v]])) we denote the
vector space of all F € CP(a) (resp. CP(a[[v]])) such that F is continuous. F=%"2 v'F is
an element of CP(a[[v]]) if and only if each F; € C?(a). Moreover, we put

ACP(a) = ACP(a)NCP(a),

and

SCP(a) = SCP(a) N CP(a).
Let # € C?(a[[v]]) and (a[[v]], %) an associative deformation of (a,mo) (cf. Def. 1, §0). Let

(o)
(2.2) =Y vim
1=0

be the decomposition of #. By (0.2), we have

Tm(l,%) = T (%,1) =0 m > 1.

Note
(2.3) =Y V6 (6=6n)
1=0
If 7 is an associative deformation of (a, ), then {m;} satisfy
(24)m Y bmi=0
itj=m

for each m > 1. By (1.3), this implies, in particular

(2.5) Somy = 0.

Lemma 2.1. (i) If F € Der?(a,no), then 6, F=0.
(if) For m € AC*(a), 6om=0 if and only if = € Der?(a, o).

Proof. By (1.12), (i) and the sufficiency of (ii) are trivial. Suppose §y7=0, 7 € AC?(q).
By (1.12), (1.19), we have

(2.6) (14 ¢3)897 = (89 — 3w = o = 0,

where 87=0]°. By (1.17), we have 897=0. 8?7=0 follows from (2.6) directly. O
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Proposition 2.2. Let 8 € C?(a) be a Hochschild 2-cocycle (i.e. §o6=0) with 0(1,*)=0(*,1)
=0. If 0 is a bidifferential operator and 6 € SC%(a), then there exists a linear differential
operator ¢ € C'(a) such that §=—8y€.

Proof. Note that §p(£) € SC*(a) by Definition 1.1. Suppose (Us, 21, ,2x) is a local
coordinate system on M. If 8=—§€,, on each U,, then using a partition of unity, {¢,}, we
see that 0= —80 >, ¢ala. Thus, we have only to show that #=—6pfs on Uy. For any point
a= (a1, ,a,), and f € C®(U,), we set f2= f(ay,- - ,8i-1,2i,"* ,2,). Obviously,

100 0 = - T o),

Notice that % is C'*° with respect to (a,x) € Uy X Uy. Define &,(f) by
f, fz
£a(f)(a) = 29 +1 y 2 — ai)(a).
=1

Note that 6(*,1)=0. If  is a bidifferential operator of order k, £,(f) is a linear differential
operator of order k. Thus, we have

—(b0éa)(f,9)(2) = (ba(fg) = f€a(g) — Ea(f)g)(a)

—Z o8 LI o ai)(a) - f@I(EEEL 0, — a)a)

=1

#0065 4 o - (@) ~ g(@U(E L oy (e,

Since 6p8=0 implies
e(fgyh) - fa(g7h) = G(f,gh) - a(fay)h:
we have by using 6(f,9)=60(g, f) and 6(x,1)=0 that

_(50€a)(fvg)(a) = Z(g(flaagf - g?-l—l) + a(gii-laf? - .fia-i-l))(a)
=D (6(f7,98) — 6(ff1,951)(2)
i=1
=6(f,9)2). O

We now give the following remark: Let ( [[¥]], %) be a weak A-deformation of (a,m,). Note
that oy ——0 by (2.5) and (1.18), where 7{" is defined in (1.29). Then there exists ¢ € C!(a)
such that 7] = —~6,€. Set a C[[v]] -linear isomorphism ¢: a[[v]] — a[[v]] by

#(f) = f+vE(f)

where ¢ is given by Proposition 2.2. Then, we have

() * d(9)) = f- g +var (frg) (mod v?).
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This implies that any weak A-deformation can be changed to an A-deformation via C[[v]}-
linear isomorphism.

In Proposition 2.6 (i), we shall show that dﬂ'l— 7y =0 is another necessary condition for
(a,m) to be deformed as an associative algebra. However, in this stage, we restrict our
attention to the Hochschild coboundary operator.

Note that to make a weak A-deformation of 7, is to make {mi}i>1 satisfying (2.4), for all
m. Suppose that mq, - -+, T;_; are obtained so that (2.4), holds for any m <k —1. To make
T, one has to solve (2.4), with respect to 7. For that purpose, we rewrite (2.4), as follows
by using (1.3):

1
(2.7) bomy = -3 Z Sim;.
i+j=k,i,j2>1

Since 62=0 by the associativity of mo, if (2.7) can be solved, then the right hand side must
satisfy

(28) z 606,‘7!']' = 0.

itj=ki,j21
At the first glance, (2.8) looks like another necessary condition for (a, ) to be associatively
deformed, but in fact (2.8) is fulfilled automatically. Namely, we have

Proposition 2.3. Let (a,79) be any associative algebra. If mo,m1, -+, mp_1 € C*(a) satisfy
21.+j=15,-7rj=0 for any integer | such that 0 <1< k — 1, then my, - -+, m_y satisfy also (2.8).

Proof. By the assumption, = g + vmy + --- + vk=lr,_ ) satisfies 6% = 0 (mod »*),
hence # defines an associative algebra structure on g @ - - - ®v¥—1a with v*=0. Since 5;‘;:0
by Lemma 1.3, we have Zi+j:,5;5j=0 for any ! such that 0 <! < k ~ 1. Hence, for any I,

1<I<k-1, we have
> Gibimeoi = 0.

i+j=1
It follows
(29) Z 506,'71']' + Z 6,’6071’_1' + Z b.6pm. = 0.
iti=k,d,5>1 i+i=k,i,j>1 atbte=k,a,b,e>1

By (1.5), the third term vanishes, hence by (1.3) we see
(2.10) Z 605,-7rj = - Z 6i5j7r0.
i+i=ki,i>1 i+i=hi, 21

On the other hand, since §3#=0 (mod v*) by the associativity, we have Ei+j=l §;7 ;=0 for
any ,0<I<k-1. Hence for any I, 1 <1< k—1, we have

Z 5;(;_15;71']' =0.
it+j=1
It follows

(2.11) Y Gibom;+ > G+ > 826y, = 0.

ij=k,ii>1 i+i=k,i,§>1 atbto=k,a,b,ec>1
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Since the third term of (2.11) vanishes by (1.5), (2.11) together with (2.10) gives Proposition
23. O

Definition 2.4. Let 7o, -+ , 75—y € C*(a) satisfying 75y = 0 and (2.4),, for each 1 < m <
k — 1. For simplicity, we set d] = d,,- and
{ Qe =3 Tigjmrigzr i

(2.12) T
Re =3 Tipjmkijz19i 77

Remark. If k is odd and 7;(f,9)=(-1)ix;(g, f) is satisfied for 0 < 5 < k — 1, then R;=0.

By Proposition 2.3, we have §,Q =0 if mo, 71, - -+, k-1 satisfy (2.4),, for any m,1 < m <
k — 1. By a similar manner, we have the following:

Proposition 2.5. Let (a,7,m;) be any Poisson algebra. If mp, ---, my_1 € C?(a) satisfy
2 iyj=1 6im;=0 for any integer | such that 0 < | < k — 1, then dj Rp=0.

Proof. By the assumption, #= mp+vm1+- - +v¥"1mi_; defines an associative product on
a®---@rF~1a with v¥=0. By Lemma 1.9, it follows that #~= va] +-- - +vF1r; | givesaLie
algebra structure on the same space. By using Lemma 1.8, we have for any m, 2 < m < k—1,

that

(2.13) Y diny =0,
i+j=m

(2.14) Y did; =o.
itj=m

Since di di =0 by the assumption, and (1.24) holds, we have only to show that
> did;w; =o.
4=k, 22
By (2.13), we have
Y dindimy =0 for 2<m<k~2.
ifj=m
It follows that
(2.15) Yo didimy+ Y didiar + 3 d;dym; = 0.
ik, >2 it =k, 22 atbto=k,a,b,c>2
The third term of (2.15) vanishes by (1.26). Hence by (1.24) we have
d7 dyay = 0.
it+j=ki,j2>2
On the other hand, by (2.14) we have
Z d7d;Them =0 for 2<m<k—2.
ij=m
Thus, we have
(2.16) Y didimi4+ > didim + > d;d;n; =0.
=k, 22 4=k, 22 atbto=k,a,b,c>2

Since the third term of (2.16) vanishes, we have > didf T7=0. O
ik i 22
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Proposition 2.6. Let (a,7o,71) be a Poisson algebra and 3, -+, 1, € C2(a).
(i) If o, my, - -+, my satisfy ziH:l&m:o for 0 <<k, then Rj=0for1 <1< k.
(ii) If mo, w1, - - ,my, satisfy for 0 <1 < k that

(2.17) Zéfnjzg Y dimr o (cf. (1.28), (1.30)),

itj=l itj=1,4,i>1

then for any integer I, 1 <1 < k,

(2.18) Y (Ri(x5 (£,9),hot) + Ri(f,9,75 (h,1))), frg,hyi€a
=1

is alternative with respect to (f, g, h,t) (see also Remark 4, §3.3).

Proof. #i= my+uvmi+---+v*7) defines an associative product on a@- - - @r*a with v*+! =
0. Thus, #~ gives the Lie algebra structure on the same space. Hence, ds-i~=0. It follows
that
Y diny=0, 1<i<k
it j=1
Since dy =0, 7y =0, the above equality shows R;=0.
For the second assertion, note that #=ng+vmi+--- +v¥ 7, defines an alternative algebra

structure on a @ - - - @ v*a, with ¥*+1=0. For simplicity, we shall denote #(f,g9) by f*g. By
[f,gl« and {f, g,h}., we denote the commutator and the associator respectively,i.e.

(figle=Ffxg—gxf, {f,.g.h}e=(fxg)xh—Ffx(g*h).

Consider F(f,g,h,t) defined by

F(fagvh7t) = {[f,g]*ah'at}* + {f?g, [hat]*}*‘

It is known in [BK], Lemma 2.1 that F(f,g,h,t) is alternative.
By (1.8) combined with the definition (2.12) of R;, we see

1 2 &
— AT = — = J
{37}*— 261r7'l' 3;” R[.

Since [, ] =28, vix[, the alternativity of F gives the desired result. 0

§3. Jacobi identities

3.1. Associativity for #. For a Poisson manifold M, consider the Poisson algebra
(a,m0,71), where @ = C®°(M), mo(f,9) = f-g and m1(f,g) = —1{f,g}. Suppose w3, - , mp_1
are given so that Ziﬂ.:l 6;m; = 0 for any [, such that 0 < I < k — 1.

What we have to consider is to make 7 € C?(a) such that Yirj=k 0imj = 0. As we have
already seen in Proposition 2.6 (i), a necessary condition for the existence of Ty is Ry = 0.
This is in fact a necessary condition for # = 7o + vy 4 - -- + v*7;, to define an associative
product on a @ --- @ v*a with v*+! = 0. In this section, we shall investigate the equation
it j=k 8i™; = 0 more precisely.
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By (2.12), this can be rewritten as
(31) 5071’]0 = _Qk-

By Proposition 2.3, we see that §oQ ) = 0. Write 7r,:f = %(1 + 0q)m. Remarking o3 = ¢y, and
using (1.18)-(1.20), we have

1
(3.2) Somy = 5(1 — 03)6omk = —(L — ¢3)09 7},

-1 -
(33) 507rk = 5(1-]—03)507&')c = ——(1+63)agﬂ'k,
where 87° = 2. By (1.17), the equation (3.1) splits into two equations:

1
(3.4) Oy = (1= ca +c3)(1 +03)Qs,

(3.5) (1 - c3)d%nF = -;-(1 — 03)Q%.

Assume that (3.1) has a solution 7. By applying (1.13) and (1.16) to (3.4) and (3.5)
respectively, @ must satisfy in addition to §,Q = 0 the following consistency conditions for
(3.4) and (3.5):

(3.6) (07 = 83)(1 ~ ea + 3)(1 +03)Qk = 0,
(3.7) (I1+es+ C%)(l —03)Qr = 0.

However, (3.6) is not a new condition as one can see below:

Lemma 3.1. If §,Q = 0 for Q € C*(a), then (83 — 09)(1 — ¢ + ¢2)(1 + 03)Q = 0.

Proof. If 60Q = 0, then §(1 + 03)Q = 0 by (1.18). Set Q* = 1(1 + 03)Q. Note that
6o = 09 — 02 + 83 by Lemma 1.5 (i). So, we have

(03 —83)QT = 8Q™.
Using (1.19), we have (89 — 89)c3 = c3(89 — 89). Then, we have
(8 - 33)3QT = —c§a3Q™.
Hence,
(3.8) (8 =)L —ca+3)QT = QT — (87 — 83)esQ* — 3A3Q.

By substituting (f,g,h,t), we compute the right hand side of (3.8) directly. Thus, we have
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(39) f-Q+£g,h,t)—Q+(f-g,h,t)+Q+(f,h,t)-g

_g'Q+(tafah)+Q+(t7f7g'h) —Q+(h'taf’g)+Q+(haf7g)'t

_t'Q+(f7hvy)+Q+(gahat'f)_Q+(g7f’at)'f)

where f:g = mo(f,g9). The terms marked by A are trivially cancelled. Use 03Q+ = Q*,
60Q = 0, to the underlined terms of (3.9). Then, these terms are changed into Q*(g- f,h,t) —
Q% (g,f - h,t). Hence (3.9) is

_Q+(gvf ’ hvt) - g 'Q+(t7f7h’) + Q+(tafag' h) -t Q+(fvhag) + Q+(g7h7t * f)
Using 03Q* = Q% to Q¥ (g, h,t- f), we see that (3.9) is —(6Q1)(¢, f,h,g) =0. O

Next, we consider (3.7), the consistency condition for (3.5).
Lemma 3.2. (1 4¢3+ ¢2)(1 —03)Qx = 4R;.
Proof. Since 6; = 87 + 6], where 6 = §_+, we see by the definition of Qj, (2.12),

1
(3.10) Q=73 > Gfrf+sTan+ Y sfny.
i+j=ki,j21 i+i=k,i,i21
Note 035?"77]7 = 5;"71-]-", agﬁfvr;' = —6;"71';', o36; m; = —6; ; by (1.18). Then, we have

Qe—03Qk = Ny jmpijor(677f +6775),
(3.11)
Qr+ 03Qk =2Zi+j=k,i,j21 5?—7"]—'—-
By (1.28) and (3.11), we have
(1+63 +C§)(1—03)Qk(f,g,h) =4 Z E W:(f,?f;(_(],h)) =4Rk(f’gah)' g

iti=k,i,i>1 (Fra:h)

Remark. By Lemma 3.2, Ry = 0 is a necessary condition for (3.5) to be solved. Ry = 0
may be called Jacobi identities (cf. (2.12)).

3.2. Cohomological property for R;. To simplify the notations, we shall use the
following notations:

f g = WO(fag)’ (f?g>1:i7:a, = Tr:(fag)a (m Z ]-)a
(f,(g,h)%)E = T eh)  (m22),
(3.12) e
({(f{g:W)E)E 0% = P it (7 (f,7E(g,R)),1) (m > 3),
atbte=m,a,b,ec>1
({(f,9)E, (b )5)% = wE(xy(f,9),7E(h,1)) (m > 4).
a4-btc=m,a,b,c,>1

In what follows, we shall prove the following:
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Theorem 3.3. Let (a,7o, 1) be a Poisson algebra. Suppose m3,--- ,mx—1 € C%(a) are given
so that they may satisfy 3 §;m; =0 for any l, (0< 1< k—1). Then,

i+j=1
Ry =0, for j=1,2,3, i.e. Ry € As(a,m0).

Hence, by Proposition 2.5 Ry is a deRham-Chevalley 3-cocycle.

Proof. By using notations (3.12), Ry is written as

(3‘13) Ri(f, 9, h) ={(f, (gah’>_>l; + (g,(h, f>—)l: + (ha(f:g)-”:
=1 B Y 65 (feh).

45 itj=k

Now, suppose the hypothesis of Theorem 3.3 is fulfilled. For any m,1 < m < k-1, 8,7,
is given by (3.4), and this is equivalent to the following:

(3.14)
ﬂ';(f,g : h)
=g Wr;(f’h) + W;(fyg) ~h+ ((fay)_7h>j;; + <<f7h)—’g)$ - (f’ (g,h)+)r_n

We now compute the following quantity:

(3.15) Re(f- 9,0 0) ={f -9, (Rt) )i + (B (6, f - 9) ) + (6,(f - 9,0) )5

By using (3.14), (3.15) can be rewritten as

FAg, ()75 + g+ (£ (B t)7)i + ((f, (b)) 00

+ (g, (h)7) 7, AF + ((h,t)',ﬁf,y)ﬂi
(3.16) + {0 (L) - g) + (b (6,9)” - £ + (B (8 £) T, 9) )

+ (B ((6,9)7, ) + (B, ((F,9)F,0) )8

A

- <t,<h7f)_ g)]: - (t7<hvg>— f)}: - (t,<(h7f)_7g)+>1:

- (t,((h,g)",f)"'); - (t,((f,g>+,h)_);.

A

The three terms marked by A vanish by virtue of Proposition 2.5, for setting 4; = (f,9)] we
see that these terms are

k-1
(3-17) E{((hat>_,Al);-l + <<t7A1)—vh)l:—l + ((Ahh)—’t)l:—l}
- k-1
= — ZRk—l(Al,hyt) =0.

=1
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Computing the underlined 4 terms of (3.16) by using (3.14), we have

Ry(f-g,h,1)
= [, (R t)7) + (b (,9)7)% +(t,{g,R) )}
+9- A ()7 + (b (6 1)) + (6, (FR) )i}
)™ -GN+ (B )7 (4,9)7 = (6,9)7 (B )T = (t,f)7 - (hyg)”
+(<(t,f)1,g)+,h); +((h, (t, £)7) 7590 +<(h,g)“;<t,f)‘>Z

+(<<t,g)“»f)+,h);? +{(h, (t,9)7) 7 )E +((h,f)‘;(t,g)‘)}5
—(((h,f):,y)‘L,t);Z =t (b, £)7) o9 —<(t,9)”;<h,f)')}§
—(((h,g)”,f)+,t); _((ta<h>g>_>_7f>-k’:- _(<taf)_7

(3.18) A *
+(h, ({2, f)_vg)-l-)l:

A

+Hh ((t9) 7 )

(hyg) )t

—(t:((h: )79 N HULH BT (g, (b)), f)

A

—{t,((h,g

=+

-~

SO

where six terms below the line of (3.18) come directly from (3.16), and A~ - B~ means
zi+j=k,i,j>1 A7 - B;. Note that the terms marked by % and A vanish by themselves, and
the third line of the right hand side of (3.18) also vanish by itself. Hence, we have

(3.19) Ri(f-g,h,1)
= [ Ri(9,h,1) + g Ri(f,h,1)
+{((h (6,9)7) 7 O + (8 (98T O + (9, (o)) 7 A
+ ((h,(t,f)—)_,g): + ((t,(f,h)_)_,g)f +((/, (h,t)_>_,g)t.

The last six terms vanish by virtue of Proposition 2.6. Hence, we have 89R;, = 0. As Ry is
alternative, we have 8?Rk =0 (5=1,2,3). Then, Theorem 3.3 is obtained. 0O

3.3. Remarks on Rj. For later use, we give several remarks on Ry,.

Remark 1. Let U be an open set of R™ with the coordinate functions 21, ,Z,. Consider
M = U. If Rg(z;,2j,2x) = 0, then the 3-derivation property given in the above theorem
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yields easily R, = 0 together with the continuity of Ry and the polynomial approximation
theorem.

In the later section, we shall show that we can set always m;(z;,z;) = 0 for I > 2. If this
is the case, we have only to check the quantities

(3.20) Ri(ziszj,2e) = B m_q(@i, 7y (25, 2k))-
(i,4,k)

Ry always vanishes because d,, m; = 0. Hence, if my(2;,2;) = ¢;j + >, cfjmk, then Ry = 0 for
any k > 2. This will be the reason why Poisson algebras of constant rank, and linearizable
Poisson algebras (cf. [W]) are deformation quantizable.

Remark 2. In §4 and §5, we shall show that Ry = 0 is necessary and sufficient condition
for #= mp +vmi+-- - +vF7, to be an associative algebraon a@rvad--- @ vPa with v*+1 =,
However, notice that the solution of (2.7) is not unique. One may replace 7, by 7, + 8 such
that 8ofr = 0. In Theorem 3.3, if Ry is deRham-Chevalley 3-coboundary, we can modify
Tk—1 80 that By = 0 (cf. see the proof in 6.1).

If one considers only regular @-deformations, 8, must satisfy 0x(f,g) = (—=1)*8x(g, f).
Hence, if k& =even, then 8, = §pc by Proposition 2.2, and if & =odd, then 8, must be a
2-derivation by virtue of Lemma 2.1.

If one replace W;'k_Q by ﬂ';rk_z + boc, then 7, _, is influenced by this replacement. One
has to replace m,,_, by m,,._; + dic, but this replacement does not change Ry. If one
changes 7;,_; by 75, _; + 0y5-1 furthermore, then Ry is changed by Ryj + d1835—1. Thus
the cohomology class of Ry does not change.

Therefore, if a Poisson algebra (a,-,{, }) is given, then the cohomology class of the first
obstruction cocycle Ry is determined only by (a,-,{, }). If there exists (a,,{, }) such that
[R4] # 0, then such a Poisson algebra has no regular Q-deformation.

Remark 3. If we relax the associativity of #, and request that # defines an alternative
algebra instead, then the equation corresponding to (2.7) is given by

1 2 2
(3.21) oy = —= E 5,-71']' + =Ry, (= —-Qr+ —Rk).
2, A 3 3
itj=k,i,j2>1

By the same manner as above, (3.21) splits into two equations as follows:
-1
(3.22) Nry = (-t 3)(1 4 03)Qx
1 2
(323) (1 - c3)8‘2)7r,‘c’” = -2-(1 — 0'3)Qk - §Rk
because (1 + o3)R; = 0. Note that (3.22) is same as (3.4). Since 6,Qx = 0 by Proposition

2.3, the consistency condition for (3.22) is fulfilled by Lemma 3.1.
Consider the consistency condition for (3.23). Recall Lemma 3.2:

1
(1 + C3 + Cg)g(l - Ug)Qk = 2Rk.

Since Ry € AC®(a) by definition of Ry, (2.12), we have (1 + ¢c3 + ¢2)R, = 3R). Hence the
consistency condition for (3.23) is fulfilled automatically. However, instead of this, another
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necessary condition appears for 741 to be made so that mo + vy + -+ + uk+17rk+1 defines
an alternative algebra with v*+? = 0. Namely, by Proposition 2.6, we must have that

(3.24) Ri(77 (f,9)shst)) + Re(fr 9,77 (hyt)),  frg,h,t€a

is alternative with respect to (f, g, h,t).

Remark 4. The alternativity of Ry(7(f,9),h,t) + Ri(f, 9,7 (h,t)) looks like a strong
condition. Since this is equivalent to

R‘c(ﬂ'l_(f’g)ygvt) + Rk(f7g7 W;(gvt)) = Oa

we replace f by f?. By the derivation properties of 77, Ry, the above equality yields

Rk(f’gyt) W;(f,g) =0.

Hence, if 77 (f,g) # 0, then Ri(f,g,t) = 0 for any ¢. (cf. [BK].) It is not known whether

there exists a non-associative, alternative deformation of a.
84. Construction of meyen

Let M be a Poisson manifold and (a,-,{, }) a Poisson algebra where a = C*(M).
In this section, we impose the following;:

Assumptions.

(HE.1) Set mo(f,9) = f- g, mi(f,9) = —%{f,g}. Furthermore, 73, ,myx_1 € C*(a) are
given and they satisfy Zi+j=l 0;m; =0 for any {,0 <1< 2k —1.

(HE.Q) W;I-dd = F;en = 0 for ToyM1yt* 3 Mok—1-
(HE.3) 7y, are bidifferential operator of order 2m for 0 < m < 2k — 1.
The goal of this section is as follows.

Theorem 4.1. Assume (HE.1) - (HE.3). There exists 72 such that

(a) g, = 0, and myy is a bidifferential operator.

(b) Tigjmar 6imj = %Ziﬂ.:% 28775 (= $Ryk) (cf. (3.13) and Remark 3, §3.3).

In particular, if Ry, = 0, then # = mp + vy + -+ + V27w gives an associative product on
a®vad-- @vifa (mod v2*H1),

4.1. Induction for constructing 7.,. Under the assumptions (HE. 1-2), the equations
for myy = W;'k + 75, given by (8.22-23) are rewritten as follows:

1 - 2
(4.1) (I-e)dorfy=+5 D (§Fnf +677;) - 3 Rat
i+]’=2k7is]’21
(42) 827rz—k = 0,

where we used (3.11). By (4.2), one can set

(4.3) 75, =0,
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for this is a solution of (4.2). Now, by alittle careful computation together with the definition

of 5?‘%}', 6; =7, and (3.13), we see that (4.1) is equivalent to the following:

(44) W;'k(fagh) - W;-k(hagf) = EZk(.f7y’ h)
Here, we put

(4.5) Ea(f,9,h) = 7§ (£,9)h — 75 (h,9) f
+ ((f,g>+ah>;-k - ((h!g>+if>;lc

- ((hvf)-a.q);k + %RQk(thv h)7

where (, )£ is defined by (3.12). Note that

(4.6) Eye(f,9,h) = —Eay(h, g, f)-
To construct w;'k, we consider at first on a local coordinate neighborhood (U, 2y, -+ ,2,),
and we set
2k
(4.7) iz s) = 0],
where ggk) is arbitrary element of C'*°(U) such that ggjz-k) = g}?k). For multi-indices a, 3, we
construct 7 (z*,2#) inductively. At the same time, let (; = @; — 2;(p) for any fixed p € U.

(2k)

Since 7} (f,1) = 0 by the normalizing condition, we see T3 (G, G) = gij - Thus, one can

construct 7 (¢%,(?) by the same procedure. We shall show that for any p € U and a, 8 such
that |a + 0] > 4k,

(4.8) Th(CPye Y e ).

Ylyl=latBl-4k

(4.8) implies that if @ + 8| — 4k > 0, then W;k(("‘,(ﬂ)(p) = 0. Hence by Taylor expansions
at p, we have

1
(4.9) (hO® = Y m(f)“f)(P)(aﬁy)(P)ﬁk(C“,Cﬂ)(P)-
lal +1P1< 48
This is a bidifferential operator of order 4k. Thus, to show (a) of Theorem 4.1, it is enough

to show (4.8). Since p € U is fixed arbitrarily, we have only to construct 7, (¢%,¢#) instead
of 1, (z%,2P). After that, we shall define 7§, (f,g) by (4.9).

To obtain 7;,(¢%,(”), we shall use induction. So, assume the following:
(B)s 75,(¢*,¢P) are obtained for any (%, ¢ such that |a + 8] < s, and these satisfy (4.4),
and 75, (¢*,¢?) = 75 (¢P,¢*).

In what follows, we put unknown quantities 7, (¢*, ¢?) by @, (¢*,¢P) for |a + ] = s + 1.

Under the assumption (B),, we want at first to obtain @, (¢;,¢?) for |y|+1 = s+ 1.
We fix (# arbitrarily such that |u| = s + 1.
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In what follows, we shall use the notations
(€M) ecH, (¢¢P(Mect ete
if there exist ¢%,¢% such that (¢ = ¢#, ¢¢PCICY = ¢¥ ete.
Now, for any ({;,(?,(;) such that (;(;¢P = (¥, (4.4) is read as follows:
(4.10) @36, C765) = (G €)= Ban(G 7 (),

where Ejyj is defined by (4.5). Set the right hand side A;;(= —A};). Under the assumption
(B)s, Aij’s are known quantities.

4.2. Left extremals. We now assume that (* is fixed as |u| = s + 1. @}, (¢i,¢P¢))
depends only on i such that ({;) € ¢*#. Thus, we set

(4.11) T; = @i ¢PG)-
- Then, (4.10) is nothing but an over determined system
T -Tj = Ay for (Gi,(5) € (™.
This can be solved if and only if A;; satisfy
(4.12) A,'j + Ajh + Ap; =0 for any (Ci’CjaCh) € CH.
If (4.12) is satisfied, then 7; is given by
1
(4.13) T = w8 Z it + K2k(C*).
]
where n(p) is the number of (I) such that (¢;) € ¢(#, hence 1 < n(u) < n, and
(4.14) Ky ((") = arbitrary element of C*°(U) depending only on (¥,

For the later use, we choose Kjyj as a linear differential operator of order 4k, or simply
Ky, = 0. If n(u) = 1, then T; = K,(¢*). In Proposition 4.2, we shall show that (4.12) is
satisfied under the assumptions (HE.1-2).

For that purpose, we shall investigate (4.4) more precxsely For any ﬁxed (f,g, ), (4.4)
can be regarded as a linear system with unknowns 7;5.(f,gh), 7. (¢,hf), 75 (R, fg):

W;_k(fagh) W;Pk(g; hf) ”;k(h, f9)
1 0 -1 1k(f,9,h)
-1 1 0 1k(g,h, f)
0 -1 1 k(b f,9)
where
K(f.9,h) =

w90k = b )+ ((£,0V W = () D)+ (U0 903 + 5 Raw(F, 1)
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The solvability condition of the above linear system is satisfied by virtue of the term Ryy.
Set

(415) S2lc(f7.q7h): E W;Fk(fagh)'

fLrah

Then Sax € SC*(C°(U)), and the solution of the linear system (4.15) is written as follows:
1 1 1 2
(416) ”;k(f»gh) = ""S2k:(fvg’ h) + gw;k(f?g)h + gw;c(fvh)g - §f7l';-,c(g,h)

3
U0 R + SR o) — 40 BV 10
1

+ (U0 B+ 3B i

Note that Ry does not appear in the expression. All others are obtained by the cyclic
permutation of (f,g,h). Note also that (4.16) can be applied for n} such that m < 2k — 1,
where R,, = 0.

In this subsection, we shall show the following:

Proposition 4.2. For any fixed {* such that |u| = s + 1, the solvability condition (4.12) is
satisfled, and hence wf;((i,(*) are obtained by (4.13) for any ((;,(*) such that (;(® = (H.

Suppose ((i,(j,¢n) € ¢#, i.e. there is a monomial g such that (;(;(hg = (*. By (4.5), we

have
(4.17) Aij+ Ajn + Ani
= (i%)[ﬁk((ny(h)(j — 153G 9Cn)Gi
+ (G 96 F, i) — (G5, 96D Y, G
(G067 90h) 5+ 5 RaelGis 900, G5
= (1) +(2) +(3),
where

(1) = E)Cl{ﬂ-g_k(chng]) - W;k(CJ’gCh)} = CiE2k(Chag;Cj)

(isd>h

(2) = E (Cia<Ch:ng>+ - (Cj,QCh)+);.k

(’i}th‘)

3)= ¥ {{{6 <), 90 — %Rzk(Ci,Cjag)Ch} = gR3k(Cis (5, Cn)-

(i’j7h)
Here, to compute (3), we have applied Theorem 3.3 to the term Rsx((i,(;,(rg). Recalling
(3.13) and using (3.14) for the first term of (3), we have
- 1
(4.18) (3) = B¢y &) 9ok — EgCthk(CnCJ’,g)
+ (€6 Ci) 7597 Cudi = B(Cir i) 75 (95 ) )

where we used

DU G Lok = Y mH(R(C G5 Ch)9) = 0.

atb=2k,a,b>1
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From (4.5), we have

(4.19) (1) = B GliGma)s G = (G0 G
B GGk )1 0)7% + 56 Rae(Ghr, )

Note that in (1) + (3) the last two terms of (4.19) and the first two terms of (4.18) are
cancelled out. Use (4.10) to (2), and remark that R,, = 0 for m < 2k — 1. Then, we see

(4.20)
Aij + Ajn + Agi
=3 (g, ¢n) " (G G D + B (6, 65)79) 5 Cn) T
+ 8 GG ), ¢i3k = (G ) s G + B (G (9065 — (Ghr 9) T Cn) B
+ 3 (G (Ch ) G = (G M)+ B (G (6nr ) 759) 7 )5

Note that the second term and the last term of the right hand side of (4.20) are cancelled
out. We now use (4.16) to the second line in (4.20). After a little complicated rearrangement
of the terms, we have

(4.21)
A+ Ajn + Ap
=% Gl(r )t ) — & GlH9 T T + 2 (960 (GG Vo
+ 8 (G (G (G )N - B (G (S (Gra) D)

+ %E(SZI;(Cﬁg;Ch)aCi);k - %E(SZk(Ch’g,cj),Ci>;—k
* *

+ 3B (Gng) + 35 (6 (G N~ 2B (G (Cn) )
A
=SB (G500)* = 3B (G (G 0) N+ B (G (G500 )

A

+ %E((Cinj)+7 (Chy9) )3 + %E((Cﬁ (Ch )N ) — %E(Cn((ﬁ(fm@*’)ﬂﬂ

¢

=BG O G 9V — TE UG (6 0V, G + 2 (G (G000

L4
+ B 617 (G 0V + FE (G Crr0) ) G
— FEHG )7 (6905 — EHG (69)) 7 i

—

where AT . Bt means > atb=2k,a >l A7 Bf. The terms marked by A, %, ¢ are cancelled out
respectively. Since -

G )G = G (G (G0 = B G (6 (6Gh9) i
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the four terms involving - of (4.21) are cancelled out. Note also that

(422) E ((Cia <ijg>+>+aCh>;-k = E <Ci7 (Cj:(Chag)+>+);-k

2 {6y Ch) TG 9) o = =& (66 G5) 75 (Chr ) )z

Then, the last terms that remain are computed as follows:

(4.23)
= 3 (G 51 0 0+ 3BXG (6091 ) o)

— B {6 0) ) Gl

= “é(ffEk)U(Ci»Cj)_a (G ) )i+ ({(Chs )5 G) 75 Cidai + ({6, (G55 9)T) 75 Cadz}

1
:—§ E E Ra(Cin]’?(C’Hg)z-)zo'
atb=2k,a,b>1(1:3:k)

So, @y, ((i,¢*) is obtained by (4.13) for any (¢;,¢*) such that ¢;¢* = ¢¥#. Thus, Proposition
4.2 is proved. O

4.3. Bridges. For a fixed p such that |u| = s+ 1, we define a set of pairs of multi-indices

by

(4.24) Sp={(a,B);a+ B =plal 2 1,|8 2 1}.

For any i, 1 <1 < n, we denote < ¢ >= (0,-++,1,---,0). An element (< ¢ >, pu— < i >)
(resp. (p— < i>,< i >)) will be called a left extremal point (resp. right extremal point) of
Sy

In what follows, for the pair of multi-indices (o, 8) with o + 8 = p, we shall construct

+ (ta 4B
W%(C aC )
Definition 4.3. Given a multi-index v, the pair of multi-indices (@, 8) and (a’,8') is said
to have the bridge relation if they satisfies the following:

(Bl)a'=a+y,f =f—yandatf=a +8 =p

(B.2) @3, (¢*,¢P) and @, (¢, ¢P') have the relation
(425)"/ w;-k(cal!Cﬁ’) - w;-k(ca7 Cﬁ) = _E2k(Ca7C7,Cﬂ’)v
where

Ex(¢™,¢7,¢%) = i (¢, ¢)C% = ¢, (¢7,¢7)
(O A P (SRS NC R P
oy 1 . 1]
— (¢ (¢ P ) T + ngk(C ¢ ¢7),  (cf. (4.5)).

If (a,8), («/,8') € §, have the bridge relation (4.25),, we denote by (a, 8) » (e, 8" (or
(€*,¢P) 5 (¢,¢7)).

Note that if (a, 8) <5 (a',8'), then (B',a") % (8,a), which is called the dual bridge relation

to (a, ) % (e',B"). The following lemma shows that any chain of bridges from a point of S,
to another can be replaced by a direct bridge:



KSTS/RR-91/004
September 1, 1991

26 HIDEKI OMORI*), YOSIAKI MAEDA**), AKIRA YOSHIOKA*)

Lemma 4.4. For (a,8+7+7"), (@+7,8+7"), (@ +7+7,8) € Sy, the relations (a, +
Y4+9) S (a+7,8+9") and (@ + 7,8 +7') > (o + v + 7', B) generates the relation

1

y

(@B+7+7) "5 (atv+7",8).
Proof. Let f=(*g=("h={(" k= ¢ for the simplicity, and set

(4'26) Q(a>b7 ¢) = (a, (b, C)+>-2‘-k - ({a, b)+’c>;lc + (b7(aac)_>2_k + %ng((l,b, c).

By Proposition 2.3 and Theorem 3.3, we see that §,Q = 0. Using (3.21) and (3.23), we have
) = (-1 §Fat 4 6mT) 4 2 b
Qabe)= |~ oo (Gt )+ 3R | (ab,0).
i+i=2ki,j 21

The bridge equations (4.25),, (4.25):, (4.25).4 are written as follows:

— (9, ht) + @5 (fg,ht) — @ (£, ght) + 75, (f, 9)ht = Q(f, g, ht),

(4.27) —fgr (b, ) + @i (fgh,t) — @F,(fg, ht) + 75 (fg,h)t = Q(fg, h,1),

—fvrg'k(gh,t) + w;-k(fgh’t) - w;—k(fvght) + ”;—k(f,gh)t = Q(.faghvt)'
Thus, computing —(4.25)y — (4.25) + (4.25)y4, we have

F(60m3) (g, b t)+(Bom i )( £, 9, Bt
(4.28) = —Q(f,9:ht) = Q(fg,h,1) + Q(f, gh,1).

By the assumption (B),, we have
(607 ) (g, hyt) = =Q(g,2s1), (6073, )(f,9,h) = =Q(f, 9, h).
Hence, (4.28) is
~fQ(9, 1) = Q(f,9,h)t = —Q(f9, by t) + Q(f, 9h,t) — Q(f, 9, ht).
This holds because of §Q = 0. O

Note that by (4.26),(4.27) and (2.12), we see easily that

(4.29) > )Q(f,g,h) =0.

(f.9:h

By a similar manner as above combined with (4.29), we have
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Lemma 4.5. If there are relations (< & >,u— < i >) < (a,8), (< § >,p— < j >) % (a,8),
then @}, (¢*,(P) computed by (4.25), and by (4.25) coincides.

Proof. One may assume that i # 7. Since there are bridges, (¢%,(?) must be given in the
shape (¢i(jh,¢P). We set t = (P for simplicity. Then, (4.25),, (4.25), are written as follows:

(4.30) T (CiCih, ) = @ (Cir Ght) + CGiman(Cihy ) — mak(Cir CihYE + Q(Gi Cibs 1),

(4.31) @5 (CiGihyt) = H(Cis Ght) + Gmai(Gih,y 1) = m2r(Gy GR)E + (G, Gih, 1)
We have only to show the right hand side of (4.30) — (4.31) vanishes. Note that w3 ((i,¢?)
satisfies (4.10). Computing the right hand side by using
(4.32) @3 (CihtCs) = w3y i)
= _C’iw;k(ht’Cj) + W;k(C;,ht)Cj - Q(Ci,ht’Cj)7

which is obtained by (4.4), (4.5) and (4.26), we have that (4.30) — (4.31) is

(4.33) Gi(md (Cihyt) — mfi (Rt )
+ Cj(”;k(@a ht) — W;_/c((ih,t))
+ (1 (Ciy Gh) — 78,6, Gh))
+QGir o) = QUG5 Gihst) — @Gy b, ).

By the assumption (B;), the above quantity is

CiQ(ijhat) - CjQ(Ci:hat) - tQ(Cj»h7Ci)
+Q(G, Ghyt) + Q4 Cihy &) + @, bty ).

Using (4.29), we see that the above quantity is

(4.34) (80@)(Ci, i hyt) = (60@)(Ci» Cir hyt) = 0. O

4.4. Right extremals. As we have shown in 4.2, we got @y, ((;,(®) for a+ < i >= p,
|#] = s + 1. Next, we shall determine @}, (¢%,¢;) for a4+ < i >= g, |u| = s + 1. Given
(¢*,¢i), there are a pair ((j,(?) and a multi-index v such that ({;,¢?) % (¢, ¢:). Thus, we
can get @y, (¢, ;) by (4.25),. By using Lemma 4.5, @}, ((%,¢;) is independent of the choice
of v and ((;,(?). We now show that @}, ((;, (%) = @, (¢, &)

First of all, we easily have

Lemma 4.6. If (< i >, p— <i>), " 57 (4= <i>,<i>) then
(435) w;-k:(cy_<i>,Ci) = w;k:(c:‘ac#_<i>)'

Proof. By definition 4.3 and Rak(Gi,(#72<%>,¢;) = 0, we have (4.35) O
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Lemma 4.7. For any i,j and a multi-index o, we have
(4.36) (76 i) = (G ¢ 6.

Proof. Consider a bridge relation (< i >,a+ < j >) <% (a+ < i >,< j >) and we have

(4.37) @3 (C¥Cir &) = (G C0C5) = BarlCiy €%, ¢5)
by (4.25)4. On the other hand, we write down (4.10) for ({;,{%¢:):
(4.38) @3 (65 CC) = @ (G CG) + Aji

Combining (4.37) with (4.38), we have (4.36). O
Using Lemma 4.6 and Lemma 4.7, we have

Proposition 4.8. For any i and o, we have
(4.39) wrfk(Ci,C") = wzﬁc(C“,Ci)-

4.5. Determination for @}, (¢*,(?). To determine @5,.(¢%,¢P), we choose an left

extremal point ({;, (%) such that (¢;,¢%) <% (¢%,¢?). Thus, we put @$.(¢*, ¢P) by (4.25),,
which also does not depend on the choice of v and ({;, ¢%).
We now prove

Proposition 4.9. Under the assumptions (HE.1-2), @y, (¢%,¢?) can be constructed so that
they may satisfy (4.4), and @}, (¢*,¢P) = @i (CP, (%)

Proof. Using the bridge relation

(4.40) @H (0P — @ (6L ) = —En(G, ¢, CP)
@ (P, G) — @ (CP, ) = —Ea(CP, ¢, G)

By (4.6), we have @], (¢(*,(P) = w}, (¢P,(%) for |a + B| = s + 1. This implies that for any
@, B,v such that a + § + v = p, the equation (4.25), is equal to that of (4.4) substituted by
f=1¢%g=("h=/(P Then, we get Proposition 4.8. O

We now put 7;,(¢%,¢?) = @} (¢(*,¢?). As a byproduct of the proof, we have also the
following:

Corollary 4.10. Under the assumptions (HE.1-3), the obtained =3, (%, (?) satisfy

TH(CCP) € 3 CCR(W), Iyl = la+ Bl - 4k

¥

Proof. By (HE.3), we have 7£(¢*,¢?) € 2, C7C=(U), vl = |a+B|—2m for any m < 2k—1.
Thus, (¢*(¢#,¢M)*)5; € 5., ¢ C=(U), || = |la+ B + 7| — 4k. Since Ky in (4.14) is a
differential operator of order 4k, we see by induction that 7, ((;, (%) € 2, 0C®U), Iyl =
|a| -4k, by using (4.10) and (4.13). Hence by using (4.25).,, we see 7}, ((;, () € >, ¢rCe(U),
7l =la+ B8] -4k. O
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4.6. Proof of Theorem 4.1. Let {Ux}x be a locally finite coordinate covering of M. by
using Corollary 4.9, mj, is a differential operator. Thus, we define ﬁ;k('\)(f,g) = W;'k(k)(g,f)

on each Ux. Since w3 (¢%,(P) satisfies (4.4), W;'k('\)(f, g) must satisfy (4.4) by polynomial
approximation theorem. Thus, Tr;'k(’\)
of Theorem 4.1.

Let {#»} be a partition of unity subordinate to {U»}. We set

satisfles on each Uy the property (b) in the statement

(4.41) w559 =3 eari N ,9).

)
Since 73,.(f,9) = 75i(9, f), and Gomfy, = 3, ¢>‘507r;"k()‘), we see that 7, satisfies (2.7), i.e.
(4.42) Bomf=— > bimj.

i4j=2k,i, 21

By Proposition 2.2, the ambiguity of 73, is only in 6,C(a).

§5. Construction of myqq

5.1. Construction of meqq. Set mo(f,9) = fg, 71(f,g) = —4{f,g}. As in the previous
section, we assume the following throughout this section:

Assumptions.
(HO. 1) m9,- -+ ,ma € C*(a) are given, and 7y, - - - ,7y; satisfy
> hmy=0
ij=m

for any m such that 0 < m < 2/ -1, and

E 5,'7I']'=§ Z E(S,_ﬂ']_

i+5=21 i+j=21

(HO 2) W:-dd = Meven = 0 for PO PRARIPKS TR
(HO. 3) my, are bidifferential operator of order 2m for 0 < m < 2I.

In this section, we prove the following:
Theorem 5.1. Under the assumptions (HO. 1-3), there exists a bidifferential operator of
order 2(21 + 1), w141 such that

(a) Zz‘+j=2l+l,i,j20 bim; = 0.

(b) 75,41 = 0, ifand only if Roy(77 (£, 9), by )+ Rai(f, 9,77 (h, 1)) is alternative with respect
to (£,9,h,1).

Notice at first that B, = 0 for m < 21 — 1 by (HO. 1). By (HO. 2), we see Ryj1y = 0 (cf.

Definition 2.4, Remark). Under the assumptions (HO. 1-2), the equations (3.22), (3.23) are
changed into

_ 1
(5.1) 837"214‘1 = §(1_°3+C§)(1+‘73) E bimj,
420 1,i,j21
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1 -
(5.2) (1-c3)09mi,, = 3 S (A +67w7). (cf. (3.5),(3.11))
i4j=20141,i,5>1

Notice that Ry; does not appear in the equations. By (HO. 2), the right hand side of (5.2)
vanishes. In what follows we set

(5.3) i1 =0
To treat the equation (5.1), we shall consider at first on a local coordinate neighborhood
(U;zq,-++ ,2,) and set
- 2041
(5.4) T (o) =g s

where g(%H) is an arbitrary element of C'°°(U) such that gz(.]?H'l) = —g%“’l). By the normal-
ization condition 7y, (1, f) = 7y, (f,1) = 0, we see that
2041
Top1(ir%5) = 75,1 (G §) = gz(] )a

where (i = z; — zi(p),pe U.
By (3.11) and (3.14) we see that (5.1) is equivalent to

(5.5) 97{2_z+1(f> h) - 7T2—,+1(f, gh) + 7’2_1+1(f,9)h
-{(f,9)7, )2z+1 ((fah>_ag>-2*—l+1 +(/, (gah>+)2_l+1'

If one regards f in (5.5) as a parameter, then (5.5) has been already solved by Proposition
2.2, that is, for any fixed f € C*°(U), there exists #¢(g) such that

(507Tf)(97 ) ((f»g> H )2l+1 <<f’ ) 7g);—l+l+(f7(gah’)+>2_[+17

because the consistency condition is satisfied by Lemma 3.1.
For any coordinate function z;, 1 < i < n, we define 7r2‘,+1(:v,~,h) by

(56 Tgaoh)E) = D00 < £GP () + F(W)E), pE T,
i=1 i

where {; = z; —2z;(p). (5.6) is the solution of (5.5) for f = ; such that 75, (2i,2;) = gEJ%H).
Define 75,1 (h,z;:) by

(5.7) Torp (B 2i) = —mq (24, ).
For any fixed f € C°(U), we define 73, ,(f, h) by

(5.8) T (s R)(p) = Z(”21+1(fa zj) = f(Cj))(P)gThj(P) +#5(h)(p), peU.

This is the solution of (5.5) for the fixed f such that m;; ,(f,z;) is the prescribed one.

Thus, we obtain 7y, (f, k) for any f,h € C*°(U). However, we only see that w5, (i, (;) is
skew-symmetric.
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5.2. Skew-symmetricity of my;41. To get Theorem 5.1, we shall show the following:

Proposition 5.2. If Ry(ny (f,9),h,t) + Rau(f, 9,71 (h,t)) is alternative, then Tor(frR)
given by (5.8) is skew-symmetric.

In what follows, we assume the following;:

(8)s 3 (C*¢P) = =15, (CP,¢) forany a,8 suchthat |a+f|<s.

Consider 7g;,,(¢*,¢?) such that |a + 8] = s + 1. If one of |a|,|B| is 1, then (5.7) shows the
skew-symmetricity. We now show (S),41 for |al,|8] > 2. Since 7, is a continuous bilinear
mapping, it is enough to show that

T (€70, CPC7) = —mg 1 (PO, C3¢) for Jal o161, 18] 2 1.
For simplicity, set f = (%, g = (%', h = ¢?, t = ¢#". By the assumption (S)s,one obtains
(5.9) T4 (f9:R) = =751 (h, f9), w34 (fr9h) = —7341(gh, f), etc
By (5.5), we have
Torpr (F95ht) = oy (F9, )t + w5y (Fa, )R+ (£, B) ™, )30
+{((f9,0) 7 )y — (fg, (b, 1) )51
Using (5.9), and (5.5), we have

(5.10)
T4 (f9, ht) = my (f R)gt + 7341 (9, R) ft + 750, (f 1) gh + Top1(9,t)fh

- t((h7 f>_ag>.2{_l+1 - t((h’g>_af>;l+1 +t(h,(fag)+>2—l+1
- h((t) f)_y.q>;l+1 - h(<tvg)_)f>'jl+l + h(t7 (f’g>+);l+1
+ ((fg,h>_,t>;1+1 + ((fg,t>_,h);+1 - (fgv <h7t)+);l+1'

The first line of the right hand side of (5.10) is skew-symmetric under the permutation of
(f19,hyt) = (B,1, £, 9), which we shall denote by 6. Let & denote 1 + o. Then, using (3.14)
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to the last line of (5.10), we have the following:

&my1(f9,ht) =
=St{(h, )7, 9111 ~6t{(h,9)™, /i1 +Gt<h,(fkg>+>{z+1
~Sh{(t, /), 9) i1 ~6h((t,9), )3 +6h<t,(f,‘g>+){z+1

+6f(g, <h;t>+>;,+1 +6g(f, (h;t>+>;,+1

+6<<f,g)+,£h,t>+){z+1

(5.11) OO 1)7 0 +SU(B,0)7 i
=&(((h )79 i —S(({h9) =, ) ) —6(((f,g>+;h>‘,t>§1+1
=&, /)79t i —S({(L9) T, AT M -6(((f,y)+,'t>’,h)g+z+1
+6(f(g,h) 75 141 +6(g(f,h) ™, )34
+6(f{9,1)", )i +6{g(f,1) ", h) i

The terms marked by A, ¥, ¢ are cancelled out. If we denote by 013,034 the permutations

(f:9,h,1) = (g, f, 1), (f,9,h,t) = (f,g,t,h) respectively, then the above quantity can be
written as follows:

(5.12) &my141(f9,ht)
= =61 + a34)(1 + o12){t{(B, )™, 9) 5141
+({(h, )75 90t 00540 = (g B) ™ 01 -

Substitute (4.16) to the last term after remarking that (4.16) is valid for any 77} such that
m < 2l. Note that

(5.13) S(L+ 034)(1+012)Sm(f (9, ), 8) =0, 1<m <2l

After a little complicated calculation, we have

(514) S (f0.h0) = =381+ aaa)(1 + 01, {6 0, k) ) i
=3 0B Vg = 3069, Nz
0 R Vi = 340,060 N
3 08,07 Vs — 30 0:07) Nz
43000, 007 N = 30000 (507) Dz



KSTS/RR-91/004
September 1, 1991

DEFORMATION QUANTIZATION OF POISSON ALGEBRAS 33

Since R, = 0 for m < 21 — 1 and Ry41 = 0, we see by (3.13) that

(tv(fa (g7h)_)_>2_l+1_<f7 (ta<g’h>_)—>2—l+l
= _((gvh>—s(t1f>_)2_l+1 + RZI(tafﬂTl—(gah))'

Substituting these to (5.14), we have

(515) S (£9, 1) = 3 Ruult, 77 (9, ) + 3 Rat(w (1, ), 9, )

+ %RZI(t’gawf(f’ h)) + %Rw(ﬂ-l-(tvg)sfv h)

Thus, we have &y, ;(fg,ht) = 0. Proposition 5.2 is thereby proved.
Recall Proposition 2.6. We see that Ty41 18 Obtained as a skew-symmetric bilinear form if

and only if Rai(f, 9,77 (h,t))+ Ra(ny (f,9),h,t) is alternative. Hence, to complete the proof
of Theorem 5.1, we have only to show the following:

Lemma 5.3. 7,,,, given by (5.8) is a bidifferential operator of order 2(21 + 1).

Proof. Obviously ri = —1{/, g} is a bidifferential operator of order 2, for 71 is a biderivation.
Suppose that 7,,,(f,g) are bidifferential operator of order 2m for 1 < m < 2. It follows that
at any p € U, letting (; = z; — z:(p),

(5.16) (€ P NN €D CCC=(U), 18] = la+ B +7] -4l 2.
Y

Rewrite (5.5) as follows:

W;H—l(f,gh)
= g7r2—1+1(f7 h) + Wﬁ-]—l(f?g)h-i_ ((f,g)—’h);-{.’_]
+ <<f7h>_’g>-2+'l+1 - {f, (g’h‘)+>2—l+1'

One can show inductively by using (5.16) and the skew-symmetricity of Tg141 that

o1 ((%5¢P) € D CCP(U), |yl = la+ B — 220 + 1).

¥

This implies that T34, is a bidifferential operator of order 2(2{ +1). O
Theorem 5.1 is easily proved by using a partition of unity.

Let (a,-,{, }) be a Poisson algebra. Let mo(f,9) = f-g, m1(f,9) = —=3{f,g}. Since R, =0
by the Jacobi identity of {, }, we see the following by combining Theorem 4.1 and Theorem
5.1:

Theorem 5.4. For a Poisson algebra (a,-,{, }), there are 3, 3,74 € C*(a) such that
(8) Ty = T5en = 0,
(b) mm are bidifferential operators of order 2m (m < 4),
(€) Xipjmm bim; = 0 form = 2,3,
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(d) zi+j=4 bimj = %Ei+j=4 2 55_”]'_: (= %R‘i)'

The above theorem shows that # = my + vm1 + v27my + 373 defines an associative algebra
structure on a®radria®via, and #' = my + vy + 12wy + 375 + w47, defines an alternative
algebra structure on a®---@vta. If Ry = 0, then #' is associative, and one can obtain 75 and
mg such that mg + - - - + v° 75 is an associative deformation with v® = 0, and mp + - - - + 87 is
an alternative deformation with 7 = 0. If R4 is not a coboundary, then there is no regular

Q-deformation of (a,-,{, }) (cf. Remark 2, §3.3).

§6. Proofs of Theorems 1-3 and Examples 3 and 4

6.1. Proof of Theorem 1. Assume H3(M,-,{,}) = {0}. Suppose xg, 71, -+ ,my_; are
given with Assumptions (HE. 1-3), where 7o(f,9) = f- g, m1(f,9) = —3{/,9}. By Theorem
3.3, Ry € As(a,mo). Moreover, by Proposition 2.5, we see that d Ry = 0. Hence, by the
assumption, there is 7’ € As(a, mp) such that di 7’ = Ryy. Since 7' is a biderivation, we see
that §om’ = 0 by Lemma 2.1.

By setting my,_; = ma1—1 — 7', we see 7y,_, is skew-symmetric and mo, 71, , Toi—2,m},_,
satisfy (HE. 1-3). Moreover

1
(6.1) By =di(rg =) +5 D dimj =Ru-dix' =0.

i+7=21,i,522

However, note that n'(2;,z;) # 0 in general, hence 7},_;(zi,z;) # m2-1(zi,2;). Thus, one
may not give w1 (2;, ;) arbitrarily. By loosing these freedom, one obtains 7, m > 2 such
that 37, ., 6im; = 0 for any m, and The = Toven = 0.

To prove the first assertion, let (a[[v]],*) be a regular Q-deformation and let f g =
Yoo o™ Tm(f,g). For any [0) € HX(M,-,{, }), we set

(62) ’I[':’; = 73 + 0.

Since 608 = 0, d16 = 0, we see that Ry = R} = 0. Rg may not vanish, but by the assumption,
one can replace 75 so that Rj vanishes. Keeping this procedure, one obtains another -
product, which we shall denote by *4.

Let (a[[v]],*4), (a[[V]], %) De two regular Q-deformations of (a,-,{, }) such that 7o(f,g) =

7o(f,9) = f-9, m(f,9) = 71(f,9) = —3{f,9}. Since they are regular Q-deformations, we
see that Ry = dym3 =0, R} = dyn} = 0. Now, suppose there is an isomorphism

(6.3) ¢+ (al[v]], *o) — (a[[v]], 1),
such that ¢(v) = v and
(6.4) Hf)=F+V () + 1V ¢s(f)+--, fea.

Then it is easy to see that

(65) 50¢2 =Wy — Wé:
otz + d1gpo = m3 — 7.

Since 73 — 73 is skew-symmetric, (6.5) implies o3 = 0, di¢s = 73 — x}. Remark that
3 — w4 =0 — §'. We see [0] = [¢'].
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6.2. Proof of Theorem 2. Suppose dimM = 2, and let (a,-,{, }) be any Poisson
algebra. We set wo(f,9) = f g, m1(f,9) = —3{f,g}. Suppose m3,--- ,my;_; are given with
Assumptions (HE. 1-3) in §4. Since dim M = 2, we have Ry;(zi,zj,z%) = 0 on any coordinate
neighborhood (U;21,22). Since Ry is a 3-derivation by Theorem 3.3, this implies Ry; = 0.
The same conclusion is obtained also by using Artin’s theorem [S], that is, any 2-generated
alternative algebra is associative.

As Ry = 0, one can construct Ty, Ty41 with the properties (HE. 1-3) and (HO. 1-3) by
using Theorems 4.1, 5.1, and R2(1+1) = 0 by the same reasons. In these construction, one can

give g,(-j )(m,, ;), m=234, -, arbitrary, whenever g( ™ = =(-1)™ ggzn).

6.3. Proof of Theorem 3. Let (a[[v]], %), (a[[u]], ') be any Q-deformation of (a,-,{, })
By (3.4), we see 0975 = 877y~ = 0. Hence, 75,7, € Az(a,-) by the skew-symmetricity. As
R3 = 0 we have dyn; = dy7,~ = 0 by (1.24) and (2.12). By the assumption, there must
exist 91,9] € Ai(a,-) such that 77 = dy ¢, m)~ = d7 ¥}, botp1 = 6ot} = 0.

Change the decomposition a[[v]] = 3 v™a by isomorphisms %, ¢’ : a[[v]] — a[[v]] given by

b(f) = f—via(f), '(f) = f - vir(f).

In the new expression of %,%' we see (= ={)and 77, 7j" are not changed, but Ty Wy
disappear. Thus, one may assume m; = w4~ = 0. Since ) — 7, is symmetric, there is
¢2 € C'(a) by Proposition 2.2 such that fo¢2 = 75 — m5. (One may assume that ¢; is a
linear differential operator of order 4, if 73, 7} are bidifferential operator of order 4.) For any
€ € A1(a,-) one may replace ¢, by ¢y + €.

Since Ry = R} = 0 and m; = m,~ = 0, we see d{m3~ = d;7; = 0. Hence by the
assumption, there is £ € A1(a,-) such that dy (€ + ¢2) = 73~ — 75 . By the isomorphism

(f) =+ (82 + (),

we see that one may assume that my = w1}, 7; = 5. Repeating this procedure, we see that
there is an isomorphism ¢ of (a[[v]], *) onto (a[[v]], *') such that ¥(f) = f (mod v).

6.4 Proof of Example 3. Let z,y,z be the coordinate functions on R3. Set mo(f,g) =

f-9,m(f,9)= 1{f,g} Suppose 7y, -+ , Ty, are given with (HE. 1)-(HE. 3) and with the
additional conditions:

(6.6) Tm(2i,2;) =0 for 2<m<2p—1, where 2z, =g,2, =y,23 = 2,

(6.7) Kpn=0 for 0<m<2p—1, and miseven (cf. (4.14)).

To prove Ry, = 0, we have only to show R,,(z,y,2) = 0 because R;,(z,¥,y), etc vanish by
the alternativity of Ry,. Since

(6.8) Rop(z,y,2) = Wz_p—l(mvxl) + W;p—l(y’ym) + 772_p~1(za 2*)

by (6.6), we have only to show that n{p_l(z,x’) =0, etc.

It is enough to prove W{p_l(zc,wd) = 0 for any ¢,d. This will be shown by induction. So
assume that 77 (2%,2%) = 0for s < 2p—2,a+ b < r,orfors <2p—-1,a+b<7r-1,fora
fixed integer r. By (5.5), we have

(6.9) Wg“p_l(mc,zd) = —(z° (z“,mb)+)2‘p_1, a+b=d, c+d=r.
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Hence, we have only to show that Wj'q(m“,mb) =0for2¢g<2p—-2,a+b<7r—1.
On the other hand, since K34 = 0 by (6.7), we have by (4.13) that

w;'q(m,mc) =0 forany e

By the bridge equation (4.25), in §4, we see W;'q(x“,zb) =0fora+b<r—1.
Thus, we see that (C*°(R?),-, {, }) is deformation quantizable. Since 75, _,(z°,z?¢) = 0,
etc, in the @-deformation, the following equations hold:

(6.10) (z,9] = —vzF, [y,2] = —va', [z,2] = —wy™.

Suppose there is an element f € CoR)N[[W, f=fotvfit -+ vPfp + .-+, such that
[f,5] = 0 for any § € C(R®)[[v]]. If f # 0, then multiplying a suitable non-zero constant,
one may assume that

— 1 141
(611) fo= —l n 1"1) +

1
m+1 k+1
mti?  TEyit -

Thus, f; must satisfy fi = Afp, and f; must satisfy

(612) s =mi(efo), Al =mWh) o) =75 (0 fo).
Therefore, we have

Zk&yf? —y™0.fr = 2”1;(z'af0)7
(6.13) _Zkaa:fQ + $lazf2 = 2773_(y’f0)7
Y0z fo — 20y fr =217 (2, fo).
Computing 73 (2, fo) by using (5.5), (4.10) together with (6.7) and (6.12), we see that

275 (2, fo) involves the term Az?'y™=%z%=2. This implies that (6.13) has no solution. Hence,
the quantized Poisson algebra has the trivial center.

6.5 Proof of Example 4. Let (C*(R?®),-,{,}) be the Poisson algebra such that
{zi,25} = aijzie;. Set mo(f,9) = f-g, m(f,9) = —3{f,9}. Suppose my,---,myy1 are
given with (HE. 1-3) for [ > 1. We assume also that

(6.14) Tm(zi,2;) =0 for 1<m<2+1,

(6.15) Kn=0 for 1<m<2l+1, and miseven (cf.(4.14)).

We have only to show that Ry;4o = 0. By (6.14), we see that

Rogo(wirzj,zn) = 3wy (2o m (25,20) = B ajemyy (26, z;2k).
(4,4,k) (4,5,k)

Since I > 1, by (5.5) and a;; = —aj;, we see that

(6.16) —2Ry1q0(ziy 2, 2k) = ('Ek)aijajk{”;(wk’xﬂj) — mh(zi, ;)
VR
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Using (4.4) to the right hand side of (6.16), we have

(617) 4R2;+2(xi,zj,zk) = —Qij0jkk; E W;l_](zi,.’l:kz‘j).
(4,4,k)

By (5.5),if 1 > 1, then the right hand side of (6.17) vanishes. If/ = 1, then ¥ {zi,252;} =0
(4,5,k)
by using Leibniz identity.
We have easily that 2; * z; = 2;2; + fa;;2:0;.
To obtain the case

o0
Eunwn(a:;,xj) =
n=0

change the decomposition af[v]] = ¥~ v™a of the above algebra by an isomorphism ¥ : a[[v]] —

a[V]], ¥(v) = v,

avfacj-————-.
i< \/1 1 3 a,'j P Oziamj

Then obviously ¥ ~!(z;) = z;, but

Y (@) +97 (25) = (L4 sai)b(aie) =
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