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Non-commutative complex projective space

BY HIDEKI OMORI*, YOSHIAKI MAEDA** AND AKIRA YOSHIOKA®

Introduction

The concept of quantized manifolds has much interest from a geometrical
point of view. In fact, quantum groups [6] and non-commutative tori [4] [12]
are typical examples in this spirit. One approach to constructing quantized
manifolds is based on the deformation quantization introduced by Bayen et al
[1]. This is the deformation of the Poisson algebra of functions on a symplectic
manifold via a star product.

However, deformation quantization providing only an algebraic description
does not seem to describe the “underlying space”adequately. From the geometric
point of view, we want to construct something like non-commutative manifolds
which just represent the quantum state space.

For this purpose, we introduced the notion of Weyl manifolds [10], [11] as
a prototype of non-commutative manifolds. A Weyl manifold Wy, is defined as
a certain algebra bundle over a symplectic manifold M with the formal Weyl
algebra as the fiber. The star product given by the deformation quantization is
realized on a certain class of sections on Wy, called Weyl functions. We present
in this paper a non-commutative complez projective space Wp, (c) as an example
of a Weyl manifold.

There are two ways of constructing star products on P,(C). The first is
intrinsic, and was initiated by Berezin 2], who gave a covariant symbol calculus
for certain operators acting on local holomorphic functions on the 2-sphere and
on the Lobachevskii plane, and defined the star product on these spaces by using
the symbol calculus. Moreno [9] and Cahen-Gutt-Rawnsley [3] extended these
idea to Kaehler symmetric spaces.

The second construction, which is in fact the aim of this paper, is eztrin-
sic. We shall regard the ring of Weyl functions on P,(C) as the subalgebra of
all C*-invariant Weyl functions on C™**! — {0}, where one can define the star
product and the Weyl manifold structure naturally. In a forthcoming paper,
we shall show that the two star products are isomorphic by using the fact that
dimH?(P,(C)) = 1. However, in this paper we shall concentrate our attention
to the extrinsic construction of star products and Weyl manifolds.

Throughout this paper, we use the following convention on multi-indices,
unless otherwise stated: «,8,7--- € N"*ha = (o, y&nt1). Denote 0,

by ; and 9;;, by 0;, and for @« € N™*!, set 9% = 97 --- 931" and 0~ =
Ot -+ 0t ete.
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As in the computation of ¥.D.Ops, we have the product formula:

(1.3) HiHy = Hy 5
where

e Nt on Zllgat|? _
(14)  &a,b)(, z)—(47rh)"+l /C (s P DRI (),

Moreover, we may modify (1.2) to a so-called Weyl type integral transformation
of 3(z):

z+ )634;(1_11)5,5(2')(1[1(21 -/),

-1 ~

(15 @ =G [
Cn+1

where 7 = /—1h. By a computation similar to (1.3), we have for suitable

i,be C=(C™*; C[v]),

(1.6) HYHP = H% 5

where after a non-holomorphic coordinate transformation (cf. Hoérmander [7],
p.374), we have

(1.7) &“(&,b)(z, 2)
-

27y

)2nt1) / a(z4u,z2+0)b(z + v,z — @)
C2(n+1)
e o l('“_"*""—’)d,u(u,ﬁ)du(v,ﬁ).

Note that (1.7) has the asymptotic expansion

(1.8) » &(a,b) ~ Y al(a,b)i,

{
where
(1.9) a@h= Y (\/”[31') 0°8% - 92(-0.)°h,
ol +1A1=t

so that (&, b) can be viewed as an element of ce(CmH Cllp))).

We now define a star product % on C*°(C"+!; C[[#]]) as follows: for &,b €
C>(C™*1; C[[7]]), we put

(1.10) axb =" &(a,b)s!
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where &(@, b) is given by (1.9). In fact, formula (1.9) can be applied to for any
C® functions &, b, with the parameter ¥ viewed as a complex parameter. The
restriction % to C°(C"*! — {0}; C[[#]]) will be denoted by the same symbol.
In the following, we denote by &[[#7]] the topological vector space C°(Cm+! —
{0}; C[[#]]) with the C* topology. i[[#]] has two products; one is the natural
commutative product and the other is the star product given above. It is a
remarkable fact that the natural commutative product - can be recaptured from
the star product:

(1.11) a~$=§j&' > @(—ag)(ag)a;(ag)(af)z.

131
[a 270}
= et P

By (1.7), the *product and --product on C**! are invariant under the
parallel displacement and under the unitary group U(n + 1).

1.3. C*-action on d[[7]]. For A € C* = C — {0}, we define the action
p(X) on d[[#7]] as follows:

DEFINITION 1.1. For A € C*, and @ € d[[7]],

(112) (V)25 ) = @Az, 35 |APD).
Set
(1.13) a*[[7]] = {a € a[[7]] | p(N)a = a}.

It is obvious that p(A), A € C*, commutes with any T € U(n + 1).
By (1.7), we have

LEMMA 1.2. For any &,b € [[7]], we have

(1.14) p(N(@¥B) = (p(N)a@)#(p(\)D).

1.4. A deformation quantization on P,(C). In this section, using the
product ¥ in 1.2, we construct a star product on P,(C) with the deformation
parameter replaced by v. s

Let P,(C) be the n-dimensional complex projective space equipped with
the standard symplectic structure w (cf. [8], p. 160) and let = : C"+1 — {0} —
P,(C) be the natural projection. Taking the deformation parameter v, we put
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a[[v]] =C°°(P,(C); C[[v]]). For a € a[[v]], we define a lift of a, denoting by 7*a,
as an element of d[[7]] by
(1.15) (m*a)(z, 2, 0) = a(p; 2| *7),  =(z) =p.
From Definition 1.1, we easily see that 7*a € a*[[7]].

For any é € @*[[7]], we put
L16) (@) =i F ), () =p.
(1.16) is independent of the choice of z.
LEMMA 1.3.

vz @*[[7]] — a[[v]]

is an isomorphism with (7* = 1id.

By this lemma, we can identify @*[[7]] with a[[v]]. By Lemma 1.2 and

Lemma 1.3 we can project the product * onto P,(C). Namely, for any a,b €
al[v]], we put

(1.17) a*b=(n*a%r*b).

Consider the chart Up41 = {p = 7(z) | zn+1 # 0} and the coordinate
map ¢nt1 : Unt1 = Snt1(Uns1) = C", ¢nta(p) = w = (w1, ,wn), where

w; = —;?—T (7 =1,---,n). Using these coordinates, the symplectic structure w
on P,(C) becomes (cf. [8]. pp. 160):
(1.18)
w | ! (1+] |2)2n:dw A dw Zn:u")dw A Wi dib )
Unp1™ 2 w 1 awg mGWm ).
2V —1(1 + lez) =1 l,m=1

By (1.18), in these coordinates, the Poisson bracket {a, b} on P,(C) is
(1.19) {a,b}(wy, - ,wy)
= 2v=1(1 + |w|*){} 1, (Owa - O, b — O, - Doy, b)
+ ) (wkOuw, a - B10g,b — GO, a - wdu,b)]

k1
On the other hand, since w; = w;(21,"*+ , Zn41), we have

1 & 1

Orpyy = — WOy, 0;,, = ——0y,, (m=1,---n),
Zn41 =1 Zn+1

(1.20) . .
8;" = ——= 11713- 3; =_—8— m=1,n
+1 zn+1 ; wry m Zni1 Wm ( ’ )

By a direct computation using (1.20) and (1.10) and putting 2,43 = 1,
zi=w(l=1,--- n), we have
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PROPOSITION 1.4. (1.17) gives a star product * on P,(C), i.e. for any a,b €
C°(P,(C)) we have

(1.21) axb=ab+ -’2i{a, 5} (mod v?).
2. A Weyl manifold over P,(C)

Using'the notion of Weyl manifold given in [10, 11], we describe the algebra
a[[v]] more geometrically. ,

2.1 The formal Weyl algebra. Let W' denote the algebra with 2n + 3
generators {#, 21, -+ ,Zn41,21, " yZn41} over C with the relations:

[ﬂ,Z,‘] =0 , [17,2,'] =0,
(2.1) (Zi,Zj]=0 [Z.‘,Zj] =0

[Z,’, ZJ] = 2\/:11/6,‘]‘ (1 < l,] <n+ 1),

where [ , ] denotes the commutator [a, b]=ab—ba. For any a,b € W', the product
is denoted by axb; for any a, B € N"*1, we denote Z{ *---% Zayt'x ZD x4
Z—f;’;‘, by Z* x ZP where Z8=Z; % -+ % Zi, ZPi= Zix - x Z,.
o Bi
Define the degree of the generators by d(#)=2, d(Z;) = d(Z;)=1 (1 <1 <
n+1). For [ > 0, let W(!) be the set of polynomials of degree I and W(0) = C.
Then

(2.2) W = S50 W(l), (direct sum).

Any element a € W' can be written as a finite sum dai,a € W(l); a; is called
the [-th component of a.

Give W'= GBNV(I) the direct product topology. Denote by W the com-
pletion of W'; W is called the formal Weyl algebra with generators {7, Z; ,--- ,
Zot+1y Z1,+++ yZn41}. The formal Weyl algebra W is isomorphic (as a vector
space) to the formal power series ring Cl[#, Zy, - yZns1,21y  y Zaga]]. If we
replace Z;, Z; by (X; ++/—1Y;) and (X; — /=1Y;) respectively, then the algebra
W is exactly the same as that given in [10]. We also use the formal Weyl algebra
W with 2n + 1 generators {v, 2, ,Zn,Z1,"** ,Zn}-

2.2 Symmetric product. For a,b € W, define the symmetric product
by

aob:—;—(a*b-i—b*a).

6
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The above product is not associative but (W, o) is a Jordan algebra. However,
by the general formula

(2.3) (aob)oc—ao(boc):i[b,[a,c]],

and the fact that [Z;, Z;] is in the center of W, we have
(2.4) Zio(Zjoa)=2Z;0(Zi0a) (1<ij<n+1),
where Z; = Z; or Z;. Thus, we may set

~

(Zi0)1~a=?i°(2i°"'(2¢oa)--~l,

I times

and

(Z0)*(Zo0)? - a
(2.5) =(Z10)011 - (Zn+10)0"+1(21°)’31 - (Z_n+1°)ﬂ"+1 .a,

where the right hand side of (2.5) is independent of the order of the Z;0’s, and
Z;0’s. Obviously, {#'(Z0)*(Z0)? -1 ;a, € N™*} forms a linear basis of W.
W(k) is spanned by {i#'(Z0)*(Zo)? -1 : 2l + |a| + |8] = k} (cf. [10], Lemma
1.2).

By the above fact, we may introduce a new product ® defined by
(20)*-10(Z0)f -1=(Zo)* -1,  «a,BeN",

We denote Z;0Z; and (Z0)*-1 by 2;0Z; and (Z0)?, respectively. The following
are easy to see:

(a) (W, Q) is a commutative, associative topological algebra over C.

(b) (W, @) is isomorphic to the algebra Cll#, 21, s Zny1y Z1y s Zpyi)

2.3 Localization of the algebras [[#]] and a[[v]]. Let U and U be
open sets of C"*! — {0} and P,.(C) respectively. By formula (1.8) and Definition
(1.17), the %(resp. *)-product can be restricted on U(resp.U) and then extended
to C=(U; C[[7]]) (resp. C>(U; C[[v]])). If n(T) = U, then n* and ¢ given in
(1.15) and (1.16) can be also restricted onto the open sets U and U, and these
maps will be denoted by 7, ;. In particular, for any a,b € ay[[v]],

3

(2.6) axb = (nja¥nyb).

The algebra (C°(T; C[[5]]),3) (resp. (C*(U; Cl[v]]), #)) with the C=-topology
is denoted by i ;[[7]] (resp. ay[[v]]).
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Given an open set U C C™t! — {0}, we consider the trivial bundle Wy,
=0 x W 5 U. Define 2n + 2 smooth sections on Wy by:

(2.7) (i(2,2) =2+ 2, G(z,2)=%+2; (i=1,---,n+1).
For f € dy|[[7]], we define a section f#((,({) € T(Wy) by

(2.8) fﬂgoujr=§j,ﬁw%Wn@z)zaezﬁ a,f € N™1,

f# is called the Weyl continuation of f € a([7]]. Let F(Wy) be the algebra of
f# for f € d;[[7]] where the product is defined by the pointwise product on W.

We have shown in [10]:

PROSITION 2.1. F(Wy) is naturally isomorphic to a[[7]] as an algebra.

2.4. Main results. We now introduce systems of local generators:

DEFINITION 2.2. Let U and U = n(U) be open sets of C**! — {0} and P,(C)
respectively. A (2n+3)-tuple {@Wg; W1, -+ ,Wan42} of 5[[7]] (resp. (2n+1)-tuple
{wo; w1, ,wzn} of ay[[v]]) is called a system of local generators for iy([7]]
(resp. ay[[v]]) if they satisfy

(L 1) g (resp.wy) is in the center of dy[[7]] (resp. ay|([v]]).

(L 2) The closure of the algebra generated by {wo; W1, - ,Want2} (resp. {wo;
wy, -+, Wan}) coincides with g [[7]] (resp. av[[v]]).

We now consider this definition on each chart of P,(C). Namely, for each
l=1,2,--- ,;n+1,let Uy = {z = (21,"** ,2n41) € C"‘“——{O} | 21 # 0},
Up = n(Th), and ¢1 : Uy — (V1) = C™. Then, ¢y(p) = (&, ,&,... 1)
gives the local coordinate of P,(C). For simplicity, we set 1r, =7y, and 4 = ¢,

DEFINITION 2.3. A collection of systems of local generators {w((,'), ugl), .- ug) ,

o, - o0} for ay,[[v]] for each I =1,--+ ,n+ 1 is called a (system of) Weyl
coordinates on P,(C) associated with {(U;, ¢;)} if for any I m =1,--- ;n+1
(C1) mjwd =apwl™  on g g 7] if UiNUn#0
(C2)
0,01 =0, ) =0, B0 =0,
{M%Wﬁ [u?, 0] = —wg6i;.

(C 3) On each Ux NUi(# 0), u(k), . ,us,k), vgk), e ,vg,k) mod v are R-valued

C*° functions of (u() e, u 5;), (I), . (1))

In §§3-4, we shall prove the followmg.

8
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‘THEOREM 2.4. There exists a system of Weyl coordinates on P,(C) associated
with {(U;, ¢1)}. (cf. Theorem 4.5.)

By this theorem, we can construct an algebra bundle over P,(C) with the

formal Weyl algebra W of 2n + 1 generators as fiber. Namely, on each U;, we

consider a trivial algebra bundle m; : Uy x W — U;. Since {w((,l), ugl), cee,

ug), v{'), . ¥ ,} can be viewed as C'™ sections of Wy,, this trivializes the

bundle Wy,. Moreover, we can patch the Wy, together. This gives the Weyl
manifold over P,(C) introduced in [9, 10]. Usmg the notation of [9, 10] on Weyl

manifolds, we have

THEOREM 2.5. The algebra (a[[v]],*) = (C®(P, (C) Cl[v]]),*) gives a Weyl
manifold Wp,(c) over P,(C). In particular, a[[v]] is isomorphic to F(Wp,(c)),
where F(Wp, (c)) is the set of the Weyl functions on P,(C).

3. Properties for a*[[7]].

3.1. Several operations on @[[7]]. Note that the natural product - can
be defined on dg([#7]] for any open set U ¢ C™+! — {0}. We use the notation
(ay([7]], -) when we consider @[[7]] as a commutative algebra. We can introduce
a partial derivative 9; on a[[u]] and a[[7]] as follows: for any element a € d;[[7]]
with the form a = 3 a;i/!, where a; = a)(2, %) is C*,

(3.1) da=) (Ba)i', da=) (Ga)i', a=) lai' .
We introduce the differential operators Lo and Ly on @g[[7]] by
(3.2) Lod = 200;a + Y (i - 0; + % - 8)a
and
(3.3) Lia=) =1(%8; — zi - 8)a,
for @ € ag([7]).
LEMMA 3.1. Lo and Ly are derivations of (iy[[7]],-): ie for any a,b €
(ag([#),-),
(3.4) Li(a-b) = Li(@)-b+a- Ly(d) (k=0,1).

1

Note that L; can be rewritten as
(3.5) Lia=-1[a) (= —lad(r)ﬁ)
v b v b

9
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where r = 1|z|? = 1 E?:ll 2;%;.

Remark. In general, for @,b,& € dg[[7]], the equality
[@,b-& =[ab]-&+b-[a,¢

does not hold.

Let U be a conic open set in C**! — {0} and put ay [[#]], =a*[[7]] na[[7]].
A characterization of 7 [[7]] by Lo and r is given as follows:

PROPOSITION 3.2. G3[[7]] = {a € dg[[?]] | Lod =0, [r,a] = 0}.

PROOF: For a real parameter ¢t and @ € @[[7]], consider curves t — p(e')d,
p(eY~1%)a. Taking the derivative at t = 0, we get

d - .
(3-6) Eiﬂ(et)a |t=0= Lya,

(3.7) %p(e\/:“)& lmo= Lyd.
Since Lor = 2r and Lo = 27, we have formally Lo(ir) = 0. This implies
[Lo, L1} = 0, which gives Proposition 3.2. I

Using Lemma 3.1 and Proposition 3.2, we have

COROLLARY 3.3. Let U be a conic open set in C"*+! — {0}.
(1) @3 ([7]] is closed under the --product.
(2) For any T € U(n + 1), we have

(a) T(r) =, (T, Lo] =0,

(b) TaZ,[[7] = ag[(7]].

3.2. Inverse of r. Since r # 0 on C**! — {0}, r has the inverse 1 for

the --product. To obtain the inverse r~! for the *-product, we first assume that

r~! is a function f(r) of r and solve the equation r#f(r) = 1. By the product

formulas (1.9) (1.10), we have

r?:f(r) = Tf(r) + ﬁz(n _2+_ lf’(r) + %f”(r)r) =1.
Setting f = Z;’:o fii!, we have ‘
(3.8) { fault) = (—1)(Le + mHLEY(D),
fag1=0.

10
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By (3.8), r~! has the form
. a1 n-10o, (n-1)3(n
(3.9) r —r{1+—2 (r) 3

(n—1)3(n~3)5(n—"5) i,
2 2 2 )tk

-3) 7\,
—2(%)

On the other hand, ei'."_l =y %(ﬂr"li)m, t € R, in the *-product, sat-
isfies the differential equation

(3.10) L au(r) = or5a(r), () = 1.

Multiplying both sides of (3.10) by r, we have

L) + 2L g+ 2ot - 1) = ).

By setting g;=Y 12, g (r), we can compute e’ in the form Sisk artt (L),
where az; = 7:—, Comparing coefficients of t*, we see that

(3.11) (rm =3 a,,,,,(g)' (m=1,2,--).
I=m

can be

(N

Since (3.11) can be solved conversely with respect to (£)!, we see that
written as a function of ir—1.

3.3. The center of @*[[7]]. Put v = Z € d[[7]]. Then we have:

PROPOSITION 3.4. v = % satisfies the following:

(a) v € a*[[#7]],

(b) [v, f] = 0 for any f € a*[[7]].

PROOF: Since [r, a*[[7]]] = {0} by Proposition 3.2, we have [r~1, &*[[7]]] = {0}.

Thus [F(r~1),d*[[7]]] = {0}. By Proposition 3.2, we get (b). Moreover, since
2,71 =0 and Lor = 2r, we have £ € a*[[7]].

By Proposition 3.4, we may use v = £ as a deformation parameter of al[v]].
However, note that there is no general rule for determining the deformation
parameter, as one may replace % by ir~1. If we choose #r~! as the deformation
parameter, then the expression of *-product on a[[v]] is changed.

4. Manifold structures on a[[y]].

4.1. Local generators of a[[v]]. It is impossible to find generators of
a[[v]] through which any element of a[[v]] has a unique expression. Instead, we

11
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can localize a[[v]] on open subsets to get convenient expressions for its elements.
On the open set U1 = {z € C"*! — {0} | zn41 # 0}, consider

(4.1) iy, L Pll={aedg  [#lllp(N)a=a,AeC}

Note that on [7,,+1, Tlﬁ and ;"1? are well-defined. Thus, setting

z; _ Z
) Wi = <
Zn41 Zn41

we have v, w;, w; € a}, l[[17]] By Lemma 1.3, we can identify v, w;,w; with

(i=1,---,n)

v
(42) Vv = ;, w; =

elements of ay, , [[v]].
For f € ay _“[[17]], we may write f = Yoi>o fi(z,2)i. Since f is invariant

under p(z—"l;), we have

f(z,z0) =

i)

z z v

43 =~ y — 3
( ) f(2n+1 Zn41 |?-n+1|2

—Zf(zn+l Znt1” |2n +1!2
= Zfz(w,u'))u
l

where fi(w, @) = fi(w,®)(2(1 + |w|?))". This gives:

)'(= a

THEOREM 4.1. f € @} . [[]] if and only if there exists f € C°°(Un41; C|[v]])
such that f = LA

4.2. Commutation relations for Weyl coordinates. We compute the
commutation relations for {#,w;,- - ,wn, Wy, + ,Wn} on ¢p41(Uny1). Using
(1.9) and Proposition 3.4 (b), we easily have

LEMMA 4.2. For any i,j =1,--- ,n,
(4.4) { [V7 U)i] = [V’iﬁi]_z 07
[wi, w;] = [W;,w;] = 0.

By Lemma 4.2 and the polynomial approximation theorem, the commu-
tative algebra of the C[[v]]-valued holomorphic functions on ¢, 41 (Unyy) (resp.
anti-holomorphic functions on ¢,41(Uny1) ) is isomorphic to the subalgebra
of F(Wy, ,1(Uny)) in which element f# has the form f# = f(v,w,-- ,wp)#
(resp. f# =f(”awl,"' ’u_)n)#)- s

By Theorem 4.1, we may call {v,wy, - ,wp, W1, , Wy} the homogeneous
complez Weyl coordznates on Wy, . (Uns)- By a careful computation, we have
the following commutation relation.

12
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PROPOSITION 4.3.

..:[w,',‘lT)j] =l/(1 + Z’wrﬂ)l) . (6jk + wju“)k)
=1

— (v + Y wim))® - (21655 + 3lw;wr)
=1

(4.5) + (l/(l + iwnﬁl))"‘(‘l!@k + 5!wjti)k) —_

=1

4.3. Local trivialization on ay,,[[v]]. As seen in 4.2, it seems not so
simple to write the commutation relations for {v,wy, -+ ,wn, W1, -+ ,Wn}. By
a change of generators, we can give a structure on ay, ., [[]] simpler than (4.5).
However, we have to use a non-holomorphic transformation here.

Let H = \/IT_——I_——' € ay,,,[[v]], where the square root is given in the
w-wy .

--product.

LEMMA 4.4. For any j,k=1,---,n,

{ (H-wj,H -wy]=[H -w;,H- 9] =0  (mod v?),

(46) [H - wj, H - ©x] = 2¢/=1v6ik (mod »%).

PROOF: By the product formula (1.9),

H-wj=H+*w; (modv) (v= K).

r

Hence
[H -w;j, H - @) = [H *wj, H * W] (modv?),etc.

Thus
[H . wj,H - wg] = H2[wj,u7k] + H- [w,—,H]u‘;k + [H, wg| - H - w; (modllz).
By these equalities and (1.11), we obtain the formulas (4.6). I

Setting

1 _ 1 _ .
i =3(H wj+H- ;) n}'=2—\/—:—I(H-w,-—H-w,-) (1<j<n),
and using the last lemma yields
(/, n = I!’ mM=0 modr/2
(4.7) { [ 3 & [77, Mk ( V )
(€1, f) = —vbj (mody?).

In particular, {¢},£{}= {n},n}}=0, and {¢},n}}=—6;k. The following theorem

may be called a quantized Darboux theorem:
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THEOREM 4.5. There exist {1,-++ ,€a, M1, * ,Nn € y,,, [[v]] such that
(&, &) = [nisns] =0

[Ei,nj] = "V(Sij, where v = %

PROOF: (cf. [11], 3.4 Lemma) Set
[{2', 6_;’] — V2a$.?) + V3a52) + .- ,
[77:", 77;',] = Vzagz-z—i,n+j + Vaa'szs-!)-i,n+j +,
(6,1 = —véij + v2al) i+ -
By the Jacobi identity, we have
(4.8) > {6aR}=0 (1<ij,k<2n),
. (i,7,k):cyclic
where (1, ,{an) =(€1,--- , &MY, - - ). Define a 2-form w' on U, 4, 8S
1
w' = 3 Z (aizli,n+jdz; Adz; — 2a£,2_|)_,-,jdw,~ Ady; + ag)dy,- A dy;j),
1<i,j<n
where ¢ = z; + O(v), n{ = yi + O(v) and 21, -+ ,Zn, Y1, * ,Yn is & sym-
plectic coordinate system on ¢n41(Unt1). Then (4.8) implies dw'=0. Since

#nt1(Upty1)= C" is 2-connected, there exists §' = Yony(bydzy + byt 4dy,) such
that w'=d@'.

Consider Vo .

{ & =& +vbny
noo=mn —vbi
ReplaCing ( ?7' ) :1'! 77;', Tt an::) by (ﬁ;’ Tt ’€:n 77;" o !7’;;)1 we see that
{ [€,€] =[hhnl=0 mods?
[ n)] = —véi; modv3.

Repeating this procedure for v3,v%, ... finishes the proof. J

Note that (wy,- -+ ,wn) in 4.3 is a complex local coordinate system of P,(C)
and hence ({1, ,&,,n7,- - ,7n) is a real local coordinate system of P,(C).
Since &; = &', n; = 1’ mod v in the above proof, the above theorem also proves
Theorem 2.4.

Using v,{1,* * * ,€n M1, * + ,7n Obtained above, we may define the ®-product on
U, 4, [[v]] by the same manner as in 2.2. Let Bg,, be the closure of the space of all
polynomials of §;,---,€,, 71, -+ ,7n Written in the form Y aqpt® @nP, a.p € R.
B,y is a ©O-subalgebra over R of (ay,,,[[]],®), and (B 4, ®) is isomorphic to
the algebra (C°°(Un41;R),*). Via this isomorphism, we can regard &, - £n,
M, - Mn 88 coordinate functions on Up,4;.

Since ¢n41(Up4+1)=C", we have
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COROLLARY 4.6. (ay,,,[[V]],*)= F(Wcn)

Since Up41 can be replaced by any U, this result shows that a[[v]] is
obtained by patching F(Wgn)’s, and hence a[[v]] can be regarded as the space
of certain sections of a Weyl algebra bundle Wp, (c) over P,,(C). The coordinate
transformations are given by isomorphisms

\I’k,l : f(ch_{k}) — .F(ch_“})

with ¥y (v)=v, where C" — {k}=C" — {£&; = 0}.

Remark 1. The ©-product defined on ay, ,, may not equal to the usual --product.
Remark 2. By Lemma 3.2 of [10], ¥, ; is given as the pull back of a pre-Weyl
diffeomorphism ®x,1: Won _ 1y — Won_ (1), where Won_(x) =(C"—{k})xW.
Thus, strictly speaking, we should call the obtained Weyl algebra bundle Wp,_ (¢
a pre-Weyl manifold.

It is, however, possible to correct Wp,(c) to a genuine Weyl manifold de-
fined in [10] by the same procedure discussed in [10, §5]. This procedure proves
Theorem 2.5.
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