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1. Introduction

Let ¢(s) be the Riemann’s zeta function and 5(r) (r = v/—1(1/2~s)) the logarithmic
derivative of ¢ which is of the form:

nr)= Y. Y (logp)e "loeP*
pEPrim n2>1

— Z Z aineﬂ/—_ln(lospa)r, (1)

121 n2>1

where Prim = {p;;i > 1} is the set of prime numbers and a;n = (logp,-)e_"(l"g"‘)/?.
This series converges absolutely and uniformly in any half plane §(r) < —1/2 — ¢
(¢ > 0) and has meromorphic continuation to the whole complex plane. Then the
Riemann Hypothesis that the roots of {(s) all do lie on ®(s) = 1/2 is equivalent to
showing that the non imaginaly poles of 7(r) all do lie on (r) = 0.

Let G be a connected semisimple Lie group with finite center, K a maximal compact
subgroup of G and T" a discrete subgroup of G such that I'\G is compact. Then for each
character x of a finite dimensional unitary representation of I', Gangolli{G1] investigates
a zeta function Zr(s, x) of Selberg’s type, Selberg[S] originally introduced into the case
of SL(2,R). The logarithmic derivative ng(r) of Zr(s,x) (r = v—1(po — s) and po is
a positive real number depending only on (G, K)) is of the form:

no(r)=r 30 30D usmax(6)Ex((6) e, 2)
§EPrimr n2>1 AEL
where Primr is a complete set of representatives for the conjugacy classes of prime

elements in T and us (6 € Primr) the logarithm of the norm N(é) of §. For other

Typeset by ApmS-TEX
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notations refer to [G1]. This series converges absolutely and uniformly in any half
plane ¥(r) < —po — € (¢ > 0) and has meromorphic continuation to the whole complex
plane. Especially, the poles of ng(r) all do lie on ¥(r) = 0 or R(r) = 0, so the Riemann
Hypothesis holds true for Zr(s,x). In what follows we shall rearrange the series as

nG(r) =Y bine”VTemus" (3)

i>1 n>1

for which the exponents satisfy cinus; = cjmus; if and onlyifi =j and n = m.

We here note that (1) and (3) are quite similar in their forms. Therefore, if two
distributions of Prim and Primr are similar in the logarithm of their norms, it is
hoped that 1 and ng have the same properties, especially, the Riemann Hypothesis
holds for n and then, for ¢ also. In this paper we let G = SL(2,R) and make an
assumption of magnitude and distance of N(§) for § € Primr, which guarntees the
similarity between the distributions (see (A) in §2 and (B) in §5). Then, under a week
assumption (A) we shall obatin an integral expression of 7 in terms of ng such as

ww)= [ me@H e @

(see Proposition 3.3). Unfortunately, this formula is valid only for S(v) < —L (Lis a
large positive number). Then, the Riemann Hypothesis is equivalent to showing that
the right hand side of (4) has analytic continuation to ¥(v) < 0 except v = —v/=1/2.
Under a strong assumption (B) we shall obtain the continuation and prove the Riemann
Hypothesis (see Theorem 5.4).

2. Notations

Let G = SL(2,R) and let x be the trivial character of I'. Then po = 1/2 and the
explicit form of n¢ is given by

Ui 2 —Vv—1nu;r
16(r) = 30 3 e (5)

i>1 n2>1
where u; = us,;, and in (3) ¢in =n and

bin ! = 2u; " sinh(nu;/2) < ce™til?, (6)
For general references to the basic properties of g see [G1], [H] and [S]. We denote
the increasing sequence of prime numbers as p; = 2,p2 = 3,p3 = 5,... and the one
of the norms of elements in Primr as N(6;1), N(63),N(83),... respectively. We define
u; = log N(§;) and

bin = inf  |nu; — muj| (7

(m,j)#(n,i)
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for i > 1 and n > 1. Then, each §;, is positive, because {u;;7 > 1} does not have a
finite point of accumulation (see [G2], p.415). For each o, 5 € R and C' > 0 we put

Ein = €in(a, 5,C) = Ce—anllogpi) ,—Bnu; (8)

and throughout this paper we assume the following condition:

(A) There exist @, € R and C, A > 0 for which

gin(a, 3,C) < min(4,6;,) for all i and n > 1.

As said in §1, the Riemann Hypothesis holds for ng. Actually, the poles of ng are
all simple and are as

{vj;j € ZYU{r;;j € N}, 9

where v; € R and r; € V=1IR (cf. [G1], Proposition 2.7 and [H], p.68). Then it is
known that v_; = —v; and the poles of ng which concentrate along [—v'—1/2, Vv—-1/2]
can be denoted as

{V07Tjafj;1SjSM}’ (10)

where we let 71,72, ..., be the poles of ng which concentrate along [-v—1/2,0) and
7; = —rj = rj4+ M. We denote the residues of ng at v; and r; by n; and m; respectively.
Then, n_j = nj and mj = mjpp =1 for 1 < j < M (cf. [H], Chap.2).

We fix sufficiently small (resp. large) positive numbers ¢ and § (resp. E), and a
positive number y such that 1/2 <y <1/2+4¢.

3. Transition from ng to

Let ¢ be a C*° compactly supported function on R satisfyin
y g

(¢) supp(4) C (-1,1),
(11) ¢(0)=1,
(1) ¢P0)=0 (1<k<2M)

and let

nlt) = 529 LLER)) (e ) ay

for i > 1 and n > 1. Then it is easy to see that hi, satisfies the following conditions.

() supp(hin) C (n(log p;) — €in,n(log pi) + €in),
(i) hin(nclogpi))=%;f, (12)
(ii7) h{(n(logp:)) =0 (1< k< 2M).

n
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Without loss of generality we may assume that €17 < 1/2log2 and thus, supp(hi,) C
[1/210g2, co) for all ¢ and n > 1. Here we put Ain(z) = (27)7! [ hin(2)e™V"1*%d2
and

H(v,z) = Z e\/:(nua"-n(losl’i))li“n(,, —z) (13a)
i,n>1
_ Z e~ V—1(n(log p;)v—nu;z) Zflsin‘;(ein(y —z)). (13b)
in>1 o

Then, we consider a condition for which the series (13) converges. Let 8 > 0 and
1 < p,q < oo such that 1/p+ 1/g = 1. We now suppose that v and z satisfy

(ag) —E<S(v), () <E,
0 { S(¥)-1/2-(1-80)a<-1/p-6
P -S@)+1/2-(1-98<-1/g-4,
where 6 is a fixed sufficiently small positive number (see §2). Then, substituting the

definition of a;, and b;, (see (1) and (6)) for (13b), we see that |v — z|®|H(v,z)| is
dominated by

¢ Y logpiel S TDRORR) (- SA@H Dm0 (o1 (1 — 2) (ein(v — 7))
i,n>1

Since ¢ is rapidly decreasing and is holomorphic of exponential type < 1 (cf. [Su],
p.146), for each N € N there exists Cn > 0 for which

6(z)] < Cn(1+|e])™Nel*®! (2 € ©).
Therefore, it follows from (A), (ag) and (8) that |v — z|®|H(v, z)| is dominated by

ccl—ac[9]+162EA Z logpie(ﬁ‘(u)—l/2—(l—O)cy)n(logp,')e(—9(2)+1/2—(1—-0)ﬂ)nu."
i,n>1
where [6] is the greatest integer not exceeding 6. Then, this series converges absolutely
and uniformly by (64'?) and the Hélder’s inequality.

Lemma 3.1. If v and « satisfy (ag) and (b)'?), then the series H(v,z) converges
absolutely and uniformly, and is holomorphic of v and z. Moreover, if (b)?)(8 > 0) is
satisfied, there exists a positive constant C = Cg a6 such that

|H(v,z)| < Clv —z|™°.

Let —y < —yp < E and

. {%(V)—l/z—-(l—ﬁ)ag_l/p_g,

(6836 y+1/2—-(1-6)<-1/q—6.
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Then, if v satisfies (ag) and (b5, , )(8 € N), it follows similarly as above that

/ 2’| H (v, )\de
R—v/=1yo

<c Z logpie(s‘(u)—l/ﬁn(losP-‘)e(yo+1/2)nu.’6;0 l:gin/ |(5in$)0<];(5in(’/ _ :t))ld.’L‘
i,n>1 R—vV-1yo

and by letting z = (z —v) + v,

< CC—'009+262EAPA,0(|V|) Z logp‘.e(g(")_l/2+90)ﬂ(1°8Pi)e(yo+1/2+9ﬂ)ﬂu-"
i,n>1

where P g is a polynomial of degree 6 with coefficients depending only on A and . Then
this series converges absolutely and uniformly by (b3, | ) and the Holder’s inequality.

Lemma 3.2. Let v be in a compact set S in the tube domain defined by (ag) and
(¥pf1y,) (0 € N and —y < —yo < E). Let f be a function on R — V—1yo such
that f(z) = O(|z|®). Then, there exists a positive constant C = CE,a,9,5,s for which
fR_\/_—lyo |f(z)H (v,z)|dz < C. Especially,

Tyof(’/)=/R_\/__1 f(z)H(v,z)de

is well-defined and is holomorphic of v satisfying (ag) and (bj2f, ).

Proposition 3.3. Let P be a polynomial of degree k(0 < k < 2M) and v satisfy (ag)

and (b7, ). Then,

(1)  P(v)n(v) = Ty(Pnc)(v)
=/ P(z)ng(z)H (v, z)dz,
R—V—1y

(42) 0=/R—\/3 P(z)ng(z)H (v, —z)dz.

Proof. Since ng(z) = O(1) for « € R — /=1y (see [H], Proposition 6.7) and (8}, ,)
implies (53, _,), the right hand sides of (i) and (i7) are well-defined and are holomor-
phic of v satisfying (ag) and (b’,:’_f_l‘y) (see Lemma 3.2). Therefore, we may suppose that

S(v) < —y. Since mu; > 0 for all m,j > 1, it follows that

/ e_‘/__lmu"xH(y,:c)dz
R—v/—1y

= / e~VTIMN T (4 2)dz.
R
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Then, substituting the definition of H(v,z) (see (13a)), we see formally that

—_ Z / e—\/-——lmuja:e\/—_l(luk—l(logpk))zilkl(v —JE)d.’E
ki>1/R

— Z e—\/:(mu,-—luk-i-l(logpk))u/ e\/—_l(mu,-—luk—f—l(logpk))xil“(w)dx
E>1 R

= 3 VI~ o8P by (muj — Tug + U(log pi))-
kI>1

Since each support of hy; is disjointed from the others, it is easy to see that the condition
that $(v) < —y guarantees the validity of the above calculation. Moreover, since the

support of hy; is contained in (I(log px) — €x1, {(log px) + €x1) and haa(i(log pr)) = axibg!
(see (12)(3) and (41)), it follows from (A) and the definition of 8x1 (see (7)) that
= ekjelmhkl(l(logpk))e—\/_—u(lOSPk)V

—1_—/=1I0
= exj€imartby; € (°5”")",

where €;; = 1 if i = j and 0 otherwise. Therefore, we can deduce that

Tyng(u)=/ - ng(z)H (v, z)dz

R—-+v—-1y

= Z bjm/ e~V=Imuiz gy, z)dz
jm21 R—v-Ty

— Z ajme—\/jm(log!’j)" (14)
Jym21

=n(v)

Here we rewrite P(v) as

P(v) = R,(v — ) + P(2),

where R, is a polynomial of degree k with coefficients depending only on k and v. Then
the formula (i) follows from (14) provided that

/ (v - 2)na(@)H(r,a)de =0 (1<1<k). (15)
R—V~1y

We now show (15). If we define H(v, z) by replacing hin in (13a) with (\/—1)_th2,
we easily see that the left hand side of (15) is equal to

/ n(z)HO (v, z)dz.
R—v—1y

Obviously, this integral is finite by the condition (biifl,y). Then, applying the same
argument that deduces (14), especially, by using (12)(ii2) instead of (12)(iZ), we can
show that this integral is equal to 0. The formula (i) follows by the quite same way. [

We now let € and § (resp. E) sufficiently small (resp. large). Then, we can deduce
the following,
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Corollary 3.4. The equations (i) and (i3) in Proposition 3.3 hold for v satisfying

{ S(v)—-1/2+ka< —1/p
1+k8<-1/q,

where1 < p,g< oo and1l/p+1/¢=1.
Remark 3.5. If there exists a positive constant B such that

u; < Blogp; (resp. u; > Blogp;) for all ¢ > 1,
then we can replace (b5'?) as

Y S(v)-1/2-(1-0a+y<-1/p—6
(%85, { —S(z)+1/2-(1-6)8—~/B<-1/g—6,

and moreover, the condition of v in Corollary 3.4 as
{ S(v)-1/2+kat+vy<-1/p

1+kB—v/B < —-1/q,
where v > 0 (resp. ¥ <0),1<p,g<ocand 1/p+1/¢=1.

4. A relation between 7 and the poles of 7g

We keep the notations and the assumption (A). We first recall that n¢g satisfies the

functional equation:
ne(z) + ng(—z) = czxtanh 7z (16)

(see [H], Proposition 4.26). In this section we shall express 7 as the sum of an integral
of z tanh vz and the residues of 7g.

Lemma 4.1. Let P be a polynomial of degree k(0 < k < 2M) and let v be in a compact
set S satisfying S(S) < 0, (ag) and (b}(s ). Then the series 35 njP(v;) H(v,v;)
converges absolutely and uniformly. Especially, Ejez n;P(v;) H(v,v;) is well-defined
and is holomorphic of v satisfying S(S) < 0, (ag) and (b7{¢ o)-
Proof. Since vj € R and v € §, Lemma 3.1 implies that for z € R

|H(v,)| < Clv — 2|+ ~ (1 4 [2])~*+9).
Then, noting the fact that

Z nj ~ % (z— 00)

{isv} <z}
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(see §2 and [G1], Propositionl.2), we see that

> n;|P(v)H(v, ;)|
JEZ
~ > i1+ v

JEZ

~d > mmh)

k=0 k<|vj|<k+1

[ )
~ Z(l +k)7% < o0 a
k=0

We now suppose that v satisfies S(v) < 0, (ag) and (b%’]). We note that, if |S(z)| < ¢,
then z tanh 7z = O(|z|) and ng(z) = O(|z|) (see [H], Proposition 6.7). Therefore, since
(b§3) implies (b5%,) and (bE’5), it follows from Lemma 3.2 and Lemma 4.1 that

/ cz tanh re H (v, z)dz
R
= / cz tanh rzH (v, —z)dz
R+4+v—1e
= [ (n6(=) + no(-e)H(,~z)ds
R++v—1¢e
= / ne(z)H (v, z)dz + / ne(z)H (v, —z)dz.
R—/—Te Ry ~Te
The second term is equal to

/R—\/—_ly n6(@)H (v, —a)dz - Z njH(V’ Vf) - Z H(v, _TJ')

Jj€EZ 1<EM

=— anH(l/, v;) — Z H(v,—rj)

JjEZ 1<j<M

by Proposition 3.3(:). Therefore, it follows from Proposition 3.3 (z) that
1) = [ ne@HE o)
R—v—1y
:/ ne(z)H (v, z)de + Z H(v,rj)
R—v/—1¢

1<j<M
=/ cztanh vz H(v,z)dz + EnjH(u, v;)+ Z H(v,r;).
R JEZ 1<j<2M

Then, letting ¢ and § (resp. E) sufficiently small (resp. large), we can obtain the
following,
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Proposition 4.2. If v satisfies

{ S(v) < min(0,1/2 — 5a — 1/p)
1+58<—1/q,

where 1 < p,q < o0 and 1/p+1/q =1, then

n(v) = c/ ztanhnzH(v,z)dz + anH(V, v;)+ Z H(v,r;j).
R JEZ 1<5<2M

We put
Po(z) = (v* —r})(V? —r2) ... (V2 =rd)). (17)

Then, replacing ng with Pgng, we can obtain the following proposition by the quite
same way.

Proposition 4.3. If v satisfies

{ $(v) < min(0,1/2 — (5 + 2M)a — 1/p)
1+(5+2M)B < —1/q,

where 1 < p,q< oo and 1/p+1/q =1, then

Paloi@) = [ no@)Pola)H(n2)ds
= c/ ztanh rzPg(z)H (v, z)dz + Z n;jPg(v;)H (v, vj).
R JEZ

Remark 4.4. The same argument in Remark 3.5 is also applicable to the conditions of
v in Proposition 4.2 and Proposition 4.3.

5. A proof of the Riemann Hypothesis

We retain the notations in the previous sections. As said in §1, we here make an
assumption of magnitude and distance of u;(z € N), which is stronger than (A). Then,
we shall prove the Riemann Hypothesis under the assumption.

5.1 We first modify the correspondence of p; in Prim to é; in Primr. For an increasing
map

w:N —- N
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we put
1 .
Sin=75 inf  Intee) —mul, (18)
(m,j)#(n,w (i)
e, = e (a, B,C) = Cemonloardg=fnuu, (19)
in t— 1 i
ny, = i glmosR)y (e m), (20)
bw(i)n €in
HY(v,z) = Z e\/:_l_(nuw(i)—n(IOSPi))zl’:L:fi‘(V —z) (21)

i,n>1
(cf. (7), (8), (11) and (13)). Then it is easy to see that all results in the preceding
sections are also valid when we replace 8;n,€in, hin and H(v,z) by 6%,,¢%,, k¢, and

H¢“(v, ) respectively and (A) by
(A)¥ There exist a,3 € R and C, A > 0 for which
e (a,8,C) <min(4,6%) foralliandn>1.

We next modify the n functions. Let
no(r) — Zaie—\/—_l(logp;)r’ (22)
i>1
where a; = (log p;)e~(°87)/2  and let
a(r)y = biemVIIHT 23
U
i>1
where b; = u;/2sinh(u;/2). Then, it is easy to see that n(r) — n°(r) and ng(r) —
n&(r) are holomorphic on ¥(r) < 0 (cf. [H], Proposition 3.5). Therefore, in order to
prove the Riemann Hypothesis for 7 it is enough to prove it for °. Since n° and ng
inherit all singuralities from 7 and 7n¢ respectively, the whole arguments in the previous
sections except one using the functional equation (16) are also applicable to 7° and 7ng.
Especially, if we define 6¥, £¢(a,8,C), h¥ and H¢(v,z) by eliminating the sufix n in
(18), (19), (20) and (21) respectively, we see that all the results except one containing
ztanh 7z are also valid when we replace 1,7 and H by n°,n& and HY respectively
and (A)¥ by

(A)¥ There exist a, 8 € R and C, A > 0 for which
e¥(a,B,C) < min(4,6;7) forall:> 1.

5.2 We now let
w:D — N, DCN
be an increasing map, and for each 1 € D we define 6¢,e¥(a,3,C) and h{ as above.
Especially, we put
HY(v,z) = Z e\f——T(nuu(;)—n(losp:))rfl:_vn(,/ —z) (24)
i€ED
and we define the corresponding assumption (A)%, we denote by the same letter, by

replacing ¢ > 1 by i € D. Then repeating the same arguments in the proof of Lemma
3.1 and Remark 3.5, we can deduce that
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Lemma 5.1. Let us suppose that (A)% holds. (1) If v and z satisfy (ag) and (b)'?),
then the series H¥(v,z) converges absolutely and uniformly, and is holomorphic of v
and z. Moreover, if (b)'?)(8 > 0) is satisfied, there exists a positive constant C = Cg, 4,6
such that |H¥(v,z)| < Clv — z|~%. (2) If there exists a positive constant B for which
uy(i) < Blogp; (resp. uy(iy > Blogp;) for all i € D, then the same inequality holds for

v and z satisfying (ag) and (b)p ) for v > 0 (resp. ¥ < 0).
5.3 We here suppose the following condition.

(B) There exist a sufficiently small positive number 7, positive numbers L, N and
C and increasing maps

we:Dy - N DyCN (£=1,2),
for whhich
(B0) D;UD; =N (disjoint),

(B1) wuy,) < (% —7)logp; and €;*(N,0,C) <6 foralli€ Dy,
(B2) ) < Llogp; and C <6 foralli€ Ds.

Without loss of generality we may suppose that fixed sufficiently small (resp. large)
positive numbers ¢ and § (resp. E) satisfy

1 1/2—-é6+¢

17 TS Teqsre (25)

gT-L(5+e)—5>o, (26)
1 3

E > 5t §(L + 7). 27)

We first obtain an estimate for H¥' (v, z). We put

B
a=N

B=0

vy=B(2+é+¢)
6=1+1(1-6+e—7)

Then we see that 1/2+(1-6)a—6—v=—cand 3/2—(1-6)8+6—v/B =-1/2—¢,
so the (b‘;?l’,lﬂ) condition holds if $(v) < —¢ and S(z) > —1/2 — . Since (B1) implies
(A)¥! and (25) does 8 > 1, Lemma 5.1(2) deduces the following,
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Lemma 5.2. If §(z) = —y = —1/2—¢ and —E < S(v) < —¢, then there exist positive
constants C and o such that

|[H (v, z)| < Clv — xl_(H’”).

We next obtain an estimate for H¥?. We put a = 0 and take 8 > 0 sufficiently large
for which 1/2 + a — § > —¢ and 3/2 — 8+ 6 < —e, that is, the (b5>") condition holds
if S(v) < —¢ and S(z) > —e. Since €f?(a,3,C) < C, (B2) implies (A)%? and thus,
Lemma 5.1(1) deduces that

|Hg?(v,2)| < C (28)
if 3(v) = —¢ and —E < $(z) < —&. We furthermore consider the case of
B=L
6 = an arbitrary large positive number
B = _3/2tbte
= o—1
a = —Bf
v=0.

Then we see that 1/2+ (1 —8)a—6—vy=1/2—(3/2+6+e)L—-6 >1/2—-3(L+1)/2
(see (26)) and 3/2— (1 — 8)B + 6 — /B = —e, so the (bj-p ) condition holds if S(v) <
1/2 = 3(L + 7)/2 and ¥(z) > —e. Since ef? < Cel~2~LAlo8Pi = C (cf. (19) and see
(B2)), (B2) implies (A)%? and thus, Lemma 5.1(2) deduces that

|H 2 (v,2)| < Clv — x|~ (29)
if §(z) = —¢ and —F < Q(v) < 1/2 — 3(L + 7)/2 (see (27)). Since we can take a

sufficiently large # and apply the Phragmén-Lindel6f principle to interpolate between
(28) and (29), we see that

Lemma 5.3. If §(z) = —¢ and —F < ¥(v) < —¢, then there exists a positive constant
C such that
|HY? (v, )| < Clv — 2| ~CM+?),

5.4 We now recall (B0). Then it is easy to see that, as meromorphic functions of v,
10)= [ ae@ED (10) + B 2)da
R—v—1y

= / ng(2)HS (v, z)de +/ ne(x)HY? (v, 2)dr = Jy(v) + J2(v)
R—/—1y R—v—1y

Pa(v)1a(v) = / 18(2)Pa(e)H (v, 2)dz

—v—1e
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(see Proposition 3.3 and Proposition 4.3). Then, since ng(z) = 0Q1) for z € R—+/—1y
([H], Theorem 3.10), Lemma 5.2 implies that Ji(v) is holomorphic on —E < S(v) <
—¢. Moreover, since 7%(z)Pa(z) = O(|z|'**M) for z € R — /—1¢ (see (17) and [H],
Remark 6.8), Lemma 5.3 implies that Pg(v)J2(v) is holomorphic on —F < S(v) £ —e.
Therefore, letting & (resp. E) sufficiently small (resp. large), we see that Pg(v)n°(v)
is holomorphic on $(v) < 0. As said in the begining of this section, this means that
Pg(v)n(v) is holomorphic on the domain and then, on 0 < |S(v)| by the functional
equation of 1 (see [E], p.13). Since we know that {(s) has no zeros on [0, 1], we can
finally obtain the following theorem.

Theorem 5.4. If SL(2,R) has a cocompact discrete subgroupT" with Primr satisfying
the condition (B), then the Riemann Hypothesis holds.

Remark 5.5. (1) We may take N in (B1) sufficiently large and thus, €;(IV,0,C) may be
sufficiently small compared with the distance of &;. (2) We see that Dy # §. Actually,
if D; = N, it follows from the above argument that °(v) = J1(v) is holomorphic on
$(v) < 0. This contradicts to the fact that n(v) has a pole at v = —/-1/2.
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