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Padé approximations to certain power series

By

I. Shiokawa and J. Tamura

Let f(z) = 7§ szk be a formal power series with complex
k=0

coefficients. Then, for each n=1,2,..., there are polynomials Pn(z) .

Qn(z) such that deg Pn(z) < n , deg Qn(z) sn, Qn(z) £0 , and

z2n+1

Qn(Z)f(Z) - Pn(z) = C + oeen .

The rational function Pn(z)/Qn(z) , which is determined uniquely for a
given f(z) and n , is called the nth (diagonal) Padé approzimation for
f(z) .

In this paper we study the Padé approximations for the entire

function defined by the power series

1
k(k-1)
-':q7

f(z) = ; 2o, T , 0<|q] <1. (1)

In §1 we prove some interesting identities satisfied by the denominators
of the Padé approximants. In §2 we estimate, by using the Padé approxi-

1

mants, the irrationality measure of the number q o , where

kgo
o and g = r/s are non-zero rationals with }r|3 < |s] . Although our
result is slightly weaker than that obtained by Bundschuh [2] and the

first named author [6], the method might be of some interest.
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§1. Padé approximations.
We denote by Pn(z)/Qn(z) the nth approximant for the function
f(z) defined by (1) and write

Q,(2) = “g:% + ugn)z +oeee + ugn)zn

where we may choose for simplicity ugzz =1 . Then we have the following

Lemma 1. Let Lgn) , Rg") (i,j =1, 2, =+, n) be the

(n+1)x(n+1) matrices written by

1
. 0 n-i+l
L) :
.‘ -
q-l ) }
q .
0 i
q-'l
1
. 0 n-j
1
RN -
J 1-1
1 -1
0 .. j+1
L
1

and let u_, 2, be the column vectors of dimension n+l1 written by

2 () qutm), g3y n(n-l)/zugn), qn(n+1)/2 (n)y

En - u]_ s quz s G U3 s ***s Q un+1
2 2
_a_n = t(os 0, ee-, 0: 'qn ’ qn ) .
—_—
n-1
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Then we have

o = R Lo g g (M

Proof.
fi
f2
fn
where 0 1is the zero

By the definition of

fi = q
1 1
1 g
1 qi-l
1 qn-l
Remark.
f1
Hn== f2
fn

3(i+3-1)(i-3-2)
f

We have by definition

cee (n)

f, fo faa uy
(n)

f3 ot frr T up
(n)
foe1 ©° Fono1 fon Un+1

vector of dimension n .

k for

fi » we have f ., =q°f

j for i > j . Hence we get
s e 1 e e 1
i1 n
oo q‘] . q
. . .1
L) q(.l 1)(J 1) ee e q('l )n
vee -1 L (n-D)n
We have
LN ] f
2 n %nz(n-l) n-1
see f = q H
n+l j=1
ntl ’ f2n-1

k 21 and so

(n)
fre1Un+l

(qj— l)n-j 20 .

(2)
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. S (i-1)(3-1)
Note that fi+j-1/(fifj) = q . Hence we have
1 1 e 1 see 1
0 -1+q s e —1+qj_1 see —1+qn
. . . 0,
0 —1+q1'1 eoe -1+q(1-1)(‘]—1) cee -1+q(1-1)n
\O _1+qn-1 _1+q(n-1)(3‘-—1) _1+q(n—1)n
which can be written as
111 eee 1 e 1
j-2 n-1
0 1 149 eve 14+qtecetq see l4qtesstq
0 1 1+qi-1... 1+qi_1+...+q(i-1)(j_2)... 1+q1—1+...+q(1-1)(n_1)
01 1+qn—1_._ 1+qn-1+“.+q(n-1)(j-2)‘_. 1+qn-1+_.“,_q(n-1)(n-1)
Thus we have
1 0 0 ees 0 )
0 1 1 eee 1 ees 1
[ * . X
0 1 q1—2 q(1-2)(,}-2) q(1-2)(n-1)
0 1 "2 ...q(m2)(-2) ., (n-2)(n-1)
1 11 oo 1
1 0 1 1 eee 1
q .
x qZ : u, = 0.
0 0 :
qn—l 1

o
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Repeating this process, we get

1 0

WMy L Rdmy L )Ll

1 1
Hence we obtain

MRyt 1Rt

= t<0’ ey 09 'ks k)

with some k . Comparing the (n+l)th component in the both sides, we

: 2
. - 4N s s (n) _
find k = q (noticing that Upsl = 1).
Theorem 1. We have for any n 21

Q,(2) = (-q"2)Q,_;(q2) + Q,_;(a’2) .

Proof. It follows from (2) that
. p(n-1), (n-1) (n-1), (n-1)
Ypop S Rpsp L ot Ry Ly én1 -
, . . 2n-1
Multiplying both sides by g , we get
2n-1 (n-1)
fl q ug 0
2n-1 (n-1) )
f, q u _ o(n-1), (n-1) (n-1), (n-1)
2 2 = R e R 0,
n
. -q
2n-1 (n-1) 2
fn q up qn
so that

n-2

(3)
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0 0
f q2n-1u§n-1) ; n-1
%2 q2n-1u£n-1) gn%Lgf) oo R(") (") 0 , =t v, , say.
. : "
£ q2n-1ur(‘n-1) qn2

From this we find

2n-
_fl
0 -1
-f, 2n 2 0 -q'l 0
. 0
Tn . .
\-fn

On the other hand, we have from (4)

0

f, q2n-2u§n—1)
2n-4 (n-1) _ ¢ (n)

f3 a7 4 “lpo1 ¥ o
0 (n 1)

fn+1 qu,

noticing that fian-lq—(i-l) = f, q2n-21 . It follows from (5), (6)

i+l
and (4) that

(4)

(5)
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2n-1 -1
/-flqn ugn )

-f 2n-2 (n-1)

2n-2 (n-1)
2 @ T Uy ey

2n-3  (n-1) 2n-4 (n-1)
faa Tug A faan T

£ q" (n 1y, 2 q2 (n-1)

Up-1
fn+1 q0 (n 1)
R T s,

- (f (n)’f (M) ..., (n)y

2Y2 Fne1Un+l

(using (2)). Hence we get

(n 1) 0
\ / n 1) ?(n1) “gn-l)

2(n-2) y(n-1)

= -q . + q
(n) (n-1) :
un" q unrjl ) u(n-l)
(n) 4(n=1) 9 Un-1
Un+l nO \\ u(n-l)
n

The scalar product of the vector (zn, zn'l, «ee 7z, 1) and the vectors

of the both sides of this equality yields (3).

Corollary 1.

n-1
Qn(Z) =1 - qnz kzo qn-k-;Qk(an-Zk-lz) .
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Corollary 2.

2 n-1
Qylz) = (0" 2" T (-0*("D)* g, (%) .

Corollary 3. Qn(z) can be written as a polynomial in
and q"z with integral coefficients.
We next consider the continued fraction

© 2
qk K1+ gz3
k=0 1+ 292
3(1-¢%)
1+ -9 (1-9)z

1 4 oeo

+
4n-T1
- z
1+ ‘"9'";231T‘1_q2n)z

1+ (

1 4 ooo

(c.f. [5], §64, Formel (22), p.353). In view of the identity

1
sk(k-1)
2y2 (q2)¥ ,

the continued fraction (7) is transformed into the following one;

1
o =k(k-1)
Z q2 zk=]_+___.__z______
k=0 1 + =92
1 + 9(1’9)2
1 4+ oo
A
1+_L9_.___Z—_.
n n
1+ (1-q')z
1 + oeo

q
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%1 % h B
Let 80 + B+ B+ and b0 + B+ B+ denote
1 2 1 2
continued fractions with nth approximants ?n and fn s resp.

a a
If ?Zn = f, » then by + El + Eg + *°° s called the even part of
1

N

o Q.
1 2
8 + - —_— ses
0 31 + 32 +

The even part, which exists if and only if
By * 0 (n 21) , is given by the following formulas;
bo = By » 81 = a1Bp » by = 0y + ByBp 5 35 = -Gy036,
a4 = “%n.2 %2n.1 Bon-g B2n ("3
by = apn_1 Ban * Ban-z (dn * Bon.1 B2n) (0 2

(c.f. [4], §2.4.2). Taking now the even part of the continued fraction

1
© k(k-1) a
I o R R , (10)
k=0 b. + 2
1 b2 + oo
where 3, =z, b1 = 1-qz , and

2, = 1" (nz2),
b =1 + (qn~1 - q2n-2 _ q2n-1)Z (hz2) .

n
Denoting by pn/qn the nth approximant of this continued fraction, we
have ‘
9 = bnqn-l *aGp2 s Py T bnpn-l * 3pPp-2 (n21)

with P = 1, 9y = 1, Py = 1, 9 = 0.
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It is known in the theory of continued fractions (c.f. [5], §77,

Satz 9, p.449) that the nth Padé approximant of a power series which is
€1z Gz €32
expanded in a continued fraction of the form 1+ T+ o+ T+
where Cqy» Cps Cgy o+ are constants, coincides with the nth approximant
c1z €z C3Z

of the even part of 1+ — -, T ;" - Applying this to (9) and
(10), we find pn/qn = Pn(z)/Qn(z) , where Pn(z)/Qn(z) is the nth Padé
approximant for f(z) defined by (1). Hence we have the following

recurrence relations:

Lemma 2. We have for any n 2 2
o (2) = (1+ (" - @®"% - ¢?"D2)g, 4 (2)
+ 34 - "hafg ()
and the same relation with Pn(z) in place of Qn(z) .

Combining Lemma 2 with Theorem 1, we find the following

interesting formula:

Theorem 2. We have for any n 21
ta Qn(q42)
-q™¥(1+q)2 0, (a’2)
q2n+422 _ qn+l(1 _ qn+1 _ qn+2)Z -1 Qn(qzz) -0 .
q2n+2(1 - qn+1 - qn+2)22 + qn+1z \ Qn(qz)
221 - "2 Q,(2)

- 10 -
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§2 The irrationality measure.

© 2
In 1915 Bernstein and Szasz [1] proved that the number J qk o
k=0
is irrational for any non-zero rationals o and q such that
¥(q) < 1/3, (10)

where, for any non-zero rational q = r/s with coprime integers r and
s , v(q) is defined by

Tog| r|

Tog|s|
Note that |g| <1 if and only if y(q) < 1 . Their method was applied

an irrationality criterion for continued fractions to the co?tinued
o  sk(k-1)

fraction (7). Tschakaloff [9] showed that the number kZO q2 ak

is irrational for all non-zero rational o and g such that

v(g) < (3 - V5)/2 (= 0.381 «-+) . (11)

Because of the relations (8) and vy(q) = y(qz) , this improves the result
of Bernstein and Szdsz mentioned above. Under the same assumption (11),
Bundschuh [2] and Shiokawa [6] proved the following theorem: For any

e >0, there is a constant CO = Co(a, g, €) > 0 such that

o =k(k-1)
kzo q? Qk _ %‘ [ > Q-K-E (12)

for all integers P , Q (> CO) , where

€=kg =1+ 1+/5 (3 > 5 - 2.6180 +-+)
2 - (3+/5)y
with v = v(q) . The infimum of such constants «(22) in (12) is called
1
© Ek(k-l) n
the irrationality measure of the number [} g o' . The proof used
k=0

in [6] is quite different from that of [2]. Furthermore, the linear

- 11 -
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independence of these numbers were studied by Tschakaloff [10] and
Bundschuh and Shiokawa [3].
We feel it is worthwhile using the Padé approximations, as

discussed in §1, to estimate the irrationality measure of the number

©  Sk(k-1)
q a® . The constant «k = x; thus obtained in Theorem 3 below,
k=0

is slightly greater than Ko mentioned above; however, the method of

proof is of some interest.

Theorem 3. Let « and q be non-zero rationals with v{q)<1/3,
Then, for any € > 0 , there is a constant C1 = Cl(ﬂ,q,i) > 0 such that

the inequality (12) holds for all integers P , Q (> Cl) , where

c=kp =l (23, Y= ().

Proof of Theorem 3. We transform the continued fraction (10)

into the regular one. Then we find

1

o zk(k-1)
z q2 Zk=1+ 1 1 »
k=0 A1 +
A2+ e
where A, = bl/a1 = (1 - gqz)/z , and
d, a5 *°* &
A2n = a1 a3 oo a2n-1 b2n
2 4 2n
n-1
2k
I (1-9"")
(1 + (q2n-1 - q:n—i _ q4n 1)2) . k=l
n— n *
p4e] it (1 _q2k-1)
k=1

A b
2n+l a; ag **t 3,04 2n+l

- 12 -
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n
2k-1
I (1-q )
(1 + (q2n _ q;n _ q4n+1)z) . k=1 (n > 1) .
n n
zq T o(1 - q2k)
k=1
Hence we have
log |A | = - —%— n log |g| + 0(1) . (13)

We need now the following

Lemma 3 ([7], c.f. [8]). Let
0 S S
AL+ R, + 'Ig +
be a continued fraction with real partial denominators which represents an

irrational number, and let Pn/Qn denotes its nth approximant. Assume

that
o -1
nzl iAnAnHI T

Then the ratios Pn/(A2 Ay eee An) and Qn/(A1 Ay =ee An) converge to
finite non-zero limits as n - « ., Furthermore

lim A =1,

)
P> n+l-n

where 6 is defined for n 2 0 by the convergent continued fraction

Since, by (13)

-1
Tog |AA ;17" = 3n Tog lq| + 0(1)

the series 7§ iAnAn+1'_1 is convergent. Hence we may apply Lemma 3 with
=1

- 13 -
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(13) and obtain .
Tog lQnI = log [A; Ay <o AL+ 0(1)

- 1 2 3
= (1 +0(==))n" —~(1 - v) Tog s (14)
and
tim 0 _ tim Snfner o (15)
N0 Kn n-e AnAn+1

Put z=a=a/b and q = r/s , where a, b, r, s are integers
with s >0, (a, b) = (r, s) =1, so that log |r| = y log s and

log |q| = (y-1)log s . We need to estimate the common denominators of the
rationals Pn and Qn . Noticing that, by definition,

b. b, *** b
ess A = 12 2n

A, A
2n a, Ay *** Ayp

172

2n
- k- -
T (1 + (qk 1 qZ 2 _ q2k 1)
k=1
? n
ZZn 3n-n 1 (1

q
k=1

z)

IS

n A e P1P2 7 Ponn
172 2n+l ap ag **t A

Z2n+l
n (1+
k=1
2 n
Z2n+1 q3n +2n 1
k=1

- 2k-2 -
(qk . q - q2k 1)2)

1 - qZk)

and
Q=An Q1 * Qo Pr= A Pry +Pros

we put

- 14 -
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2 n
‘aZn r3n -n n I (52k-1 i er-Z)l ,

D, = S
2n k=1
2n+l 3nZ+2n nl Mo 2k 2k
e Gl
Then DnPn and DnQn are integers with
Tog D, = (1 + 0(—%—))n2 —l~%—§1— Tog s . (16)
It follows from (13), (14) and (16) that
A 50
Tog | TFL0 | = (14 0(=-))n? 25 0g s (17)

Pn
Hence, since vy < 1/3 by assumption, the sequence IAn+10n/Dn|
tends to infinity as n » e« .,
Let P, Q be given integers. We may assume Q is
sufficiently large. Then there is an integer n = n(Q) such that

lAnQn-l/Dn—ll $ 40 < IAn+IQn/Dn‘ : (18)

Since PQ, ;- P,_1Q, # 0 , at least one of PQ-QP,P Q- Q,.1P
is different from zero. We assume first that PnQ - QnP # 0 . Putting
6= ) (r/s)n(n'l)/z(a/b)n for brevity, we have

n=0

D,(PQ - Q;P)
D,0p(6 - - ) =~

Here an(PnQ - QnP)l 21, since Dn(PnQ - QnP) is a non-zero integer,

+D (Q6 -

Q n‘=n Pp) -

n

and
Dn
D, (Q8 - P)| = o o o 1
+ +
n+l n’ An+1 An+IQn

1

2
* I n+10n/Dn * _?ﬁ~ ’

- 15 -
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noticing (15) and (18). Thus we get

p -1-(10g]D,Q, )/109Q

o= | 20 (19)

In the case of Pn-IQ - Qn-lp = 0 , we have the same inequality as (19)

with

than

1/2 and n® on the right-hand side replaced by a constant smaller

1/2 and n-1 , respectively, since by (17)

A .Q D
n+l-n n-1 | =1+0(1).

’ Dn AnQn-l

It follows from (18), (14), (16) and (17) that

and

1y, 2
Tog [D,Q,| = (1 + 0(==))n® Tog s = Tog [D_;Qu_q] »

Tog @ = (1 +0(=-))n” 153 109 s,

Therefore we get

(10g [D,Q,1)/10g @ = -2 + o(1) ;

which together with (19) yields the theorem.

[1]

(2]

[3]

References

F. Bernstein and 0. Szasz, Uber Irrationalitat unendlicher

© 2
Kettenbriiche mit einer Anwendung auf die Reihe ) qv x"
v=0

, Math.

Ann. 76(1915), 295-300.

P. Bundschuh, Verscharfung eines arithmetischen Satzes von Tschakaloff,
Portugaliae Math. 33(1974), 1-17.

P. Bundschuh and I. Shiokawa, A measure for the linear independence

of certain numbers, Results in Math. 7(1984), 130-144.

- 16 -



KSTS/RR-90/008
December 17, 1990

[4]

(5]

(6]

(7]

(el

(9]

[10]

W.B. Jones and W.J. Thron, Continued Fractions, Addison-Wesley,
London 1980.

0. Perron, Die Lehre von den Kettenbrichen, Teubner, Leipzig -

Berlin 1929,

I. Shiokawa, On irrationality of the values of certain series, Sém.
Théorie des Nombres 1980-1981, n°30, 1-13.

1. Shiokawa, Rational approximations to the values of certain
hypergeometric functions, Number Theory and Combinatorics Japan 1984,
World Scientific, Singapore 1985, 353-367.

1. Shiokawa, Rational approximations to the Rogers-Ramanujan continued
fraction, Acta Arith. 50(1988), 23-30.

L. Tschakaloff, Arithmetische Eigenschaften der unendlichen Reihe

%V(V'l) v
a x~ , Math. Ann. 80(1920), 62-74.
0

ne—18

\Y

L. Tschakaloff, Arithmetische Eigenschaften der unendlichen Reihe

b %y(v—l) v

] a x” (2) , Math. Ann. 84(1921), 100-114,
v=0

lekata Shiokawa Jun-ichi Tamura

Department of Mathematics Faculty of General Education
Keio University International Junior College
Hiyoshi, Yokohama Fkoda 4-15-1, Nakano-ku

223 Japan Tokyo 165, Japan

- 17 -



